code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
snake_case_ : str = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A (__A : str ) -> int: """simple docstring""" UpperCAmelCase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while place < len(__A ): if (place + 1 < len(__A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A (__A : int ) -> str: """simple docstring""" UpperCAmelCase_ = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) = divmod(__A , __A ) result.append(roman * factor ) if number == 0: break return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod()
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
def A (__A : str ) -> str: """simple docstring""" UpperCAmelCase_ = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCAmelCase_ = '''''' UpperCAmelCase_ = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCAmelCase_ , UpperCAmelCase_ = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCAmelCase_ = [1 for i in range(len(__A ) )] # for each character in new_string find corresponding palindromic string UpperCAmelCase_ = 0 for j in range(len(__A ) ): UpperCAmelCase_ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCAmelCase_ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCAmelCase_ = j - k + 1 # noqa: E741 UpperCAmelCase_ = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCAmelCase_ = length[j] UpperCAmelCase_ = j # create that string UpperCAmelCase_ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
from collections import defaultdict class __snake_case : def __init__( self : Optional[Any] , _snake_case : List[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_ = [ [-1 for i in range(total + 1)] for j in range(2 ** len(_snake_case)) ] UpperCAmelCase_ = defaultdict(_snake_case) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_ = (1 << len(_snake_case)) - 1 def lowerCamelCase ( self : Any , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_ = self.count_ways_until(_snake_case , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. UpperCAmelCase_ = total_ways_util return self.dp[mask][task_no] def lowerCamelCase ( self : Optional[int] , _snake_case : Dict): """simple docstring""" for i in range(len(_snake_case)): for j in task_performed[i]: self.task[j].append(_snake_case) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": snake_case_ : int = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. snake_case_ : List[str] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
import math def A (__A : int ) -> list: """simple docstring""" UpperCAmelCase_ = [True] * n UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase_ = i * 2 while index < n: UpperCAmelCase_ = False UpperCAmelCase_ = index + i UpperCAmelCase_ = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def A (__A : int = 999966663333 ) -> int: """simple docstring""" UpperCAmelCase_ = math.floor(math.sqrt(__A ) ) + 100 UpperCAmelCase_ = prime_sieve(__A ) UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase_ = primes[prime_index + 1] UpperCAmelCase_ = last_prime**2 UpperCAmelCase_ = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ : Tuple = logging.get_logger(__name__) def A (__A : Any , __A : List[str] , __A : Any ) -> List[Any]: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def A (__A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> str: """simple docstring""" UpperCAmelCase_ = to_pil_image(__A ) UpperCAmelCase_ , UpperCAmelCase_ = pil_image.size UpperCAmelCase_ = pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCAmelCase_ = [idx for idx, word in enumerate(__A ) if not word.strip()] UpperCAmelCase_ = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] UpperCAmelCase_ = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase_ = [] for x, y, w, h in zip(__A , __A , __A , __A ): UpperCAmelCase_ = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes UpperCAmelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( a ): UpperCAmelCase__ : Tuple = ['''pixel_values'''] def __init__( self : Dict , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : float = 1 / 255 , _snake_case : bool = True , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Optional[int] , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = size if size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_snake_case) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_value UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase_ = apply_ocr UpperCAmelCase_ = ocr_lang UpperCAmelCase_ = tesseract_config def lowerCamelCase ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") UpperCAmelCase_ = (size['''height'''], size['''width''']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Union[str, Any] , _snake_case : np.ndarray , _snake_case : Union[float, Iterable[float]] , _snake_case : Union[float, Iterable[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : Optional[int]=None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : Union[float, Iterable[float]] = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : List[str] , ): """simple docstring""" UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_snake_case) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase_ = make_list_of_images(_snake_case) if not valid_images(_snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_snake_case) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''') UpperCAmelCase_ = [] UpperCAmelCase_ = [] for image in images: UpperCAmelCase_ , UpperCAmelCase_ = apply_tesseract(_snake_case , _snake_case , _snake_case) words_batch.append(_snake_case) boxes_batch.append(_snake_case) if do_resize: UpperCAmelCase_ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_snake_case , scale=_snake_case) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_snake_case , _snake_case) for image in images] UpperCAmelCase_ = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case) if apply_ocr: UpperCAmelCase_ = words_batch UpperCAmelCase_ = boxes_batch return data
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Dict = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available snake_case_ : List[str] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : int = ReformerTokenizer UpperCAmelCase__ : int = ReformerTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = True def lowerCamelCase ( self : Any): """simple docstring""" super().setUp() UpperCAmelCase_ = ReformerTokenizer(_snake_case , keep_accents=_snake_case) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_snake_case) , 1000) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000) def lowerCamelCase ( self : str): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case) self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : Tuple , _snake_case : Any=15): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case) # Simple input UpperCAmelCase_ = '''This is a simple input''' UpperCAmelCase_ = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''') # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''') # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''') # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''') # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ReformerTokenizer(_snake_case , keep_accents=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_snake_case) self.assertListEqual( _snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_snake_case) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCamelCase ( self : List[Any]): """simple docstring""" return ReformerTokenizer.from_pretrained('''google/reformer-crime-and-punishment''') @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case)) @slow def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case)) @require_torch @slow def lowerCamelCase ( self : List[str]): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_snake_case) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_snake_case , return_tensors='''pt''') UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='''pt''') UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence['''input_ids'''].shape UpperCAmelCase_ = ReformerModel(_snake_case) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_snake_case) model(**_snake_case) @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ '''This is a very simple sentence.''', '''The quick brown fox jumps over the lazy dog.''', ] self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''google/reformer-crime-and-punishment''' , revision='''0e6c3decb8211d49bf881013425dc8b0448b3f5a''' , padding=_snake_case , sequences=_snake_case , )
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
def A (__A : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ = len(__A ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__A )] # Reverse whole list UpperCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__A )] cur -= 1 return arr if __name__ == "__main__": snake_case_ : str = input("Enter numbers separated by a comma:\n").strip() snake_case_ : Dict = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( a ): def __init__( self : List[Any] , _snake_case : NestedDataStructureLike[PathLike] , _snake_case : Optional[NamedSplit] = None , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[str] = None , _snake_case : Optional[int] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__( _snake_case , split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , ) UpperCAmelCase_ = field UpperCAmelCase_ = path_or_paths if isinstance(_snake_case , _snake_case) else {self.split: path_or_paths} UpperCAmelCase_ = Json( cache_dir=_snake_case , data_files=_snake_case , features=_snake_case , field=_snake_case , **_snake_case , ) def lowerCamelCase ( self : List[str]): """simple docstring""" if self.streaming: UpperCAmelCase_ = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , ) UpperCAmelCase_ = self.builder.as_dataset( split=self.split , verification_mode=_snake_case , in_memory=self.keep_in_memory) return dataset class __snake_case : def __init__( self : Dict , _snake_case : Dataset , _snake_case : Union[PathLike, BinaryIO] , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , **_snake_case : List[Any] , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""") UpperCAmelCase_ = dataset UpperCAmelCase_ = path_or_buf UpperCAmelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ = num_proc UpperCAmelCase_ = '''utf-8''' UpperCAmelCase_ = to_json_kwargs def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.to_json_kwargs.pop('''path_or_buf''' , _snake_case) UpperCAmelCase_ = self.to_json_kwargs.pop('''orient''' , '''records''') UpperCAmelCase_ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False) UpperCAmelCase_ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True) UpperCAmelCase_ = self.to_json_kwargs.pop('''compression''' , _snake_case) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""") if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , '''wb''' , compression=_snake_case) as buffer: UpperCAmelCase_ = self._write(file_obj=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''') UpperCAmelCase_ = self._write( file_obj=self.path_or_buf , orient=_snake_case , lines=_snake_case , index=_snake_case , **self.to_json_kwargs) return written def lowerCamelCase ( self : Any , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = args UpperCAmelCase_ = query_table( table=self.dataset.data , key=slice(_snake_case , offset + self.batch_size) , indices=self.dataset._indices , ) UpperCAmelCase_ = batch.to_pandas().to_json( path_or_buf=_snake_case , orient=_snake_case , lines=_snake_case , index=_snake_case , **_snake_case) if not json_str.endswith('''\n'''): json_str += "\n" return json_str.encode(self.encoding) def lowerCamelCase ( self : Union[str, Any] , _snake_case : BinaryIO , _snake_case : Any , _snake_case : str , _snake_case : Any , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): UpperCAmelCase_ = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(_snake_case) else: UpperCAmelCase_ , UpperCAmelCase_ = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _snake_case , _snake_case)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_snake_case) return written
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
snake_case_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } snake_case_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def A (__A : float , __A : str , __A : str ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: UpperCAmelCase_ = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(__A )}""" ) raise ValueError(__A ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version snake_case_ : Tuple = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize snake_case_ : Optional[Any] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" snake_case_ : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" snake_case_ : Dict = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : List[str]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Union[str, Any]): """simple docstring""" import nltk nltk.download('''wordnet''') if NLTK_VERSION >= version.Version('''3.6.5'''): nltk.download('''punkt''') if NLTK_VERSION >= version.Version('''3.6.6'''): nltk.download('''omw-1.4''') def lowerCamelCase ( self : List[str] , _snake_case : Optional[int] , _snake_case : str , _snake_case : List[str]=0.9 , _snake_case : Optional[int]=3 , _snake_case : Optional[int]=0.5): """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5'''): UpperCAmelCase_ = [ meteor_score.single_meteor_score( word_tokenize(_snake_case) , word_tokenize(_snake_case) , alpha=_snake_case , beta=_snake_case , gamma=_snake_case) for ref, pred in zip(_snake_case , _snake_case) ] else: UpperCAmelCase_ = [ meteor_score.single_meteor_score(_snake_case , _snake_case , alpha=_snake_case , beta=_snake_case , gamma=_snake_case) for ref, pred in zip(_snake_case , _snake_case) ] return {"meteor": np.mean(_snake_case)}
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
def A (__A : list , __A : int = 0 ) -> list: """simple docstring""" UpperCAmelCase_ = length or len(__A ) UpperCAmelCase_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase_ , UpperCAmelCase_ = list_data[i + 1], list_data[i] UpperCAmelCase_ = True return list_data if not swapped else bubble_sort(__A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self : List[Any] , _snake_case : List[Any] , _snake_case : Optional[int]=2 , _snake_case : str=8 , _snake_case : int=True , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : int=True , _snake_case : Any=99 , _snake_case : Union[str, Any]=16 , _snake_case : Any=5 , _snake_case : Union[str, Any]=2 , _snake_case : List[Any]=36 , _snake_case : Union[str, Any]="gelu" , _snake_case : List[Any]=0.0 , _snake_case : Union[str, Any]=0.0 , _snake_case : Union[str, Any]=512 , _snake_case : Optional[Any]=16 , _snake_case : int=2 , _snake_case : List[Any]=0.0_2 , _snake_case : List[str]=3 , _snake_case : Any=4 , _snake_case : Optional[Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : List[str]): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = 300 return config def lowerCamelCase ( self : Dict): """simple docstring""" ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int): """simple docstring""" UpperCAmelCase_ = MraModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : int , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = MraModel(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , ) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : str , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = MraForMaskedLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : str , _snake_case : List[str] , _snake_case : int , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = MraForQuestionAnswering(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : Dict , _snake_case : Dict , _snake_case : int , _snake_case : List[Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MraForTokenClassification(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : str , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : str , _snake_case : Any , _snake_case : Any , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MraForMultipleChoice(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : int = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Any = () def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = MraModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MraModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) @unittest.skip(reason='''MRA does not output attentions''') def lowerCamelCase ( self : int): """simple docstring""" return @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''') UpperCAmelCase_ = torch.arange(256).unsqueeze(0) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 256, 768)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4)) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''') UpperCAmelCase_ = torch.arange(256).unsqueeze(0) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 256, vocab_size)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''') UpperCAmelCase_ = torch.arange(4096).unsqueeze(0) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = 50265 UpperCAmelCase_ = torch.Size((1, 4096, vocab_size)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = DebertaTokenizer UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[int] = DebertaTokenizerFast def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ = {'''unk_token''': '''[UNK]'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(_snake_case) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(_snake_case)) def lowerCamelCase ( self : str , **_snake_case : List[str]): """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer('''Hello''' , '''World''') UpperCAmelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , _snake_case) @slow def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: UpperCAmelCase_ = tokenizer_class.from_pretrained('''microsoft/deberta-base''') UpperCAmelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case) UpperCAmelCase_ = [tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase_ = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , _snake_case) for expected, decoded in zip(_snake_case , _snake_case): self.assertEqual(_snake_case , _snake_case)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel snake_case_ : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Tuple): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[Any]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''') except HTTPError: pass def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) UpperCAmelCase_ = FlaxBertModel(_snake_case) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) UpperCAmelCase_ = FlaxBertModel(_snake_case) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''') UpperCAmelCase_ = flatten_dict(unfreeze(model.params)) UpperCAmelCase_ = flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): UpperCAmelCase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1e-3 , msg=F"""{key} not identical""") def A (__A : Optional[int] , __A : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = flatten_dict(modela.params ) UpperCAmelCase_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase_ = False return models_are_equal @require_flax class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') UpperCAmelCase_ = FlaxBertModel(_snake_case) UpperCAmelCase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case)) with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertTrue(check_models_equal(_snake_case , _snake_case)) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') UpperCAmelCase_ = FlaxBertModel(_snake_case) UpperCAmelCase_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case) , max_shard_size='''10KB''') with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertTrue(check_models_equal(_snake_case , _snake_case)) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''bert''' UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''bert''' UpperCAmelCase_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case): UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case) UpperCAmelCase_ = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case) self.assertIsNotNone(_snake_case)
