code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def A (__A : int ) -> str: """simple docstring""" if isinstance(__A , __A ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(__A , __A ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" UpperCAmelCase_ = False if num < 0: UpperCAmelCase_ = True UpperCAmelCase_ = -num UpperCAmelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__A ) for e in binary ) return "0b" + "".join(str(__A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( a ): UpperCAmelCase__ : List[str] = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : List[Any] = '''BlipImageProcessor''' UpperCAmelCase__ : Dict = '''AutoTokenizer''' def __init__( self : int , _snake_case : Optional[int] , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = False super().__init__(_snake_case , _snake_case) UpperCAmelCase_ = self.image_processor def __call__( self : str , _snake_case : ImageInput = None , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''') # Get only text if images is None: UpperCAmelCase_ = self.tokenizer UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values UpperCAmelCase_ = self.image_processor(_snake_case , return_tensors=_snake_case) if text is not None: UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: UpperCAmelCase_ = None if text_encoding is not None: encoding_image_processor.update(_snake_case) return encoding_image_processor def lowerCamelCase ( self : Tuple , *_snake_case : Dict , **_snake_case : List[Any]): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : Union[str, Any] , *_snake_case : List[Any] , **_snake_case : Any): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : int = StableDiffusionPanoramaPipeline UpperCAmelCase__ : Any = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : Tuple): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler() torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any]=0): """simple docstring""" UpperCAmelCase_ = torch.manual_seed(_snake_case) UpperCAmelCase_ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionPanoramaPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = sd_pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : Tuple): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCamelCase ( self : Dict): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionPanoramaPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = '''french fries''' UpperCAmelCase_ = sd_pipe(**_snake_case , negative_prompt=_snake_case) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionPanoramaPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = sd_pipe(**_snake_case , view_batch_size=2) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''') UpperCAmelCase_ = StableDiffusionPanoramaPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = sd_pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_snake_case) UpperCAmelCase_ = StableDiffusionPanoramaPipeline(**_snake_case) UpperCAmelCase_ = sd_pipe.to(_snake_case) sd_pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = sd_pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Any , _snake_case : int=0): """simple docstring""" UpperCAmelCase_ = torch.manual_seed(_snake_case) UpperCAmelCase_ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase_ = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''') UpperCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) UpperCAmelCase_ = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_snake_case) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) UpperCAmelCase_ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 0 def callback_fn(_snake_case : int , _snake_case : int , _snake_case : torch.FloatTensor) -> None: UpperCAmelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: UpperCAmelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) UpperCAmelCase_ = latents[0, -3:, -3:, -1] UpperCAmelCase_ = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 UpperCAmelCase_ = False UpperCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase_ = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''') UpperCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case) UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) pipe.enable_attention_slicing() UpperCAmelCase_ = self.get_inputs() pipe(**_snake_case , callback=_snake_case , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase ( self : Dict): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = '''stabilityai/stable-diffusion-2-base''' UpperCAmelCase_ = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''') UpperCAmelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case) UpperCAmelCase_ = pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = self.get_inputs() UpperCAmelCase_ = pipe(**_snake_case) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING snake_case_ : int = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : int , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" super().__init__(*_snake_case , **_snake_case) requires_backends(self , '''decord''') self.check_model_type(_snake_case) def lowerCamelCase ( self : Dict , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , _snake_case : Any=None): """simple docstring""" UpperCAmelCase_ = {} if frame_sampling_rate is not None: UpperCAmelCase_ = frame_sampling_rate if num_frames is not None: UpperCAmelCase_ = num_frames UpperCAmelCase_ = {} if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union[str, List[str]] , **_snake_case : Any): """simple docstring""" return super().