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy snake_case_ : Dict = logging.getLogger(__name__) def A (__A : torch.nn.Module , __A : BnbQuantizationConfig , __A : Union[str, os.PathLike] = None , __A : Optional[Dict[str, Union[int, str, torch.device]]] = None , __A : Optional[List[str]] = None , __A : Optional[Dict[Union[int, str], Union[int, str]]] = None , __A : Optional[Union[str, os.PathLike]] = None , __A : bool = False , ) -> str: """simple docstring""" UpperCAmelCase_ = bnb_quantization_config.load_in_abit UpperCAmelCase_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase_ = [] # custom device map if isinstance(__A , __A ) and len(device_map.keys() ) > 1: UpperCAmelCase_ = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase_ = get_keys_to_not_convert(__A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__A ) UpperCAmelCase_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase_ = [] UpperCAmelCase_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__A ) # compatibility with peft UpperCAmelCase_ = load_in_abit UpperCAmelCase_ = load_in_abit UpperCAmelCase_ = get_parameter_device(__A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase_ = replace_with_bnb_layers(__A , __A , modules_to_not_convert=__A ) # convert param to the right dtype UpperCAmelCase_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase_ = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase_ = getattr(__A , __A , __A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__A ): param.to(__A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): UpperCAmelCase_ = replace_with_bnb_layers( __A , __A , modules_to_not_convert=__A ) UpperCAmelCase_ = get_quantized_model_device_map( __A , __A , __A , max_memory=__A , no_split_module_classes=__A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase_ = True UpperCAmelCase_ = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __A , __A , __A , dtype=bnb_quantization_config.torch_dtype , offload_folder=__A , offload_state_dict=__A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__A , device_map=__A , offload_dir=__A ) def A (__A : int , __A : Union[str, Any] , __A : Union[str, Any]=None , __A : Tuple=None , __A : Optional[Any]=None ) -> List[Any]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCAmelCase_ = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__A , __A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase_ = {} UpperCAmelCase_ = special_dtypes UpperCAmelCase_ = no_split_module_classes UpperCAmelCase_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase_ = get_balanced_memory( __A , low_zero=(device_map == '''balanced_low_0''') , max_memory=__A , **__A , ) UpperCAmelCase_ = max_memory UpperCAmelCase_ = infer_auto_device_map(__A , **__A ) if isinstance(__A , __A ): # check if don't have any quantized module on the cpu UpperCAmelCase_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def A (__A : Optional[Any] , __A : Dict , __A : int=None , __A : List[Any]=None ) -> int: """simple docstring""" if modules_to_not_convert is None: UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = _replace_with_bnb_layers( __A , __A , __A , __A ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def A (__A : Dict , __A : str , __A : str=None , __A : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase_ = [] current_key_name.append(__A ) if isinstance(__A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase_ = '''.'''.join(__A ) UpperCAmelCase_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase_ = module.weight.data if module.bias is not None: UpperCAmelCase_ = module.bias.data bnb_module.requires_grad_(__A ) setattr(__A , __A , __A ) UpperCAmelCase_ = True if len(list(module.children() ) ) > 0: UpperCAmelCase_ , UpperCAmelCase_ = _replace_with_bnb_layers( __A , __A , __A , __A ) UpperCAmelCase_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A (__A : List[str] ) -> Any: """simple docstring""" with init_empty_weights(): UpperCAmelCase_ = deepcopy(__A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase_ = find_tied_parameters(__A ) # For compatibility with Accelerate < 0.18 if isinstance(__A , __A ): UpperCAmelCase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase_ = sum(__A , [] ) UpperCAmelCase_ = len(__A ) > 0 # Check if it is a base model UpperCAmelCase_ = False if hasattr(__A , '''base_model_prefix''' ): UpperCAmelCase_ = not hasattr(__A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase_ = list(model.named_children() ) UpperCAmelCase_ = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase_ = set(__A ) - set(__A ) UpperCAmelCase_ = list(set(__A ) ) + list(__A ) # remove ".weight" from the keys UpperCAmelCase_ = ['''.weight''', '''.bias'''] UpperCAmelCase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase_ = name.replace(__A , '''''' ) filtered_module_names.append(__A ) return filtered_module_names def A (__A : int ) -> List[Any]: """simple docstring""" for m in model.modules(): if isinstance(__A , bnb.nn.Linearabit ): return True return False def A (__A : nn.Module ) -> Tuple: """simple docstring""" return next(parameter.parameters() ).device def A (__A : Tuple , __A : str , __A : int , __A : int , __A : List[Any] , __A : Tuple , __A : str ) -> Tuple: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__A , __A , 0 , dtype=__A , value=__A ) UpperCAmelCase_ = param_name UpperCAmelCase_ = model if "." in tensor_name: UpperCAmelCase_ = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase_ = getattr(__A , __A ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCAmelCase_ = new_module UpperCAmelCase_ = splits[-1] # offload weights UpperCAmelCase_ = False offload_weight(module._parameters[tensor_name] , __A , __A , index=__A ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __A , index=__A , ) else: offload_weight(__A , __A , __A , index=__A ) offload_weight(__A , param_name.replace('''weight''' , '''SCB''' ) , __A , index=__A ) set_module_tensor_to_device(__A , __A , '''meta''' , dtype=__A , value=torch.empty(*param.size() ) )
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCAmelCase__ : int = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def A () -> Dict: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def A () -> Any: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def A () -> int: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , '''Tatoeba directory does not exist.''' ) class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=_snake_case) @slow def lowerCamelCase ( self : Tuple): """simple docstring""" self.resolver.convert_models(['''heb-eng''']) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_snake_case) assert mmeta["long_pair"] == "heb-eng"
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __snake_case : UpperCAmelCase__ : Optional[Any] = LEDConfig UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : int = '''gelu''' def __init__( self : Dict , _snake_case : Any , _snake_case : List[str]=13 , _snake_case : str=7 , _snake_case : Union[str, Any]=True , _snake_case : Union[str, Any]=False , _snake_case : Union[str, Any]=99 , _snake_case : Dict=32 , _snake_case : List[str]=2 , _snake_case : Optional[Any]=4 , _snake_case : Optional[int]=37 , _snake_case : Optional[Any]=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : Any=20 , _snake_case : int=2 , _snake_case : Dict=1 , _snake_case : Any=0 , _snake_case : Dict=4 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase_ = prepare_led_inputs_dict(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = tf.concat( [tf.zeros_like(_snake_case)[:, :-1], tf.ones_like(_snake_case)[:, -1:]] , axis=-1 , ) UpperCAmelCase_ = global_attention_mask return config, inputs_dict def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = TFLEDModel(config=_snake_case).get_decoder() UpperCAmelCase_ = inputs_dict['''input_ids'''] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)[0] UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1])) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1e-3) def A (__A : str , __A : Optional[Any] , __A : List[Any] , __A : Optional[Any]=None , __A : Optional[Any]=None , __A : Dict=None , __A : Optional[Any]=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ : str = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = TFLEDModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = tf.zeros_like(inputs_dict['''attention_mask''']) UpperCAmelCase_ = 2 UpperCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase_ = True UpperCAmelCase_ = self.model_tester.seq_length UpperCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_snake_case : Any): UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_snake_case : Optional[int]): UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = len(_snake_case) self.assertEqual(config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(config.output_hidden_states , _snake_case) check_decoder_attentions_output(_snake_case) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case)) self.assertEqual(model.config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''') def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def A (__A : str ) -> Tuple: """simple docstring""" return tf.constant(__A , dtype=tf.intaa ) snake_case_ : Any = 1e-4 @slow @require_tf class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''').led # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _snake_case , _snake_case) UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , _snake_case) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1e-3) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''') # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]]) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _snake_case , _snake_case) UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _snake_case) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1e-3 , rtol=1e-3)
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case_ : str = "pt" elif is_tf_available(): snake_case_ : int = "tf" else: snake_case_ : Optional[Any] = "jax" class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ByTaTokenizer UpperCAmelCase__ : Union[str, Any] = False def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" super().setUp() UpperCAmelCase_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return ByTaTokenizer.from_pretrained('''google/byt5-small''') def lowerCamelCase ( self : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : int , _snake_case : Optional[Any] , _snake_case : Optional[int]=False , _snake_case : Optional[Any]=20 , _snake_case : Any=5): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case) except UnicodeDecodeError: pass toks.append((i, tok)) UpperCAmelCase_ = list(filter(lambda _snake_case: re.match(r'''^[ a-zA-Z]+$''' , t[1]) , _snake_case)) UpperCAmelCase_ = list(filter(lambda _snake_case: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case) , _snake_case)) if max_length is not None and len(_snake_case) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(_snake_case) < min_length and len(_snake_case) > 0: while len(_snake_case) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case) if " " not in output_txt and len(_snake_case) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case) ) if with_prefix_space: UpperCAmelCase_ = ''' ''' + output_txt UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) return output_txt, output_ids def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>''']) UpperCAmelCase_ = tokenizer(['''hi''', '''I went to the gym''', '''''']) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids''']) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = '''Unicode €.''' UpperCAmelCase_ = tokenizer(_snake_case) UpperCAmelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''Unicode €.</s>''') UpperCAmelCase_ = tokenizer('''e è é ê ë''') UpperCAmelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''e è é ê ë</s>''') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''e è é ê ë</s>''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) self.assertIsInstance(_snake_case , _snake_case) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0]) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0]) self.assertListEqual(_snake_case , _snake_case) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _snake_case) self.assertIn('''attention_mask''' , _snake_case) self.assertNotIn('''decoder_input_ids''' , _snake_case) self.assertNotIn('''decoder_attention_mask''' , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase_ = tokenizer( text_target=_snake_case , max_length=32 , padding='''max_length''' , truncation=_snake_case , return_tensors=_snake_case) self.assertEqual(32 , targets['''input_ids'''].shape[1]) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization. </s>'''] UpperCAmelCase_ = ['''Summary of the text. </s>'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] UpperCAmelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , text_target=_snake_case) self.assertEqual(_snake_case , batch['''input_ids'''][0]) self.assertEqual(_snake_case , batch['''labels'''][0]) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) shutil.rmtree(_snake_case) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam''']) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''') tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens}) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) with open(os.path.join(_snake_case , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) UpperCAmelCase_ = [F"""<extra_id_{i}>""" for i in range(125)] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_snake_case , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_snake_case)] UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , ) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer_class.from_pretrained(_snake_case) self.assertTrue(tokenizer.decode([255]) == '''''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : List[Any]): """simple docstring""" pass def lowerCamelCase ( self : Any): """simple docstring""" pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertIsInstance(_snake_case , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] UpperCAmelCase_ = 0 UpperCAmelCase_ = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case) for attr in attributes_list: setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , '''additional_special_tokens_ids''' , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , []) setattr(_snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , [token_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , [token_id_to_test_setters])
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : str = '''switch_transformers''' UpperCAmelCase__ : Tuple = ['''past_key_values'''] UpperCAmelCase__ : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , _snake_case : str=32128 , _snake_case : str=768 , _snake_case : str=64 , _snake_case : Optional[Any]=2048 , _snake_case : Any=64 , _snake_case : Dict=12 , _snake_case : Optional[int]=3 , _snake_case : List[str]=12 , _snake_case : List[Any]=3 , _snake_case : Tuple=12 , _snake_case : List[Any]=8 , _snake_case : Tuple=False , _snake_case : Optional[Any]=0.0_1 , _snake_case : int="float32" , _snake_case : str=False , _snake_case : int=32 , _snake_case : List[Any]=128 , _snake_case : str=0.1 , _snake_case : Optional[Any]=1e-6 , _snake_case : Tuple=0.0_0_1 , _snake_case : Optional[int]=0.0_0_1 , _snake_case : List[Any]=1.0 , _snake_case : Tuple="relu" , _snake_case : List[str]=True , _snake_case : Dict=False , _snake_case : int=True , _snake_case : List[str]=0 , _snake_case : Any=1 , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_sparse_encoder_layers UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCAmelCase_ = self.num_layers // self.num_sparse_encoder_layers else: UpperCAmelCase_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCAmelCase_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCAmelCase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = num_experts UpperCAmelCase_ = expert_capacity UpperCAmelCase_ = router_bias UpperCAmelCase_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") UpperCAmelCase_ = router_dtype UpperCAmelCase_ = router_ignore_padding_tokens UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = add_router_probs UpperCAmelCase_ = router_z_loss_coef UpperCAmelCase_ = router_aux_loss_coef UpperCAmelCase_ = self.feed_forward_proj.split('''-''') UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == '''gated''' if len(_snake_case) > 1 and act_info[0] != "gated" or len(_snake_case) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = '''gelu_new''' super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , **_snake_case , )
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Any = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
def A (__A : str , __A : str ) -> Optional[Any]: """simple docstring""" assert x is not None assert y is not None UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = len(__A ) # declaring the array for storing the dp values UpperCAmelCase_ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): UpperCAmelCase_ = 1 if x[i - 1] == y[j - 1] else 0 UpperCAmelCase_ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = m, n while i > 0 and j > 0: UpperCAmelCase_ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCAmelCase_ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": snake_case_ : Tuple = "AGGTAB" snake_case_ : Optional[int] = "GXTXAYB" snake_case_ : int = 4 snake_case_ : Optional[Any] = "GTAB" snake_case_ , snake_case_ : List[Any] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[str] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __snake_case ( a ): UpperCAmelCase__ : str = '''pix2struct_text_model''' UpperCAmelCase__ : Optional[Any] = ['''past_key_values'''] UpperCAmelCase__ : List[str] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , _snake_case : Optional[Any]=50244 , _snake_case : List[str]=768 , _snake_case : Tuple=64 , _snake_case : Tuple=2048 , _snake_case : Any=12 , _snake_case : int=12 , _snake_case : Dict=32 , _snake_case : Union[str, Any]=128 , _snake_case : Optional[int]=0.1 , _snake_case : str=1e-6 , _snake_case : int=1.0 , _snake_case : List[Any]="gelu_new" , _snake_case : Optional[int]=0 , _snake_case : Union[str, Any]=False , _snake_case : int=0 , _snake_case : Optional[int]=1 , _snake_case : int=False , _snake_case : Any=True , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = use_cache UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = decoder_start_token_id # for backwards compatibility UpperCAmelCase_ = dense_act_fn super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , ) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Union[str, os.PathLike] , **_snake_case : Union[str, Any]): """simple docstring""" cls._set_token_in_kwargs(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": UpperCAmelCase_ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_snake_case , **_snake_case) class __snake_case ( a ): UpperCAmelCase__ : str = '''pix2struct_vision_model''' def __init__( self : Any , _snake_case : List[str]=768 , _snake_case : str=768 , _snake_case : List[Any]=2048 , _snake_case : Optional[Any]=64 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[int]=12 , _snake_case : List[str]="gelu_new" , _snake_case : Any=1e-6 , _snake_case : Dict=0.0 , _snake_case : Dict=0.0 , _snake_case : Optional[Any]=1e-10 , _snake_case : List[Any]=1.0 , _snake_case : int=4096 , _snake_case : List[str]=32 , _snake_case : List[str]=128 , **_snake_case : List[str] , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = patch_embed_hidden_size UpperCAmelCase_ = d_ff UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = dense_act_fn UpperCAmelCase_ = seq_len UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = d_kv @classmethod def lowerCamelCase ( cls : Tuple , _snake_case : Union[str, os.PathLike] , **_snake_case : str): """simple docstring""" cls._set_token_in_kwargs(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_snake_case , **_snake_case) class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''pix2struct''' UpperCAmelCase__ : int = True def __init__( self : Any , _snake_case : Any=None , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=1.0 , _snake_case : List[str]=0.0_2 , _snake_case : str=False , _snake_case : str=False , _snake_case : str=True , **_snake_case : str , ): """simple docstring""" super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case) if text_config is None: UpperCAmelCase_ = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''') if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''') UpperCAmelCase_ = PixaStructTextConfig(**_snake_case) UpperCAmelCase_ = PixaStructVisionConfig(**_snake_case) UpperCAmelCase_ = self.text_config.decoder_start_token_id UpperCAmelCase_ = self.text_config.pad_token_id UpperCAmelCase_ = self.text_config.eos_token_id UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = initializer_range UpperCAmelCase_ = self.initializer_range UpperCAmelCase_ = self.initializer_range UpperCAmelCase_ = is_vqa @classmethod def lowerCamelCase ( cls : List[Any] , _snake_case : PixaStructTextConfig , _snake_case : PixaStructVisionConfig , **_snake_case : Optional[int]): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
class __snake_case : def __init__( self : int , _snake_case : Any , _snake_case : Any , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = name UpperCAmelCase_ = value UpperCAmelCase_ = weight def __repr__( self : List[Any]): """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return self.value def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.name def lowerCamelCase ( self : Dict): """simple docstring""" return self.weight def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return self.value / self.weight def A (__A : Dict , __A : Optional[int] , __A : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ = [] for i in range(len(__A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A (__A : Optional[Any] , __A : Dict , __A : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = sorted(__A , key=__A , reverse=__A ) UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = 0.0, 0.0 for i in range(len(__A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A () -> List[Any]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict=7 , _snake_case : Optional[int]=3 , _snake_case : Tuple=18 , _snake_case : int=30 , _snake_case : Dict=400 , _snake_case : List[Any]=True , _snake_case : str=None , _snake_case : Optional[Any]=True , _snake_case : Tuple=None , _snake_case : int=True , ): """simple docstring""" UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_flip_channel_order def lowerCamelCase ( self : str): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = MobileViTImageProcessingTester(self) @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_snake_case , '''do_resize''')) self.assertTrue(hasattr(_snake_case , '''size''')) self.assertTrue(hasattr(_snake_case , '''do_center_crop''')) self.assertTrue(hasattr(_snake_case , '''center_crop''')) self.assertTrue(hasattr(_snake_case , '''do_flip_channel_order''')) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def lowerCamelCase ( self : List[str]): """simple docstring""" pass def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_snake_case , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
from __future__ import annotations from collections.abc import Callable snake_case_ : Optional[int] = list[list[float | int]] def A (__A : Matrix , __A : Matrix ) -> Matrix: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for _ in range(size + 1 )] for _ in range(__A )] UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for row in range(__A ): for col in range(__A ): UpperCAmelCase_ = matrix[row][col] UpperCAmelCase_ = vector[row][0] UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while row < size and col < size: # pivoting UpperCAmelCase_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase_ , UpperCAmelCase_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): UpperCAmelCase_ = augmented[rowa][col] / augmented[row][col] UpperCAmelCase_ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): UpperCAmelCase_ = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def A (__A : list[int] ) -> Callable[[int], int]: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for _ in range(__A )] for _ in range(__A )] UpperCAmelCase_ = [[0] for _ in range(__A )] UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): UpperCAmelCase_ = (x_val + 1) ** (size - col - 1) UpperCAmelCase_ = y_val UpperCAmelCase_ = solve(__A , __A ) def interpolated_func(__A : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def A (__A : int ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A (__A : Callable[[int], int] = question_function , __A : int = 10 ) -> int: """simple docstring""" UpperCAmelCase_ = [func(__A ) for x_val in range(1 , order + 1 )] UpperCAmelCase_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase_ = 0 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for poly in polynomials: UpperCAmelCase_ = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(f"{solution() = }")
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[str] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ : List[str] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase ( self : Dict , _snake_case : Any , _snake_case : Any , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = TextaTextGenerationPipeline(model=_snake_case , tokenizer=_snake_case) return generator, ["Something to write", "Something else"] def lowerCamelCase ( self : Dict , _snake_case : List[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = generator('''Something there''') self.assertEqual(_snake_case , [{'''generated_text''': ANY(_snake_case)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''')) UpperCAmelCase_ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_snake_case) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}], [{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}], ] , ) UpperCAmelCase_ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case) self.assertEqual( _snake_case , [ [{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}], [{'''generated_text''': ANY(_snake_case)}, {'''generated_text''': ANY(_snake_case)}], ] , ) with self.assertRaises(_snake_case): generator(4) @require_torch def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''') # do_sample=False necessary for reproducibility UpperCAmelCase_ = generator('''Something there''' , do_sample=_snake_case) self.assertEqual(_snake_case , [{'''generated_text''': ''''''}]) UpperCAmelCase_ = 3 UpperCAmelCase_ = generator( '''Something there''' , num_return_sequences=_snake_case , num_beams=_snake_case , ) UpperCAmelCase_ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = generator('''This is a test''' , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case) self.assertEqual( _snake_case , [ {'''generated_token_ids''': ANY(torch.Tensor)}, {'''generated_token_ids''': ANY(torch.Tensor)}, ] , ) UpperCAmelCase_ = generator.model.config.eos_token_id UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {'''generated_token_ids''': ANY(torch.Tensor)}, {'''generated_token_ids''': ANY(torch.Tensor)}, ], [ {'''generated_token_ids''': ANY(torch.Tensor)}, {'''generated_token_ids''': ANY(torch.Tensor)}, ], ] , ) @require_tf def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''') # do_sample=False necessary for reproducibility UpperCAmelCase_ = generator('''Something there''' , do_sample=_snake_case) self.assertEqual(_snake_case , [{'''generated_text''': ''''''}])
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : int = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ["MobileViTFeatureExtractor"] snake_case_ : Dict = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : List[str] = {"vocab_file": "spiece.model"} snake_case_ : Optional[int] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } snake_case_ : List[Any] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) snake_case_ : List[str] = 0 snake_case_ : int = 1 snake_case_ : Optional[int] = 2 snake_case_ : Optional[int] = 3 snake_case_ : List[Any] = 4 class __snake_case ( a ): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = '''left''' def __init__( self : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int]=False , _snake_case : int=True , _snake_case : List[Any]=False , _snake_case : int="<s>" , _snake_case : Union[str, Any]="</s>" , _snake_case : List[str]="<unk>" , _snake_case : str="<sep>" , _snake_case : Optional[Any]="<pad>" , _snake_case : Tuple="<cls>" , _snake_case : int="<mask>" , _snake_case : Union[str, Any]=["<eop>", "<eod>"] , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : int , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_snake_case) @property def lowerCamelCase ( self : Tuple): """simple docstring""" return len(self.sp_model) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : str , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase ( self : int , _snake_case : Any): """simple docstring""" if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _snake_case) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_snake_case)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def lowerCamelCase ( self : Any , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.preprocess_text(_snake_case) UpperCAmelCase_ = self.sp_model.encode(_snake_case , out_type=_snake_case) UpperCAmelCase_ = [] for piece in pieces: if len(_snake_case) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_snake_case) else: new_pieces.append(_snake_case) return new_pieces def lowerCamelCase ( self : Tuple , _snake_case : Dict): """simple docstring""" return self.sp_model.PieceToId(_snake_case) def lowerCamelCase ( self : str , _snake_case : Union[str, Any]): """simple docstring""" return self.sp_model.IdToPiece(_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = ''''''.join(_snake_case).replace(_snake_case , ''' ''').strip() return out_string def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : bool = False , _snake_case : bool = None , _snake_case : bool = True , **_snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _snake_case) UpperCAmelCase_ = self.convert_ids_to_tokens(_snake_case , skip_special_tokens=_snake_case) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case)) UpperCAmelCase_ = [] sub_texts.append(_snake_case) else: current_sub_text.append(_snake_case) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_snake_case)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_snake_case) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_snake_case) return clean_text else: return text def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) if token_ids_a is not None: return ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1, 1] return ([0] * len(_snake_case)) + [1, 1] def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,)
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. snake_case_ : Dict = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCAmelCase__ : Optional[int] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCAmelCase__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase ( self : int , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = ZeroShotClassificationPipeline( model=_snake_case , tokenizer=_snake_case , candidate_labels=['''polics''', '''health''']) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : int): """simple docstring""" UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''') self.assertEqual(_snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case)], '''scores''': [ANY(_snake_case)]}) # No kwarg UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , ['''politics''']) self.assertEqual(_snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case)], '''scores''': [ANY(_snake_case)]}) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''']) self.assertEqual(_snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case)], '''scores''': [ANY(_snake_case)]}) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''') self.assertEqual( _snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case), ANY(_snake_case)], '''scores''': [ANY(_snake_case), ANY(_snake_case)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) UpperCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''']) self.assertEqual( _snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case), ANY(_snake_case)], '''scores''': [ANY(_snake_case), ANY(_snake_case)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) UpperCAmelCase_ = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''') self.assertEqual(_snake_case , {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case)], '''scores''': [ANY(_snake_case)]}) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase_ = classifier(['''I am happy'''] , ['''positive''', '''negative''']) self.assertEqual( _snake_case , [ {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case), ANY(_snake_case)], '''scores''': [ANY(_snake_case), ANY(_snake_case)]} for i in range(1) ] , ) UpperCAmelCase_ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative''']) self.assertEqual( _snake_case , [ {'''sequence''': ANY(_snake_case), '''labels''': [ANY(_snake_case), ANY(_snake_case)], '''scores''': [ANY(_snake_case), ANY(_snake_case)]} for i in range(2) ] , ) with self.assertRaises(_snake_case): classifier('''''' , candidate_labels='''politics''') with self.assertRaises(_snake_case): classifier(_snake_case , candidate_labels='''politics''') with self.assertRaises(_snake_case): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''') with self.assertRaises(_snake_case): classifier('''Who are you voting for in 2020?''' , candidate_labels=_snake_case) with self.assertRaises(_snake_case): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_snake_case): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_snake_case , ) self.run_entailment_id(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Pipeline): """simple docstring""" UpperCAmelCase_ = zero_shot_classifier.model.config UpperCAmelCase_ = config.labelaid UpperCAmelCase_ = zero_shot_classifier.entailment_id UpperCAmelCase_ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) UpperCAmelCase_ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) UpperCAmelCase_ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) UpperCAmelCase_ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) UpperCAmelCase_ = original_labelaid self.assertEqual(_snake_case , zero_shot_classifier.entailment_id) @require_torch def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science''']) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''') UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) UpperCAmelCase_ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''') UpperCAmelCase_ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) UpperCAmelCase_ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
from __future__ import annotations snake_case_ : Tuple = list[tuple[int, int]] snake_case_ : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self : Dict , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : Node | None , ): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = g_cost UpperCAmelCase_ = parent UpperCAmelCase_ = self.calculate_heuristic() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = abs(self.pos_x - self.goal_x) UpperCAmelCase_ = abs(self.pos_y - self.goal_y) return dx + dy def __lt__( self : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : Any , _snake_case : tuple[int, int] , _snake_case : tuple[int, int]): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = [] UpperCAmelCase_ = False def lowerCamelCase ( self : Any): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ = self.open_nodes.pop(0) if current_node.pos == self.target.pos: UpperCAmelCase_ = True return self.retrace_path(_snake_case) self.closed_nodes.append(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case) else: # retrieve the best current path UpperCAmelCase_ = self.open_nodes.pop(self.open_nodes.index(_snake_case)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case) else: self.open_nodes.append(_snake_case) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self : Any , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , )) return successors def lowerCamelCase ( self : List[str] , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path if __name__ == "__main__": snake_case_ : List[str] = (0, 0) snake_case_ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") snake_case_ : List[Any] = GreedyBestFirst(init, goal) snake_case_ : int = greedy_bf.search() if path: for pos_x, pos_y in path: snake_case_ : Optional[int] = 2 for elem in grid: print(elem)
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : List[Any] = "▁" snake_case_ : Any = {"vocab_file": "sentencepiece.bpe.model"} snake_case_ : List[Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } snake_case_ : List[str] = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off snake_case_ : int = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class __snake_case ( a ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self : List[Any] , _snake_case : Tuple , _snake_case : Optional[Any]=None , _snake_case : Any=None , _snake_case : Dict="</s>" , _snake_case : int="</s>" , _snake_case : Optional[Any]="<s>" , _snake_case : List[Any]="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : List[str]="<mask>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_snake_case , tgt_lang=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_snake_case)) UpperCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ = 1 UpperCAmelCase_ = len(self.sp_model) UpperCAmelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_snake_case) } UpperCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase_ = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase ( self : int): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : int): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : str , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def lowerCamelCase ( self : int , _snake_case : str): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case) def lowerCamelCase ( self : Dict , _snake_case : str): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ = self.sp_model.PieceToId(_snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase ( self : Dict , _snake_case : int): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def lowerCamelCase ( self : str , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(_snake_case) UpperCAmelCase_ = False out_string += self.sp_model.decode(_snake_case) return out_string.strip() def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) UpperCAmelCase_ = [1] * len(self.prefix_tokens) UpperCAmelCase_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case)) + suffix_ones return prefix_ones + ([0] * len(_snake_case)) + ([0] * len(_snake_case)) + suffix_ones def lowerCamelCase ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : List[str] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Any): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case) UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) UpperCAmelCase_ = tgt_lang_id return inputs def lowerCamelCase ( self : str , _snake_case : List[str] , _snake_case : str = "en_XX" , _snake_case : Optional[List[str]] = None , _snake_case : str = "ro_RO" , **_snake_case : Optional[int] , ): """simple docstring""" UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case) def lowerCamelCase ( self : str): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase ( self : Tuple , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.lang_code_to_id[src_lang] UpperCAmelCase_ = [self.cur_lang_code_id] UpperCAmelCase_ = [self.eos_token_id] def lowerCamelCase ( self : Any , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ = [self.cur_lang_code_id] UpperCAmelCase_ = [self.eos_token_id]
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
def A (__A : list , __A : list ) -> float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(__A , __A ) ) ) def A (__A : list[float] ) -> None: """simple docstring""" if point: if isinstance(__A , __A ): for item in point: if not isinstance(__A , (int, float) ): UpperCAmelCase_ = ( '''Expected a list of numbers as input, found ''' F"""{type(__A ).__name__}""" ) raise TypeError(__A ) else: UpperCAmelCase_ = F"""Expected a list of numbers as input, found {type(__A ).__name__}""" raise TypeError(__A ) else: raise ValueError('''Missing an input''' ) def A (__A : list , __A : list ) -> float: """simple docstring""" _validate_point(__A ) _validate_point(__A ) if len(__A ) != len(__A ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(__A , __A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
from manim import * class __snake_case ( a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = Rectangle(height=0.5 , width=0.5) UpperCAmelCase_ = Rectangle(height=0.2_5 , width=0.2_5) UpperCAmelCase_ = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(_snake_case , _snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''CPU''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) cpu.move_to([-2.5, -0.5, 0]) self.add(_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(4)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''GPU''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) gpu.move_to([-1, -1, 0]) self.add(_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''Model''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) model.move_to([3, -1.0, 0]) self.add(_snake_case) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, rect in enumerate(_snake_case): rect.set_stroke(_snake_case) UpperCAmelCase_ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3).set_stroke(width=0.0).set_fill(_snake_case , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=_snake_case) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_snake_case , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_snake_case , buff=0.0) self.add(_snake_case) model_cpu_arr.append(_snake_case) self.add(*_snake_case , *_snake_case , *_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''Loaded Checkpoint''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) checkpoint.move_to([3, 0.5, 0]) self.add(_snake_case) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, rect in enumerate(_snake_case): UpperCAmelCase_ = fill.copy().set_fill(_snake_case , opacity=0.7) target.move_to(_snake_case) ckpt_arr.append(_snake_case) UpperCAmelCase_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(_snake_case) self.add(*_snake_case , *_snake_case) UpperCAmelCase_ = Square(side_length=2.2) key.move_to([-5, 2, 0]) UpperCAmelCase_ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_snake_case , _snake_case) UpperCAmelCase_ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(_snake_case) UpperCAmelCase_ = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) UpperCAmelCase_ = [meta_mem.copy() for i in range(6)] UpperCAmelCase_ = [meta_mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(_snake_case , _snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''Disk''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) disk.move_to([-4.0, -1.2_5, 0]) self.play(Write(_snake_case , run_time=3) , Write(_snake_case , run_time=1) , Create(_snake_case , run_time=1)) UpperCAmelCase_ = [] for i, rect in enumerate(_snake_case): UpperCAmelCase_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(_snake_case , run_time=1.5)) self.play(*_snake_case) self.play(FadeOut(_snake_case)) UpperCAmelCase_ = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(_snake_case , run_time=3)) self.play( FadeOut(_snake_case , _snake_case , *_snake_case , *_snake_case) , ) self.wait()
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
def A (__A : int , __A : int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt"} snake_case_ : int = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } snake_case_ : Dict = { "openbmb/cpm-ant-10b": 1024, } def A (__A : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase_ = collections.OrderedDict() with open(__A , '''r''' , encoding='''utf-8''' ) as reader: UpperCAmelCase_ = reader.readlines() for index, token in enumerate(__A ): UpperCAmelCase_ = token.rstrip('''\n''' ) UpperCAmelCase_ = index return vocab class __snake_case ( a ): def __init__( self : str , _snake_case : Tuple , _snake_case : List[str]="<unk>" , _snake_case : Optional[int]=200): """simple docstring""" UpperCAmelCase_ = vocab UpperCAmelCase_ = unk_token UpperCAmelCase_ = max_input_chars_per_word def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = list(_snake_case) if len(_snake_case) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while start < len(_snake_case): UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = None while start < end: UpperCAmelCase_ = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCAmelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(_snake_case) UpperCAmelCase_ = end return sub_tokens class __snake_case ( a ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[Any] = False def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int]="<d>" , _snake_case : Tuple="</d>" , _snake_case : int="<s>" , _snake_case : Tuple="</s>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[int]="<unk>" , _snake_case : Optional[Any]="</n>" , _snake_case : str="</_>" , _snake_case : Any="left" , **_snake_case : Optional[int] , ): """simple docstring""" requires_backends(self , ['''jieba''']) super().__init__( bod_token=_snake_case , eod_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , unk_token=_snake_case , line_token=_snake_case , space_token=_snake_case , padding_side=_snake_case , **_snake_case , ) UpperCAmelCase_ = bod_token UpperCAmelCase_ = eod_token UpperCAmelCase_ = load_vocab(_snake_case) UpperCAmelCase_ = self.encoder[space_token] UpperCAmelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _snake_case: x[1])) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def lowerCamelCase ( self : int): """simple docstring""" return self.encoder[self.bod_token] @property def lowerCamelCase ( self : int): """simple docstring""" return self.encoder[self.eod_token] @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.encoder["\n"] @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return len(self.encoder) def lowerCamelCase ( self : Tuple): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def lowerCamelCase ( self : List[str] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = [] for x in jieba.cut(_snake_case , cut_all=_snake_case): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_snake_case)) return output_tokens def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any] , **_snake_case : Any): """simple docstring""" UpperCAmelCase_ = [i for i in token_ids if i >= 0] UpperCAmelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_snake_case , **_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Union[str, Any]): """simple docstring""" return token in self.encoder def lowerCamelCase ( self : List[str] , _snake_case : List[str]): """simple docstring""" return "".join(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Dict): """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token)) def lowerCamelCase ( self : Optional[int] , _snake_case : Any): """simple docstring""" return self.decoder.get(_snake_case , self.unk_token) def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if os.path.isdir(_snake_case): UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCAmelCase_ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCAmelCase_ = 0 if " " in self.encoder: UpperCAmelCase_ = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase_ = self.encoder['''\n'''] del self.encoder["\n"] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _snake_case: x[1])) with open(_snake_case , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''') UpperCAmelCase_ = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[int] , _snake_case : List[int] = None): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) if token_ids_a is not None: return [1] + ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) return [1] + ([0] * len(_snake_case))
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case_ : int = "true" def A (__A : Tuple , __A : Optional[Any]=82 , __A : Optional[Any]=16 ) -> int: """simple docstring""" set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(__A ) UpperCAmelCase_ = RegressionDataset(length=__A ) UpperCAmelCase_ = DataLoader(__A , batch_size=__A ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(__A , __A ) return model, ddp_model, dataloader def A (__A : Accelerator , __A : Dict=False ) -> List[str]: """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__A : List[Any] ): UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__A , max_length=__A ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ = dataset.map( __A , batched=__A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__A : int ): if use_longest: return tokenizer.pad(__A , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(__A , shuffle=__A , collate_fn=__A , batch_size=16 ) def A (__A : List[str] , __A : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Accelerator(dispatch_batches=__A , split_batches=__A ) UpperCAmelCase_ = get_dataloader(__A , not dispatch_batches ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__A ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(__A , __A ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A (__A : Any , __A : Optional[Any] , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ = batch.values() with torch.no_grad(): UpperCAmelCase_ = model(__A ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ = [], [] for logit, targ in logits_and_targets: logits.append(__A ) targs.append(__A ) UpperCAmelCase_ , UpperCAmelCase_ = torch.cat(__A ), torch.cat(__A ) return logits, targs def A (__A : Accelerator , __A : Tuple=82 , __A : Tuple=False , __A : Tuple=False , __A : Optional[Any]=16 ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_basic_setup(__A , __A , __A ) UpperCAmelCase_ , UpperCAmelCase_ = generate_predictions(__A , __A , __A ) assert ( len(__A ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__A )}""" def A (__A : bool = False , __A : bool = False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ = get_mrpc_setup(__A , __A ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = setup['''no'''] model.to(__A ) model.eval() for batch in dataloader: batch.to(__A ) with torch.inference_mode(): UpperCAmelCase_ = model(**__A ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__A , references=batch['''labels'''] ) UpperCAmelCase_ = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ = model(**__A ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__A , references=__A ) UpperCAmelCase_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def A () -> Any: """simple docstring""" UpperCAmelCase_ = Accelerator(split_batches=__A , dispatch_batches=__A ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__A , __A ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ = Accelerator(split_batches=__A , dispatch_batches=__A ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__A , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ = Accelerator() test_torch_metrics(__A , 512 ) accelerator.state._reset_state() def A (__A : str ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __snake_case ( a ): UpperCAmelCase__ : jnp.ndarray @flax_register_to_config class __snake_case ( nn.Module , a , a ): UpperCAmelCase__ : int = 3_2 UpperCAmelCase__ : int = 4 UpperCAmelCase__ : int = 4 UpperCAmelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase__ : Union[bool, Tuple[bool]] = False UpperCAmelCase__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) UpperCAmelCase__ : int = 2 UpperCAmelCase__ : Union[int, Tuple[int]] = 8 UpperCAmelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase__ : int = 1_2_8_0 UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa UpperCAmelCase__ : bool = True UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False def lowerCamelCase ( self : Any , _snake_case : jax.random.KeyArray): """simple docstring""" UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(_snake_case , dtype=jnp.floataa) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(_snake_case) UpperCAmelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_snake_case , _snake_case , _snake_case , _snake_case)["params"] def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) UpperCAmelCase_ = FlaxTimestepEmbedding(_snake_case , dtype=self.dtype) UpperCAmelCase_ = self.only_cross_attention if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types) if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types) # down UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_snake_case) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=_snake_case , out_channels=_snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_snake_case) UpperCAmelCase_ = down_blocks # mid UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ = [] UpperCAmelCase_ = list(reversed(_snake_case)) UpperCAmelCase_ = list(reversed(_snake_case)) UpperCAmelCase_ = list(reversed(_snake_case)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = reversed_block_out_channels[min(i + 1 , len(_snake_case) - 1)] UpperCAmelCase_ = i == len(_snake_case) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ = FlaxCrossAttnUpBlockaD( in_channels=_snake_case , out_channels=_snake_case , prev_output_channel=_snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxUpBlockaD( in_channels=_snake_case , out_channels=_snake_case , prev_output_channel=_snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_snake_case) UpperCAmelCase_ = output_channel UpperCAmelCase_ = up_blocks # out UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Tuple=None , _snake_case : Any=None , _snake_case : bool = True , _snake_case : bool = False , ): """simple docstring""" if not isinstance(_snake_case , jnp.ndarray): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(_snake_case , jnp.ndarray) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa) UpperCAmelCase_ = jnp.expand_dims(_snake_case , 0) UpperCAmelCase_ = self.time_proj(_snake_case) UpperCAmelCase_ = self.time_embedding(_snake_case) # 2. pre-process UpperCAmelCase_ = jnp.transpose(_snake_case , (0, 2, 3, 1)) UpperCAmelCase_ = self.conv_in(_snake_case) # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case , _snake_case): UpperCAmelCase_ , UpperCAmelCase_ = down_block(_snake_case , _snake_case , _snake_case , deterministic=not train) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(_snake_case , _snake_case , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( _snake_case , _snake_case): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = new_down_block_res_samples # 4. mid UpperCAmelCase_ = self.mid_block(_snake_case , _snake_case , _snake_case , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = up_block( _snake_case , temb=_snake_case , encoder_hidden_states=_snake_case , res_hidden_states_tuple=_snake_case , deterministic=not train , ) else: UpperCAmelCase_ = up_block(_snake_case , temb=_snake_case , res_hidden_states_tuple=_snake_case , deterministic=not train) # 6. post-process UpperCAmelCase_ = self.conv_norm_out(_snake_case) UpperCAmelCase_ = nn.silu(_snake_case) UpperCAmelCase_ = self.conv_out(_snake_case) UpperCAmelCase_ = jnp.transpose(_snake_case , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_snake_case)
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[str] = "T5Config" def A (__A : jnp.array , __A : int , __A : int ) -> jnp.ndarray: """simple docstring""" UpperCAmelCase_ = jnp.zeros_like(__A ) UpperCAmelCase_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase_ = shifted_input_ids.at[:, 0].set(__A ) UpperCAmelCase_ = jnp.where(shifted_input_ids == -100 , __A , __A ) return shifted_input_ids class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = '''mt5''' UpperCAmelCase__ : Optional[Any] = MTaConfig class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''mt5''' UpperCAmelCase__ : Tuple = MTaConfig class __snake_case ( a ): UpperCAmelCase__ : int = '''mt5''' UpperCAmelCase__ : int = MTaConfig
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
def A (__A : int = 1000 ) -> int: """simple docstring""" UpperCAmelCase_ = 2**power UpperCAmelCase_ = 0 while n: UpperCAmelCase_ , UpperCAmelCase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A (__A : int , __A : int , __A : int , __A : int , __A : int , __A : int ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: UpperCAmelCase_ = ksize + 1 UpperCAmelCase_ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__A ): for x in range(__A ): # distance from center UpperCAmelCase_ = x - ksize // 2 UpperCAmelCase_ = y - ksize // 2 # degree to radiant UpperCAmelCase_ = theta / 180 * np.pi UpperCAmelCase_ = np.cos(_theta ) UpperCAmelCase_ = np.sin(_theta ) # get kernel x UpperCAmelCase_ = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase_ = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image snake_case_ : Dict = imread("../image_data/lena.jpg") # turn image in gray scale value snake_case_ : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges snake_case_ : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: snake_case_ : int = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) snake_case_ : Tuple = out / out.max() * 255 snake_case_ : Union[str, Any] = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Tuple = '''open-llama''' def __init__( self : Dict , _snake_case : Any=100000 , _snake_case : Dict=4096 , _snake_case : int=11008 , _snake_case : List[str]=32 , _snake_case : str=32 , _snake_case : Tuple="silu" , _snake_case : Optional[int]=2048 , _snake_case : Union[str, Any]=0.0_2 , _snake_case : List[str]=1e-6 , _snake_case : List[str]=True , _snake_case : Union[str, Any]=0 , _snake_case : List[Any]=1 , _snake_case : str=2 , _snake_case : int=False , _snake_case : Tuple=True , _snake_case : int=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : Optional[int]=True , _snake_case : Dict=True , _snake_case : List[Any]=None , **_snake_case : Any , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _snake_case) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCamelCase ( self : Tuple): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _snake_case) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _snake_case) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''deberta-v2''' def __init__( self : Optional[int] , _snake_case : Tuple=128100 , _snake_case : Dict=1536 , _snake_case : List[Any]=24 , _snake_case : Union[str, Any]=24 , _snake_case : List[str]=6144 , _snake_case : Any="gelu" , _snake_case : Dict=0.1 , _snake_case : Tuple=0.1 , _snake_case : List[str]=512 , _snake_case : List[str]=0 , _snake_case : Union[str, Any]=0.0_2 , _snake_case : int=1e-7 , _snake_case : Optional[Any]=False , _snake_case : Any=-1 , _snake_case : Dict=0 , _snake_case : Optional[Any]=True , _snake_case : Optional[int]=None , _snake_case : List[Any]=0 , _snake_case : Optional[int]="gelu" , **_snake_case : int , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = relative_attention UpperCAmelCase_ = max_relative_positions UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = position_biased_input # Backwards compatibility if type(_snake_case) == str: UpperCAmelCase_ = [x.strip() for x in pos_att_type.lower().split('''|''')] UpperCAmelCase_ = pos_att_type UpperCAmelCase_ = vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = kwargs.get('''pooler_hidden_size''' , _snake_case) UpperCAmelCase_ = pooler_dropout UpperCAmelCase_ = pooler_hidden_act class __snake_case ( a ): @property def lowerCamelCase ( self : Tuple): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)]) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)]) @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return 12 def lowerCamelCase ( self : Optional[int] , _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional["TensorType"] = None , _snake_case : int = 3 , _snake_case : int = 40 , _snake_case : int = 40 , _snake_case : "PreTrainedTokenizerBase" = None , ): """simple docstring""" UpperCAmelCase_ = super().generate_dummy_inputs(preprocessor=_snake_case , framework=_snake_case) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case_ : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def A (__A : Optional[Any] , __A : Tuple , __A : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = state_dict.pop(__A ) UpperCAmelCase_ = val def A (__A : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def A (__A : Union[str, Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def A (__A : Optional[int] , __A : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = image.size UpperCAmelCase_ = max(__A , __A ) UpperCAmelCase_ = 800 if '''detection''' in checkpoint_url else 1000 UpperCAmelCase_ = target_max_size / current_max_size UpperCAmelCase_ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A (__A : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = F.to_tensor(__A ) UpperCAmelCase_ = F.normalize(__A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def A (__A : List[Any] , __A : Tuple , __A : str ) -> Optional[Any]: """simple docstring""" logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__A , __A , __A ) UpperCAmelCase_ = rename_backbone_keys(__A ) # query, key and value matrices need special treatment read_in_q_k_v(__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__A ) UpperCAmelCase_ = val # create HuggingFace model and load state dict UpperCAmelCase_ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ = 15 UpperCAmelCase_ = 2 UpperCAmelCase_ = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ = 125 UpperCAmelCase_ = 6 UpperCAmelCase_ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCAmelCase_ = TableTransformerForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion UpperCAmelCase_ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase_ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__A ) UpperCAmelCase_ = Image.open(__A ).convert('''RGB''' ) UpperCAmelCase_ = normalize(resize(__A , __A ) ).unsqueeze(0 ) UpperCAmelCase_ = model(__A ) if "detection" in checkpoint_url: UpperCAmelCase_ = (1, 15, 3) UpperCAmelCase_ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase_ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase_ = (1, 125, 7) UpperCAmelCase_ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase_ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase_ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(__A ) image_processor.push_to_hub(__A ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case_ : Any = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : List[str] = "Hello world! cécé herlolip" def A (__A : str , __A : str , __A : bool ) -> str: """simple docstring""" UpperCAmelCase_ = FairseqRobertaModel.from_pretrained(__A ) roberta.eval() # disable dropout UpperCAmelCase_ = roberta.model.encoder.sentence_encoder UpperCAmelCase_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , __A ) UpperCAmelCase_ = XLMRobertaXLForSequenceClassification(__A ) if classification_head else XLMRobertaXLForMaskedLM(__A ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ = model.roberta.encoder.layer[i] UpperCAmelCase_ = roberta_sent_encoder.layers[i] UpperCAmelCase_ = layer.attention UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ = roberta_layer.final_layer_norm.weight UpperCAmelCase_ = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # output UpperCAmelCase_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ = roberta_layer.fca.weight UpperCAmelCase_ = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.weight UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].dense.bias UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.weight UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ = roberta.model.encoder.lm_head.weight UpperCAmelCase_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ = roberta.encode(__A ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ = model(__A )[0] if classification_head: UpperCAmelCase_ = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__A ) ) else: UpperCAmelCase_ = roberta.model(__A )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCAmelCase_ = torch.allclose(__A , __A , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(__A ).mkdir(parents=__A , exist_ok=__A ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) snake_case_ : str = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Optional[int] = "▁" snake_case_ : Dict = {"vocab_file": "spiece.model"} snake_case_ : Any = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } snake_case_ : Any = { "google/reformer-crime-and-punishment": 524288, } class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _snake_case : Optional[Any] , _snake_case : int="</s>" , _snake_case : Optional[int]="<unk>" , _snake_case : Any=[] , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_snake_case) @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return self.sp_model.get_piece_size() def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Tuple , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case) def lowerCamelCase ( self : Any , _snake_case : int): """simple docstring""" return self.sp_model.piece_to_id(_snake_case) def lowerCamelCase ( self : int , _snake_case : Optional[int]): """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase_ = self.sp_model.IdToPiece(_snake_case) return token def lowerCamelCase ( self : Dict , _snake_case : str): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_snake_case) out_string += self.sp_model.decode(_snake_case) return out_string.strip() def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,)
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
from torch import nn class __snake_case ( nn.Module ): def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Any): """simple docstring""" super().__init__() UpperCAmelCase_ = class_size UpperCAmelCase_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase_ = nn.Linear(_snake_case , _snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.mlp(_snake_case) return logits
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case_ : int = logging.get_logger(__name__) class __snake_case ( a ): UpperCAmelCase__ : Dict = CLIPConfig UpperCAmelCase__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , _snake_case : CLIPConfig): """simple docstring""" super().__init__(_snake_case) UpperCAmelCase_ = CLIPVisionModelWithProjection(config.vision_config) UpperCAmelCase_ = nn.Linear(config.vision_config.projection_dim , 1) UpperCAmelCase_ = nn.Linear(config.vision_config.projection_dim , 1) @torch.no_grad() def lowerCamelCase ( self : Dict , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str=0.5 , _snake_case : Dict=0.5): """simple docstring""" UpperCAmelCase_ = self.vision_model(_snake_case)[0] UpperCAmelCase_ = self.p_head(_snake_case) UpperCAmelCase_ = nsfw_detected.flatten() UpperCAmelCase_ = nsfw_detected > p_threshold UpperCAmelCase_ = nsfw_detected.tolist() if any(_snake_case): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, nsfw_detected_ in enumerate(_snake_case): if nsfw_detected_: UpperCAmelCase_ = np.zeros(images[idx].shape) UpperCAmelCase_ = self.w_head(_snake_case) UpperCAmelCase_ = watermark_detected.flatten() UpperCAmelCase_ = watermark_detected > w_threshold UpperCAmelCase_ = watermark_detected.tolist() if any(_snake_case): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, watermark_detected_ in enumerate(_snake_case): if watermark_detected_: UpperCAmelCase_ = np.zeros(images[idx].shape) return images, nsfw_detected, watermark_detected
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
import math import tensorflow as tf from packaging import version def A (__A : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = tf.convert_to_tensor(__A ) UpperCAmelCase_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def A (__A : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ = tf.convert_to_tensor(__A ) UpperCAmelCase_ = tf.cast(math.pi , x.dtype ) UpperCAmelCase_ = tf.cast(0.044_715 , x.dtype ) UpperCAmelCase_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__A , 3 )) )) return x * cdf def A (__A : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = tf.convert_to_tensor(__A ) return x * tf.tanh(tf.math.softplus(__A ) ) def A (__A : int ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = tf.convert_to_tensor(__A ) UpperCAmelCase_ = tf.cast(0.044_715 , x.dtype ) UpperCAmelCase_ = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def A (__A : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase_ = tf.convert_to_tensor(__A ) UpperCAmelCase_ = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def A (__A : Any ) -> Optional[Any]: """simple docstring""" return tf.clip_by_value(_gelu(__A ) , -10 , 10 ) def A (__A : Optional[Any] , __A : List[Any]=-1 ) -> Tuple: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = tf.split(__A , 2 , axis=__A ) return a * tf.math.sigmoid(__A ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def A (__A : Any ) -> List[Any]: """simple docstring""" return tf.keras.activations.gelu(__A , approximate=__A ) snake_case_ : Union[str, Any] = tf.keras.activations.gelu snake_case_ : Dict = approximate_gelu_wrap else: snake_case_ : Any = _gelu snake_case_ : Optional[Any] = _gelu_new snake_case_ : List[Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def A (__A : int ) -> Tuple: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]=3 , _snake_case : str=32 , _snake_case : Any=3 , _snake_case : Optional[Any]=10 , _snake_case : Optional[int]=[8, 16, 32, 64] , _snake_case : Tuple=[1, 1, 2, 1] , _snake_case : List[str]=True , _snake_case : Union[str, Any]=True , _snake_case : Dict="relu" , _snake_case : Optional[Any]=3 , _snake_case : int=None , _snake_case : Tuple=["stage2", "stage3", "stage4"] , _snake_case : Optional[int]=[2, 3, 4] , _snake_case : Union[str, Any]=1 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = out_features UpperCAmelCase_ = out_indices UpperCAmelCase_ = num_groups def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Dict): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = BitModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = BitForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = BitBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None UpperCAmelCase_ = None UpperCAmelCase_ = BitBackbone(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Any = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = BitModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : Dict): """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''') def lowerCamelCase ( self : Dict): """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''') def lowerCamelCase ( self : List[str]): """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_snake_case) for name, module in model.named_modules(): if isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Any): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ = layer_type UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) @unittest.skip(reason='''Bit does not use feedforward chunking''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = BitModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> List[Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[str]): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(_snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4)) @require_torch class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Dict = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : List[str] = BitConfig UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BitModelTester(self)
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A (__A : Dict ) -> int: """simple docstring""" UpperCAmelCase_ = [False] * len(__A ) UpperCAmelCase_ = [-1] * len(__A ) def dfs(__A : Any , __A : List[str] ): UpperCAmelCase_ = True UpperCAmelCase_ = c for u in graph[v]: if not visited[u]: dfs(__A , 1 - c ) for i in range(len(__A ) ): if not visited[i]: dfs(__A , 0 ) for i in range(len(__A ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case_ : Tuple = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def A (__A : List[Any] , __A : Optional[Any] , __A : Optional[Any] , __A : Dict=None , __A : Optional[Any]=None , __A : Optional[int]=None , __A : Optional[Any]=None , __A : Any=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__A ) if decoder_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A ) if cross_attn_head_mask is None: UpperCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __snake_case : def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : int=13 , _snake_case : Dict=7 , _snake_case : Tuple=True , _snake_case : List[Any]=False , _snake_case : Tuple=99 , _snake_case : Optional[Any]=16 , _snake_case : Optional[int]=2 , _snake_case : List[Any]=4 , _snake_case : Any=4 , _snake_case : Dict="relu" , _snake_case : Optional[Any]=0.1 , _snake_case : int=0.1 , _snake_case : Tuple=0.0 , _snake_case : int=0.0 , _snake_case : Any=20 , _snake_case : Union[str, Any]=2 , _snake_case : str=1 , _snake_case : Union[str, Any]=0 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = self.eos_token_id # Eos Token UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase_ = input_ids.clamp(self.pad_token_id + 1) UpperCAmelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1) UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(_snake_case , _snake_case , _snake_case) return config, inputs_dict def lowerCamelCase ( self : int): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase ( self : str , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaModel(config=_snake_case).get_decoder().to(_snake_case).eval() UpperCAmelCase_ = inputs_dict['''input_ids'''] UpperCAmelCase_ = inputs_dict['''attention_mask'''] UpperCAmelCase_ = inputs_dict['''head_mask'''] # first forward pass UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1) UpperCAmelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case)['''last_hidden_state'''] UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case)[ '''last_hidden_state''' ] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-2)) def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaModel(config=_snake_case).to(_snake_case).eval() UpperCAmelCase_ = model(**_snake_case) UpperCAmelCase_ = outputs.encoder_last_hidden_state UpperCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_encoder() encoder.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaEncoder.from_pretrained(_snake_case).to(_snake_case) UpperCAmelCase_ = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_decoder() decoder.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaDecoder.from_pretrained(_snake_case).to(_snake_case) UpperCAmelCase_ = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_snake_case , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) UpperCAmelCase__ : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : Any , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = MaMaaaModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(_snake_case , output_loading_info=_snake_case) self.assertEqual(info['''missing_keys'''] , []) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = copy.deepcopy(self._prepare_for_class(_snake_case , _snake_case)) if not self.is_encoder_decoder: UpperCAmelCase_ = inputs['''input_ids'''] del inputs["input_ids"] else: UpperCAmelCase_ = inputs['''input_ids'''] UpperCAmelCase_ = inputs.get('''decoder_input_ids''' , _snake_case) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , _snake_case) UpperCAmelCase_ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase_ = wte(_snake_case) else: UpperCAmelCase_ = wte(_snake_case) UpperCAmelCase_ = wte(_snake_case) with torch.no_grad(): model(**_snake_case)[0] def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = input_dict['''input_ids'''] UpperCAmelCase_ = input_ids.ne(1).to(_snake_case) UpperCAmelCase_ = MaMaaaForConditionalGeneration(_snake_case).eval().to(_snake_case) if torch_device == "cuda": model.half() model.generate(_snake_case , attention_mask=_snake_case) model.generate(num_beams=4 , do_sample=_snake_case , early_stopping=_snake_case , num_return_sequences=3) def A (__A : List[str] ) -> Any: """simple docstring""" return torch.tensor(__A , dtype=torch.long , device=__A ) snake_case_ : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Tuple): """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''').to(_snake_case) UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 11, 1024)) self.assertEqual(output.shape , _snake_case) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=_snake_case) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(_snake_case) # change to intended input UpperCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) UpperCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) UpperCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape , _snake_case) # change to expected output here UpperCAmelCase_ = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=_snake_case) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case)) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''') UpperCAmelCase_ = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = model.generate( input_ids=dct['''input_ids'''].to(_snake_case) , attention_mask=dct['''attention_mask'''].to(_snake_case) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''') , ) UpperCAmelCase_ = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] UpperCAmelCase_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_snake_case , skip_special_tokens=_snake_case) assert generated == expected_en
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor snake_case_ : List[str] = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : Optional[int]): """simple docstring""" warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
from math import factorial, pi def A (__A : float , __A : int = 30 ) -> float: """simple docstring""" if not isinstance(__A , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) UpperCAmelCase_ = float(__A ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def A (__A : float , __A : int = 30 ) -> float: """simple docstring""" if not isinstance(__A , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) UpperCAmelCase_ = float(__A ) UpperCAmelCase_ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
from manim import * class __snake_case ( a ): def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = Rectangle(height=0.5 , width=0.5) UpperCAmelCase_ = Rectangle(height=0.4_6 , width=0.4_6).set_stroke(width=0) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = VGroup(_snake_case , _snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''CPU''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) cpu.move_to([-2.5, -0.5, 0]) self.add(_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(4)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''GPU''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) gpu.move_to([-1, -1, 0]) self.add(_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''Model''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case) model.move_to([3, -1.0, 0]) self.add(_snake_case) UpperCAmelCase_ = [] for i, rect in enumerate(_snake_case): rect.set_stroke(_snake_case) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3).set_stroke(width=0.0).set_fill(_snake_case , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.0_2 , direction=_snake_case) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_snake_case , buff=0.0) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_snake_case , buff=0.0) self.add(_snake_case) cpu_targs.append(_snake_case) UpperCAmelCase_ = [mem.copy() for i in range(6)] UpperCAmelCase_ = VGroup(*_snake_case).arrange(_snake_case , buff=0) UpperCAmelCase_ = Text('''Loaded Checkpoint''' , font_size=24) UpperCAmelCase_ = Group(_snake_case , _snake_case).arrange(_snake_case , aligned_edge=_snake_case , buff=0.4) checkpoint.move_to([3, 0.5, 0]) UpperCAmelCase_ = Square(side_length=2.2) key.move_to([-5, 2, 0]) UpperCAmelCase_ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_snake_case , _snake_case) UpperCAmelCase_ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left()) UpperCAmelCase_ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_snake_case) , Write(_snake_case)) self.play(Write(_snake_case , run_time=1) , Create(_snake_case , run_time=1)) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, rect in enumerate(_snake_case): UpperCAmelCase_ = fill.copy().set_fill(_snake_case , opacity=0.7) target.move_to(_snake_case) first_animations.append(GrowFromCenter(_snake_case , run_time=1)) UpperCAmelCase_ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.target.move_to(cpu_right_col_base[i - 5]) second_animations.append(MoveToTarget(_snake_case , run_time=1.5)) self.play(*_snake_case) self.play(*_snake_case) self.wait()
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def A (__A : Any ) -> List[str]: """simple docstring""" return EnvironmentCommand() class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser('''env''') download_parser.set_defaults(func=_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = huggingface_hub.__version__ UpperCAmelCase_ = '''not installed''' UpperCAmelCase_ = '''NA''' if is_torch_available(): import torch UpperCAmelCase_ = torch.__version__ UpperCAmelCase_ = torch.cuda.is_available() UpperCAmelCase_ = '''not installed''' if is_transformers_available(): import transformers UpperCAmelCase_ = transformers.__version__ UpperCAmelCase_ = '''not installed''' if is_accelerate_available(): import accelerate UpperCAmelCase_ = accelerate.__version__ UpperCAmelCase_ = '''not installed''' if is_xformers_available(): import xformers UpperCAmelCase_ = xformers.__version__ UpperCAmelCase_ = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''') print(self.format_dict(_snake_case)) return info @staticmethod def lowerCamelCase ( _snake_case : int): """simple docstring""" return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()]) + "\n"
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor snake_case_ : List[Any] = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Any , *_snake_case : List[Any] , **_snake_case : int): """simple docstring""" warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
def A (__A : int = 1000000 ) -> int: """simple docstring""" UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
from __future__ import annotations import math def A (__A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A (__A : int ) -> list[int]: """simple docstring""" UpperCAmelCase_ = str(__A ) UpperCAmelCase_ = [n] for i in range(1 , len(__A ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A (__A : int ) -> bool: """simple docstring""" if len(str(__A ) ) > 3: if not is_prime(int(str(__A )[-3:] ) ) or not is_prime(int(str(__A )[:3] ) ): return False return True def A (__A : int = 11 ) -> list[int]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = 13 while len(__A ) != count: if validate(__A ): UpperCAmelCase_ = list_truncated_nums(__A ) if all(is_prime(__A ) for i in list_nums ): list_truncated_primes.append(__A ) num += 2 return list_truncated_primes def A () -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
def A (__A : Tuple , __A : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__A ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__A ): return None UpperCAmelCase_ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_ = left UpperCAmelCase_ = point elif point > right: UpperCAmelCase_ = right UpperCAmelCase_ = point else: if item < current_item: UpperCAmelCase_ = point - 1 else: UpperCAmelCase_ = point + 1 return None def A (__A : str , __A : str , __A : List[Any] , __A : str ) -> Union[str, Any]: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__A ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__A , __A , __A , __A ) elif point > right: return interpolation_search_by_recursion(__A , __A , __A , __A ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __A , __A , __A , point - 1 ) else: return interpolation_search_by_recursion( __A , __A , point + 1 , __A ) def A (__A : Optional[Any] ) -> List[Any]: """simple docstring""" if collection != sorted(__A ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys snake_case_ : Any = 0 if debug == 1: snake_case_ : Dict = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") snake_case_ : Dict = 67 snake_case_ : Dict = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
import heapq def A (__A : dict ) -> set[int]: """simple docstring""" UpperCAmelCase_ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__A , [-1 * len(__A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase_ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase_ = heapq.heappop(__A )[1][0] chosen_vertices.add(__A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase_ = elem[1][1].index(__A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) UpperCAmelCase_ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
from typing import List from .keymap import KEYMAP, get_character def A (__A : str ) -> Tuple: """simple docstring""" def decorator(__A : str ): UpperCAmelCase_ = getattr(__A , '''handle_key''' , [] ) handle += [key] setattr(__A , '''handle_key''' , __A ) return func return decorator def A (*__A : List[str] ) -> Any: """simple docstring""" def decorator(__A : Any ): UpperCAmelCase_ = getattr(__A , '''handle_key''' , [] ) handle += keys setattr(__A , '''handle_key''' , __A ) return func return decorator class __snake_case ( a ): def __new__( cls : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = super().__new__(cls , _snake_case , _snake_case , _snake_case) if not hasattr(_snake_case , '''key_handler'''): setattr(_snake_case , '''key_handler''' , {}) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input) for value in attrs.values(): UpperCAmelCase_ = getattr(_snake_case , '''handle_key''' , []) for key in handled_keys: UpperCAmelCase_ = value return new_cls @staticmethod def lowerCamelCase ( cls : Optional[int]): """simple docstring""" UpperCAmelCase_ = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase_ = ord(_snake_case) UpperCAmelCase_ = cls.key_handler.get(_snake_case) if handler: UpperCAmelCase_ = char return handler(cls) else: return None def A (cls : int ) -> int: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : List[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
from math import sqrt def A (__A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A (__A : int = 10001 ) -> int: """simple docstring""" UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 while count != nth and number < 3: number += 1 if is_prime(__A ): count += 1 while count != nth: number += 2 if is_prime(__A ): count += 1 return number if __name__ == "__main__": print(f"{solution() = }")
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Dict = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __snake_case : def __init__( self : Tuple , _snake_case : List[str]=None , **_snake_case : Any): """simple docstring""" logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''') UpperCAmelCase_ = model UpperCAmelCase_ = kwargs.get('''model_save_dir''' , _snake_case) UpperCAmelCase_ = kwargs.get('''latest_model_name''' , _snake_case) def __call__( self : Union[str, Any] , **_snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = {k: np.array(_snake_case) for k, v in kwargs.items()} return self.model.run(_snake_case , _snake_case) @staticmethod def lowerCamelCase ( _snake_case : Union[str, Path] , _snake_case : Optional[int]=None , _snake_case : Tuple=None): """simple docstring""" if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''') UpperCAmelCase_ = '''CPUExecutionProvider''' return ort.InferenceSession(_snake_case , providers=[provider] , sess_options=_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Union[str, Path] , _snake_case : Optional[str] = None , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ = self.model_save_dir.joinpath(self.latest_model_name) UpperCAmelCase_ = Path(_snake_case).joinpath(_snake_case) try: shutil.copyfile(_snake_case , _snake_case) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ = self.model_save_dir.joinpath(_snake_case) if src_path.exists(): UpperCAmelCase_ = Path(_snake_case).joinpath(_snake_case) try: shutil.copyfile(_snake_case , _snake_case) except shutil.SameFileError: pass def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, os.PathLike] , **_snake_case : Optional[int] , ): """simple docstring""" if os.path.isfile(_snake_case): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""") return os.makedirs(_snake_case , exist_ok=_snake_case) # saving model weights/files self._save_pretrained(_snake_case , **_snake_case) @classmethod def lowerCamelCase ( cls : Any , _snake_case : Union[str, Path] , _snake_case : Optional[Union[bool, str, None]] = None , _snake_case : Optional[Union[str, None]] = None , _snake_case : bool = False , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional["ort.SessionOptions"] = None , **_snake_case : Any , ): """simple docstring""" UpperCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_snake_case): UpperCAmelCase_ = OnnxRuntimeModel.load_model( os.path.join(_snake_case , _snake_case) , provider=_snake_case , sess_options=_snake_case) UpperCAmelCase_ = Path(_snake_case) # load model from hub else: # download model UpperCAmelCase_ = hf_hub_download( repo_id=_snake_case , filename=_snake_case , use_auth_token=_snake_case , revision=_snake_case , cache_dir=_snake_case , force_download=_snake_case , ) UpperCAmelCase_ = Path(_snake_case).parent UpperCAmelCase_ = Path(_snake_case).name UpperCAmelCase_ = OnnxRuntimeModel.load_model(_snake_case , provider=_snake_case , sess_options=_snake_case) return cls(model=_snake_case , **_snake_case) @classmethod def lowerCamelCase ( cls : Tuple , _snake_case : Union[str, Path] , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = None if len(str(_snake_case).split('''@''')) == 2: UpperCAmelCase_ , UpperCAmelCase_ = model_id.split('''@''') return cls._from_pretrained( model_id=_snake_case , revision=_snake_case , cache_dir=_snake_case , force_download=_snake_case , use_auth_token=_snake_case , **_snake_case , )
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Any = logging.get_logger() @dataclass class __snake_case : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : List[nn.Module] = field(default_factory=a ) UpperCAmelCase__ : list = field(default_factory=a ) def lowerCamelCase ( self : Any , _snake_case : Optional[int] , _snake_case : Tensor , _snake_case : Tensor): """simple docstring""" UpperCAmelCase_ = len(list(m.modules())) == 1 or isinstance(_snake_case , nn.Convad) or isinstance(_snake_case , nn.BatchNormad) if has_not_submodules: self.traced.append(_snake_case) def __call__( self : Dict , _snake_case : Tensor): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_snake_case) [x.remove() for x in self.handles] return self @property def lowerCamelCase ( self : Any): """simple docstring""" return list(filter(lambda _snake_case: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class __snake_case : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : nn.Module UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List = field(default_factory=a ) UpperCAmelCase__ : List = field(default_factory=a ) def __call__( self : Optional[int] , _snake_case : Tensor): """simple docstring""" UpperCAmelCase_ = Tracker(self.dest)(_snake_case).parametrized UpperCAmelCase_ = Tracker(self.src)(_snake_case).parametrized UpperCAmelCase_ = list(filter(lambda _snake_case: type(_snake_case) not in self.src_skip , _snake_case)) UpperCAmelCase_ = list(filter(lambda _snake_case: type(_snake_case) not in self.dest_skip , _snake_case)) if len(_snake_case) != len(_snake_case): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case)} operations while""" F""" destination module has {len(_snake_case)}.""") for dest_m, src_m in zip(_snake_case , _snake_case): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""") def A (__A : str , __A : ResNetConfig , __A : Path , __A : bool = True ) -> Any: """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): UpperCAmelCase_ = timm.create_model(__A , pretrained=__A ).eval() UpperCAmelCase_ = ResNetForImageClassification(__A ).eval() UpperCAmelCase_ = ModuleTransfer(src=__A , dest=__A ) UpperCAmelCase_ = torch.randn((1, 3, 224, 224) ) module_transfer(__A ) assert torch.allclose(from_model(__A ) , our_model(__A ).logits ), "The model logits don't match the original one." UpperCAmelCase_ = F"""resnet{"-".join(name.split("resnet" ) )}""" print(__A ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__A , ) # we can use the convnext one UpperCAmelCase_ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__A , ) print(F"""Pushed {checkpoint_name}""" ) def A (__A : Path , __A : str = None , __A : bool = True ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = 1000 UpperCAmelCase_ = (1, num_labels) UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = num_labels UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = partial(__A , num_labels=__A , idalabel=__A , labelaid=__A ) UpperCAmelCase_ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__A , names_to_config[model_name] , __A , __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__A , __A , __A , __A ) return config, expected_shape if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) snake_case_ : Optional[Any] = parser.parse_args() snake_case_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __snake_case ( a ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 8 # DPR tok UpperCAmelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''') os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) # BART tok UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , '''bart_tokenizer''') os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(_snake_case) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(_snake_case)) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''')) def lowerCamelCase ( self : Optional[int]): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''')) def lowerCamelCase ( self : int): """simple docstring""" shutil.rmtree(self.tmpdirname) @require_tokenizers def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = os.path.join(self.tmpdirname , '''rag_tokenizer''') UpperCAmelCase_ = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) UpperCAmelCase_ = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(_snake_case) rag_tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = RagTokenizer.from_pretrained(_snake_case , config=_snake_case) self.assertIsInstance(new_rag_tokenizer.question_encoder , _snake_case) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , _snake_case) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = RagTokenizer.from_pretrained('''facebook/rag-token-nq''') UpperCAmelCase_ = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] UpperCAmelCase_ = tokenizer(_snake_case) self.assertIsNotNone(_snake_case) @slow def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''') UpperCAmelCase_ = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] UpperCAmelCase_ = tokenizer(_snake_case) self.assertIsNotNone(_snake_case)
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Any = logging.get_logger(__name__) def A (__A : Optional[int] , __A : List[Any]=False ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A (__A : Tuple , __A : Tuple , __A : List[Any]=False ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def A (__A : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A ) def A (__A : str , __A : Union[str, Any] , __A : int ) -> Any: """simple docstring""" UpperCAmelCase_ = dct.pop(__A ) UpperCAmelCase_ = val def A () -> Tuple: """simple docstring""" UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A (__A : Tuple , __A : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = ViTConfig() UpperCAmelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCAmelCase_ = True UpperCAmelCase_ = int(vit_name[-12:-10] ) UpperCAmelCase_ = int(vit_name[-9:-6] ) else: UpperCAmelCase_ = 1000 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = int(vit_name[-6:-4] ) UpperCAmelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): UpperCAmelCase_ = 192 UpperCAmelCase_ = 768 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 elif vit_name[9:].startswith('''small''' ): UpperCAmelCase_ = 384 UpperCAmelCase_ = 1536 UpperCAmelCase_ = 12 UpperCAmelCase_ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): UpperCAmelCase_ = 768 UpperCAmelCase_ = 2304 UpperCAmelCase_ = 8 UpperCAmelCase_ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 elif vit_name[4:].startswith('''huge''' ): UpperCAmelCase_ = 1280 UpperCAmelCase_ = 5120 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 # load original model from timm UpperCAmelCase_ = timm.create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(__A ) UpperCAmelCase_ = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ = ViTModel(__A ).eval() else: UpperCAmelCase_ = ViTForImageClassification(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCAmelCase_ = DeiTImageProcessor(size=config.image_size ) else: UpperCAmelCase_ = ViTImageProcessor(size=config.image_size ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = model(__A ) if base_model: UpperCAmelCase_ = timm_model.forward_features(__A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__A , outputs.pooler_output , atol=1E-3 ) else: UpperCAmelCase_ = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1E-3 ) Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) snake_case_ : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Optional[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel snake_case_ : Union[str, Any] = HfApi() snake_case_ : Tuple = {} # fmt: off snake_case_ : List[Any] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) snake_case_ : Union[str, Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) snake_case_ : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) snake_case_ : Optional[int] = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) snake_case_ : int = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) snake_case_ : Optional[int] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) snake_case_ : int = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) snake_case_ : int = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) snake_case_ : List[Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) snake_case_ : Dict = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) snake_case_ : Union[str, Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) snake_case_ : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) snake_case_ : Tuple = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) snake_case_ : List[Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) snake_case_ : List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on snake_case_ : int = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": snake_case_ : Optional[Any] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith("CompVis"): snake_case_ : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: snake_case_ : Union[str, Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) snake_case_ : Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) snake_case_ : Any = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): snake_case_ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"{mod.modelId} has passed successfully!!!")
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A (__A : Tuple , __A : Union[str, Any] , __A : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ = os.path.abspath(__A ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model UpperCAmelCase_ = tf.train.list_variables(__A ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase_ = name[1:] # figure out how many levels deep the name is UpperCAmelCase_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__A ) # read data UpperCAmelCase_ = tf.train.load_variable(__A , __A ) names.append('''/'''.join(__A ) ) arrays.append(__A ) logger.info(F"""Read a total of {len(__A ):,} layers""" ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__A ) )})""" ) UpperCAmelCase_ = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__A , __A ): UpperCAmelCase_ = full_name.split('''/''' ) UpperCAmelCase_ = model UpperCAmelCase_ = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): UpperCAmelCase_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''embeddings''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) UpperCAmelCase_ = getattr(__A , '''encoder''' ) UpperCAmelCase_ = getattr(__A , '''layer''' ) UpperCAmelCase_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''pooler''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) UpperCAmelCase_ = getattr(__A , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) UpperCAmelCase_ = getattr(__A , '''token_type_embeddings''' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) UpperCAmelCase_ = getattr(__A , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''attention''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__A , '''output''' ) UpperCAmelCase_ = getattr(__A , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) UpperCAmelCase_ = getattr(__A , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) UpperCAmelCase_ = getattr(__A , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) UpperCAmelCase_ = getattr(__A , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) UpperCAmelCase_ = getattr(__A , '''intermediate''' ) UpperCAmelCase_ = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) UpperCAmelCase_ = getattr(__A , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) UpperCAmelCase_ = getattr(__A , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) UpperCAmelCase_ = getattr(__A , '''weight''' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary UpperCAmelCase_ = '''.'''.join(__A ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __A ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __A ): UpperCAmelCase_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase_ = array.transpose() if pointer.shape == array.shape: UpperCAmelCase_ = torch.from_numpy(__A ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def A (__A : Optional[Any] , __A : Optional[Any] , __A : int ) -> List[str]: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) UpperCAmelCase_ = BertConfig.from_json_file(__A ) UpperCAmelCase_ = BertModel(__A ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) snake_case_ : Optional[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : List[str] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def A (__A : List[Any] ) -> Any: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def A () -> int: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def A () -> str: """simple docstring""" UpperCAmelCase_ = '''mock-s3-bucket''' UpperCAmelCase_ = F"""s3://{mock_bucket}""" UpperCAmelCase_ = extract_path_from_uri(__A ) assert dataset_path.startswith('''s3://''' ) is False UpperCAmelCase_ = '''./local/path''' UpperCAmelCase_ = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def A (__A : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ = is_remote_filesystem(__A ) assert is_remote is True UpperCAmelCase_ = fsspec.filesystem('''file''' ) UpperCAmelCase_ = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __A ) def A (__A : List[Any] , __A : Dict , __A : str , __A : List[str] , __A : str , __A : Union[str, Any] , __A : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} UpperCAmelCase_ = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_ = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase_ = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) UpperCAmelCase_ = os.path.basename(__A ) UpperCAmelCase_ = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__A , '''r''' , encoding='''utf-8''' ) as f, open(__A , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def A (__A : Tuple , __A : Any , __A : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} UpperCAmelCase_ = compressed_file_paths[protocol] UpperCAmelCase_ = '''dataset.jsonl''' UpperCAmelCase_ = F"""{protocol}://{member_file_path}::{compressed_file_path}""" UpperCAmelCase_ , *UpperCAmelCase_ = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def A (__A : Any , __A : int , __A : Optional[int] , __A : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ = hf_api.dataset_info(__A , token=__A ) UpperCAmelCase_ = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__A ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def A () -> Optional[int]: """simple docstring""" UpperCAmelCase_ = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''realm''' def __init__( self : Union[str, Any] , _snake_case : Union[str, Any]=30522 , _snake_case : int=768 , _snake_case : List[str]=128 , _snake_case : List[str]=12 , _snake_case : Tuple=12 , _snake_case : Tuple=8 , _snake_case : int=3072 , _snake_case : int="gelu_new" , _snake_case : List[str]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[Any]=512 , _snake_case : str=2 , _snake_case : str=0.0_2 , _snake_case : Dict=1e-12 , _snake_case : Union[str, Any]=256 , _snake_case : str=10 , _snake_case : Optional[int]=1e-3 , _snake_case : Dict=5 , _snake_case : Union[str, Any]=320 , _snake_case : Tuple=13353718 , _snake_case : Optional[Any]=5000 , _snake_case : Any=1 , _snake_case : Dict=0 , _snake_case : Optional[int]=2 , **_snake_case : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) # Common config UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = retriever_proj_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_candidates UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps # Reader config UpperCAmelCase_ = span_hidden_size UpperCAmelCase_ = max_span_width UpperCAmelCase_ = reader_layer_norm_eps UpperCAmelCase_ = reader_beam_size UpperCAmelCase_ = reader_seq_len # Retrieval config UpperCAmelCase_ = num_block_records UpperCAmelCase_ = searcher_beam_size
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = TransfoXLTokenizer UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Any = False def lowerCamelCase ( self : Tuple): """simple docstring""" super().setUp() UpperCAmelCase_ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def lowerCamelCase ( self : Tuple , **_snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = '''<unk> UNwanted , running''' UpperCAmelCase_ = '''<unk> unwanted, running''' return input_text, output_text def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''<unk> UNwanted , running''') self.assertListEqual(_snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [0, 4, 8, 7]) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TransfoXLTokenizer(lower_case=_snake_case) UpperCAmelCase_ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' UpperCAmelCase_ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_snake_case) , _snake_case) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case) , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = len(_snake_case) tokenizer.add_tokens(['''new1''', '''new2''']) tokenizer.move_added_token('''new1''' , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''') , [1]) self.assertEqual(tokenizer.decode([1]) , '''new1''')
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
from typing import Dict from .base import GenericTensor, Pipeline class __snake_case ( a ): def lowerCamelCase ( self : str , _snake_case : List[Any]=None , _snake_case : Optional[int]=None , _snake_case : Any=None , **_snake_case : Dict): """simple docstring""" if tokenize_kwargs is None: UpperCAmelCase_ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''') UpperCAmelCase_ = truncation UpperCAmelCase_ = tokenize_kwargs UpperCAmelCase_ = {} if return_tensors is not None: UpperCAmelCase_ = return_tensors return preprocess_params, {}, postprocess_params def lowerCamelCase ( self : List[str] , _snake_case : Tuple , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case) return model_inputs def lowerCamelCase ( self : Tuple , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : List[str] , _snake_case : Any , _snake_case : int=False): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Any , *_snake_case : int , **_snake_case : List[Any]): """simple docstring""" return super().__call__(*_snake_case , **_snake_case)
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''fnet''' def __init__( self : Optional[int] , _snake_case : Tuple=32000 , _snake_case : List[Any]=768 , _snake_case : Dict=12 , _snake_case : Any=3072 , _snake_case : str="gelu_new" , _snake_case : Dict=0.1 , _snake_case : Optional[int]=512 , _snake_case : int=4 , _snake_case : int=0.0_2 , _snake_case : Dict=1e-12 , _snake_case : Optional[Any]=False , _snake_case : Optional[Any]=512 , _snake_case : Union[str, Any]=3 , _snake_case : str=1 , _snake_case : Optional[int]=2 , **_snake_case : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_tpu_fourier_optimizations UpperCAmelCase_ = tpu_short_seq_length
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A (__A : Tuple , __A : Any=False ) -> str: """simple docstring""" try: UpperCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value snake_case_ : int = parse_flag_from_env("RUN_SLOW", default=False) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skip('''Test was skipped''' )(__A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__A ) def A (__A : Dict ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__A ) def A (__A : Optional[Any] ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__A ) def A (__A : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__A ) def A (__A : List[str] ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__A ) def A (__A : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__A ) def A (__A : Union[str, Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__A ) def A (__A : List[str] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__A ) def A (__A : Dict ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__A ) def A (__A : Union[str, Any] ) -> str: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__A ) def A (__A : Dict ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__A ) def A (__A : str ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__A ) def A (__A : List[str] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__A ) def A (__A : Optional[int] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__A ) def A (__A : List[Any]=None , __A : Dict=None ) -> Union[str, Any]: """simple docstring""" if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version('''>=''' , __A ) , F"""test requires torch version >= {version}""" )(__A ) def A (__A : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__A ) def A (__A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__A ) snake_case_ : Tuple = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A (__A : Union[str, Any] ) -> Dict: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__A ) class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = True @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() @classmethod def lowerCamelCase ( cls : List[Any]): """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def lowerCamelCase ( self : Dict): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('''**/*'''): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_snake_case) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict , _snake_case : Union[mock.Mock, List[mock.Mock]]): """simple docstring""" UpperCAmelCase_ = mocks if isinstance(_snake_case , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A (__A : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = AcceleratorState() UpperCAmelCase_ = tensor[None].clone().to(state.device ) UpperCAmelCase_ = gather(__A ).cpu() UpperCAmelCase_ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __snake_case : def __init__( self : int , _snake_case : Any , _snake_case : Tuple , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = returncode UpperCAmelCase_ = stdout UpperCAmelCase_ = stderr async def A (__A : Any , __A : Any ) -> int: """simple docstring""" while True: UpperCAmelCase_ = await stream.readline() if line: callback(__A ) else: break async def A (__A : List[str] , __A : str=None , __A : str=None , __A : str=None , __A : int=False , __A : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__A ) ) UpperCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ = [] UpperCAmelCase_ = [] def tee(__A : int , __A : Dict , __A : Dict , __A : List[Any]="" ): UpperCAmelCase_ = line.decode('''utf-8''' ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def A (__A : int , __A : List[str]=None , __A : Dict=None , __A : int=180 , __A : Union[str, Any]=False , __A : Union[str, Any]=True ) -> _RunOutput: """simple docstring""" UpperCAmelCase_ = asyncio.get_event_loop() UpperCAmelCase_ = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) UpperCAmelCase_ = ''' '''.join(__A ) if result.returncode > 0: UpperCAmelCase_ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __snake_case ( a ): pass def A (__A : List[str] , __A : List[Any]=False ) -> Tuple: """simple docstring""" try: UpperCAmelCase_ = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , '''decode''' ): UpperCAmelCase_ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __snake_case ( a ): UpperCAmelCase__ : Any = '''blenderbot-small''' UpperCAmelCase__ : List[Any] = ['''past_key_values'''] UpperCAmelCase__ : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , _snake_case : List[str]=50265 , _snake_case : Optional[Any]=512 , _snake_case : Optional[Any]=8 , _snake_case : str=2048 , _snake_case : Tuple=16 , _snake_case : int=8 , _snake_case : int=2048 , _snake_case : Dict=16 , _snake_case : Any=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Tuple=True , _snake_case : Union[str, Any]=True , _snake_case : int="gelu" , _snake_case : List[str]=512 , _snake_case : int=0.1 , _snake_case : str=0.0 , _snake_case : List[str]=0.0 , _snake_case : Optional[int]=0.0_2 , _snake_case : Optional[Any]=1 , _snake_case : Dict=False , _snake_case : Tuple=0 , _snake_case : Optional[Any]=1 , _snake_case : Dict=2 , _snake_case : Union[str, Any]=2 , **_snake_case : int , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , ) class __snake_case ( a ): @property def lowerCamelCase ( self : int): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: UpperCAmelCase_ = {0: '''batch'''} UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''') elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(_snake_case): UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ]) return common_inputs @property def lowerCamelCase ( self : Dict): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super().outputs else: UpperCAmelCase_ = super(_snake_case , self).outputs if self.use_past: UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers for i in range(_snake_case): UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowerCamelCase ( self : Any , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ): """simple docstring""" UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case) # Generate decoder inputs UpperCAmelCase_ = seq_length if not self.use_past else 1 UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case) UpperCAmelCase_ = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase_ = dict(**_snake_case , **_snake_case) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape UpperCAmelCase_ = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = decoder_seq_length + 3 UpperCAmelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case , _snake_case)] , dim=1) UpperCAmelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ = min(_snake_case , _snake_case) UpperCAmelCase_ = max(_snake_case , _snake_case) - min_num_layers UpperCAmelCase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_snake_case): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case), torch.zeros(_snake_case), torch.zeros(_snake_case), torch.zeros(_snake_case), )) # TODO: test this. UpperCAmelCase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_snake_case , _snake_case): common_inputs["past_key_values"].append((torch.zeros(_snake_case), torch.zeros(_snake_case))) return common_inputs def lowerCamelCase ( self : Optional[int] , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ): """simple docstring""" UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ , UpperCAmelCase_ = self.num_layers UpperCAmelCase_ , UpperCAmelCase_ = self.num_attention_heads UpperCAmelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase_ = common_inputs['''attention_mask'''].dtype UpperCAmelCase_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case)] , dim=1) UpperCAmelCase_ = [ (torch.zeros(_snake_case), torch.zeros(_snake_case)) for _ in range(_snake_case) ] return common_inputs def lowerCamelCase ( self : Any , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ): """simple docstring""" UpperCAmelCase_ = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = tokenizer.num_special_tokens_to_add(_snake_case) UpperCAmelCase_ = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size UpperCAmelCase_ = dict(tokenizer(_snake_case , return_tensors=_snake_case)) return common_inputs def lowerCamelCase ( self : Dict , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case) elif self.task == "causal-lm": UpperCAmelCase_ = self._generate_dummy_inputs_for_causal_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case) else: UpperCAmelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case) return common_inputs def lowerCamelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[int]): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase_ = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case) else: UpperCAmelCase_ = super(_snake_case , self)._flatten_past_key_values_( _snake_case , _snake_case , _snake_case , _snake_case)
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : Dict = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Tuple = AlbertTokenizer UpperCAmelCase__ : Union[str, Any] = AlbertTokenizerFast UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[Any] = True def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = AlbertTokenizer(_snake_case) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Dict , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''this is a test''' UpperCAmelCase_ = '''this is a test''' return input_text, output_text def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<pad>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''▁eloquent''') self.assertEqual(len(_snake_case) , 30000) def lowerCamelCase ( self : Any): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30000) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case) self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer(_snake_case , keep_accents=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁this''', '''▁is''', '''▁a''', '''▁test''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [48, 25, 21, 1289]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_snake_case) self.assertListEqual(_snake_case , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_snake_case) self.assertListEqual( _snake_case , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AlbertTokenizer(_snake_case) UpperCAmelCase_ = tokenizer.encode('''sequence builders''') UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''') UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def A (__A : Any ) -> Any: """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def A () -> List[Any]: """simple docstring""" UpperCAmelCase_ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__A ) UpperCAmelCase_ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__A ) EnvironmentCommand.register_subcommand(__A ) TestCommand.register_subcommand(__A ) RunBeamCommand.register_subcommand(__A ) DummyDataCommand.register_subcommand(__A ) # Parse args UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() if not hasattr(__A , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase_ = parse_unknown_args(__A ) # Run UpperCAmelCase_ = args.func(__A , **__A ) service.run() if __name__ == "__main__": main()
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = StableDiffusionXLImgaImgPipeline UpperCAmelCase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : Dict): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCAmelCase_ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_snake_case) UpperCAmelCase_ = CLIPTextModelWithProjection(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_snake_case) UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : int=0): """simple docstring""" UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case)).to(_snake_case) UpperCAmelCase_ = image / 2 + 0.5 if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = sd_pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : List[str]): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def lowerCamelCase ( self : Dict): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3) def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) # forward without prompt embeds UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ = negative_prompt UpperCAmelCase_ = 3 * [inputs['''prompt''']] UpperCAmelCase_ = sd_pipe(**_snake_case) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ = 3 * [inputs.pop('''prompt''')] ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = sd_pipe.encode_prompt(_snake_case , negative_prompt=_snake_case) UpperCAmelCase_ = sd_pipe( **_snake_case , prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , pooled_prompt_embeds=_snake_case , negative_pooled_prompt_embeds=_snake_case , ) UpperCAmelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : int="cpu" , _snake_case : List[str]=torch.floataa , _snake_case : Optional[Any]=0): """simple docstring""" UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = np.random.RandomState(_snake_case).standard_normal((1, 4, 64, 64)) UpperCAmelCase_ = torch.from_numpy(_snake_case).to(device=_snake_case , dtype=_snake_case) UpperCAmelCase_ = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''') pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_inputs(_snake_case) UpperCAmelCase_ = pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6]) assert np.abs(image_slice - expected_slice).max() < 7e-3
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __snake_case : def __init__( self : Optional[Any] , _snake_case : int , _snake_case : Dict=13 , _snake_case : int=7 , _snake_case : Dict=False , _snake_case : List[str]=True , _snake_case : int=False , _snake_case : int=True , _snake_case : Union[str, Any]=33 , _snake_case : int=32 , _snake_case : Dict=5 , _snake_case : Union[str, Any]=4 , _snake_case : Tuple=37 , _snake_case : List[str]="gelu" , _snake_case : Tuple=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Union[str, Any]=512 , _snake_case : Union[str, Any]=16 , _snake_case : str=2 , _snake_case : Dict=0.0_2 , _snake_case : str=3 , _snake_case : Optional[Any]=4 , _snake_case : Any=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Any): """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = EsmModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case) UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = EsmForMaskedLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : Union[str, Any] , _snake_case : str , _snake_case : Any , _snake_case : List[Any] , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = EsmForTokenClassification(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Tuple = () UpperCAmelCase__ : Any = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = True def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = EsmModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37) def lowerCamelCase ( self : int): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ = type self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case) @slow def lowerCamelCase ( self : str): """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = EsmModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ = EsmEmbeddings(config=_snake_case) UpperCAmelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]]) UpperCAmelCase_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ]) UpperCAmelCase_ = create_position_ids_from_input_ids(_snake_case , model.padding_idx) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case))) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ = EsmEmbeddings(config=_snake_case) UpperCAmelCase_ = torch.empty(2 , 4 , 30) UpperCAmelCase_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions]) UpperCAmelCase_ = embeddings.create_position_ids_from_inputs_embeds(_snake_case) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case))) @unittest.skip('''Esm does not support embedding resizing''') def lowerCamelCase ( self : List[str]): """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def lowerCamelCase ( self : Any): """simple docstring""" pass @require_torch class __snake_case ( a ): @slow def lowerCamelCase ( self : Dict): """simple docstring""" with torch.no_grad(): UpperCAmelCase_ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''') model.eval() UpperCAmelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = 33 UpperCAmelCase_ = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4)) @slow def lowerCamelCase ( self : Optional[Any]): """simple docstring""" with torch.no_grad(): UpperCAmelCase_ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''') model.eval() UpperCAmelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) UpperCAmelCase_ = model(_snake_case)[0] # compare the actual values for a slice. UpperCAmelCase_ = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4))
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : def __init__( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=13 , _snake_case : str=30 , _snake_case : Tuple=2 , _snake_case : Dict=3 , _snake_case : str=True , _snake_case : int=True , _snake_case : Optional[int]=32 , _snake_case : Dict=2 , _snake_case : Any=4 , _snake_case : Tuple=37 , _snake_case : List[Any]="gelu" , _snake_case : str=0.1 , _snake_case : Tuple=0.1 , _snake_case : Union[str, Any]=10 , _snake_case : List[Any]=0.0_2 , _snake_case : Dict=3 , _snake_case : Dict=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Dict): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : str , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TFViTModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case , training=_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case) UpperCAmelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def lowerCamelCase ( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = TFViTForImageClassification(_snake_case) UpperCAmelCase_ = model(_snake_case , labels=_snake_case , training=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. UpperCAmelCase_ = self.image_size // 2 UpperCAmelCase_ = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = TFViTForImageClassification(_snake_case) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCAmelCase__ : str = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TFViTModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37) def lowerCamelCase ( self : str): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''ViT does not use inputs_embeds''') def lowerCamelCase ( self : Any): """simple docstring""" pass def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , tf.keras.layers.Layer)) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = TFViTModel.from_pretrained('''google/vit-base-patch16-224''') self.assertIsNotNone(_snake_case) def A () -> Optional[int]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[str]): """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''tf''') # forward pass UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]) tf.debugging.assert_near(outputs.logits[0, :3] , _snake_case , atol=1e-4)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Tuple = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = '''timesformer''' def __init__( self : Optional[int] , _snake_case : Tuple=224 , _snake_case : List[str]=16 , _snake_case : int=3 , _snake_case : Optional[int]=8 , _snake_case : str=768 , _snake_case : List[str]=12 , _snake_case : int=12 , _snake_case : Any=3072 , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Any=0.0_2 , _snake_case : Union[str, Any]=1e-6 , _snake_case : Any=True , _snake_case : Optional[Any]="divided_space_time" , _snake_case : Dict=0 , **_snake_case : str , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_frames UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = attention_type UpperCAmelCase_ = drop_path_rate
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1