__call__(_snake_case , **_snake_case) def lowerCamelCase ( self : int , _snake_case : List[str] , _snake_case : Dict=None , _snake_case : Tuple=1): """simple docstring""" if num_frames is None: UpperCAmelCase_ = self.model.config.num_frames if video.startswith('''http://''') or video.startswith('''https://'''): UpperCAmelCase_ = BytesIO(requests.get(_snake_case).content) UpperCAmelCase_ = VideoReader(_snake_case) videoreader.seek(0) UpperCAmelCase_ = 0 UpperCAmelCase_ = num_frames * frame_sampling_rate - 1 UpperCAmelCase_ = np.linspace(_snake_case , _snake_case , num=_snake_case , dtype=np.intaa) UpperCAmelCase_ = videoreader.get_batch(_snake_case).asnumpy() UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = self.image_processor(_snake_case , return_tensors=self.framework) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : int=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.softmax(-1)[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import string import numpy def A (__A : int , __A : int ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __A ) class __snake_case : UpperCAmelCase__ : Union[str, Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Union[str, Any] = numpy.vectorize(lambda a : x % 3_6 ) UpperCAmelCase__ : List[str] = numpy.vectorize(a ) def __init__( self : str , _snake_case : numpy.ndarray): """simple docstring""" UpperCAmelCase_ = self.modulus(_snake_case) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase_ = encrypt_key.shape[0] def lowerCamelCase ( self : Tuple , _snake_case : str): """simple docstring""" return self.key_string.index(_snake_case) def lowerCamelCase ( self : str , _snake_case : int): """simple docstring""" return self.key_string[round(_snake_case)] def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key)) if det < 0: UpperCAmelCase_ = det % len(self.key_string) UpperCAmelCase_ = len(self.key_string) if greatest_common_divisor(_snake_case , len(self.key_string)) != 1: UpperCAmelCase_ = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = [char for char in text.upper() if char in self.key_string] UpperCAmelCase_ = chars[-1] while len(_snake_case) % self.break_key != 0: chars.append(_snake_case) return "".join(_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.process_text(text.upper()) UpperCAmelCase_ = '''''' for i in range(0 , len(_snake_case) - self.break_key + 1 , self.break_key): UpperCAmelCase_ = text[i : i + self.break_key] UpperCAmelCase_ = [self.replace_letters(_snake_case) for char in batch] UpperCAmelCase_ = numpy.array([vec]).T UpperCAmelCase_ = self.modulus(self.encrypt_key.dot(_snake_case)).T.tolist()[ 0 ] UpperCAmelCase_ = ''''''.join( self.replace_digits(_snake_case) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key)) if det < 0: UpperCAmelCase_ = det % len(self.key_string) UpperCAmelCase_ = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: UpperCAmelCase_ = i break UpperCAmelCase_ = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(_snake_case)) def lowerCamelCase ( self : Dict , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.make_decrypt_key() UpperCAmelCase_ = self.process_text(text.upper()) UpperCAmelCase_ = '''''' for i in range(0 , len(_snake_case) - self.break_key + 1 , self.break_key): UpperCAmelCase_ = text[i : i + self.break_key] UpperCAmelCase_ = [self.replace_letters(_snake_case) for char in batch] UpperCAmelCase_ = numpy.array([vec]).T UpperCAmelCase_ = self.modulus(decrypt_key.dot(_snake_case)).T.tolist()[0] UpperCAmelCase_ = ''''''.join( self.replace_digits(_snake_case) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def A () -> None: """simple docstring""" UpperCAmelCase_ = int(input('''Enter the order of the encryption key: ''' ) ) UpperCAmelCase_ = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__A ): UpperCAmelCase_ = [int(__A ) for x in input().split()] hill_matrix.append(__A ) UpperCAmelCase_ = HillCipher(numpy.array(__A ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) UpperCAmelCase_ = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": UpperCAmelCase_ = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__A ) ) elif option == "2": UpperCAmelCase_ = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''') UpperCAmelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''') UpperCAmelCase_ = tokenizer('''Hello there''' , return_tensors='''np''').input_ids UpperCAmelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''').input_ids UpperCAmelCase_ = shift_tokens_right(_snake_case , model.config.pad_token_id , model.config.decoder_start_token_id) UpperCAmelCase_ = model(_snake_case , decoder_input_ids=_snake_case).logits UpperCAmelCase_ = optax.softmax_cross_entropy(_snake_case , onehot(_snake_case , logits.shape[-1])).mean() UpperCAmelCase_ = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
from collections import deque from math import floor from random import random from time import time class __snake_case : def __init__( self : List[str]): """simple docstring""" UpperCAmelCase_ = {} def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : str=1): """simple docstring""" if self.graph.get(_snake_case): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: UpperCAmelCase_ = [[w, v]] if not self.graph.get(_snake_case): UpperCAmelCase_ = [] def lowerCamelCase ( self : Any): """simple docstring""" return list(self.graph) def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any]): """simple docstring""" if self.graph.get(_snake_case): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any]=-2 , _snake_case : Optional[Any]=-1): """simple docstring""" if s == d: return [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(_snake_case) return visited else: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return visited def lowerCamelCase ( self : Union[str, Any] , _snake_case : Union[str, Any]=-1): """simple docstring""" if c == -1: UpperCAmelCase_ = floor(random() * 10000) + 10 for i in range(_snake_case): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): UpperCAmelCase_ = floor(random() * c) + 1 if n != i: self.add_pair(_snake_case , _snake_case , 1) def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str]=-2): """simple docstring""" UpperCAmelCase_ = deque() UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph)[0] d.append(_snake_case) visited.append(_snake_case) while d: UpperCAmelCase_ = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def lowerCamelCase ( self : int , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" return len(self.graph[u]) def lowerCamelCase ( self : List[Any] , _snake_case : Tuple=-2): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = s UpperCAmelCase_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return sorted_nodes def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_snake_case) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_snake_case) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return list(_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_snake_case) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_snake_case) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return False def lowerCamelCase ( self : Any , _snake_case : Optional[Any]=-2 , _snake_case : int=-1): """simple docstring""" UpperCAmelCase_ = time() self.dfs(_snake_case , _snake_case) UpperCAmelCase_ = time() return end - begin def lowerCamelCase ( self : Tuple , _snake_case : Union[str, Any]=-2): """simple docstring""" UpperCAmelCase_ = time() self.bfs(_snake_case) UpperCAmelCase_ = time() return end - begin class __snake_case : def __init__( self : List[Any]): """simple docstring""" UpperCAmelCase_ = {} def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : Tuple=1): """simple docstring""" if self.graph.get(_snake_case): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist UpperCAmelCase_ = [[w, v]] # add the other way if self.graph.get(_snake_case): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist UpperCAmelCase_ = [[w, u]] def lowerCamelCase ( self : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any]): """simple docstring""" if self.graph.get(_snake_case): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_snake_case) # the other way round if self.graph.get(_snake_case): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_snake_case) def lowerCamelCase ( self : int , _snake_case : List[Any]=-2 , _snake_case : List[Any]=-1): """simple docstring""" if s == d: return [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(_snake_case) return visited else: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return visited def lowerCamelCase ( self : int , _snake_case : Tuple=-1): """simple docstring""" if c == -1: UpperCAmelCase_ = floor(random() * 10000) + 10 for i in range(_snake_case): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): UpperCAmelCase_ = floor(random() * c) + 1 if n != i: self.add_pair(_snake_case , _snake_case , 1) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Dict=-2): """simple docstring""" UpperCAmelCase_ = deque() UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph)[0] d.append(_snake_case) visited.append(_snake_case) while d: UpperCAmelCase_ = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def lowerCamelCase ( self : List[str] , _snake_case : Tuple): """simple docstring""" return len(self.graph[u]) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_snake_case) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_snake_case) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return list(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph)[0] stack.append(_snake_case) visited.append(_snake_case) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_snake_case) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_snake_case) != 0: UpperCAmelCase_ = stack[len(_snake_case) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_snake_case) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_snake_case) == 0: return False def lowerCamelCase ( self : List[str]): """simple docstring""" return list(self.graph) def lowerCamelCase ( self : List[str] , _snake_case : str=-2 , _snake_case : Optional[int]=-1): """simple docstring""" UpperCAmelCase_ = time() self.dfs(_snake_case , _snake_case) UpperCAmelCase_ = time() return end - begin def lowerCamelCase ( self : Any , _snake_case : Tuple=-2): """simple docstring""" UpperCAmelCase_ = time() self.bfs(_snake_case) UpperCAmelCase_ = time() return end - begin
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
snake_case_ : int = {str(digit): digit**5 for digit in range(10)} def A (__A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__A ) ) def A () -> int: """simple docstring""" return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(__A ) ) if __name__ == "__main__": print(solution())
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
from __future__ import annotations def A (__A : list[list[int]] ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) # We need to create solution object to save path. UpperCAmelCase_ = [[0 for _ in range(__A )] for _ in range(__A )] UpperCAmelCase_ = run_maze(__A , 0 , 0 , __A ) if solved: print('''\n'''.join(str(__A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def A (__A : list[list[int]] , __A : int , __A : int , __A : list[list[int]] ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) # Final check point. if i == j == (size - 1): UpperCAmelCase_ = 1 return True UpperCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase_ = 1 # check for directions if ( run_maze(__A , i + 1 , __A , __A ) or run_maze(__A , __A , j + 1 , __A ) or run_maze(__A , i - 1 , __A , __A ) or run_maze(__A , __A , j - 1 , __A ) ): return True UpperCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case : def __init__( self : Union[str, Any] , _snake_case : int , _snake_case : List[str]=13 , _snake_case : Any=7 , _snake_case : List[Any]=True , _snake_case : Any=True , _snake_case : Tuple=True , _snake_case : Any=True , _snake_case : int=99 , _snake_case : Dict=32 , _snake_case : Optional[int]=2 , _snake_case : Optional[Any]=4 , _snake_case : str=37 , _snake_case : Dict="gelu" , _snake_case : List[str]=0.1 , _snake_case : Any=0.1 , _snake_case : Optional[int]=512 , _snake_case : str=16 , _snake_case : Union[str, Any]=2 , _snake_case : Optional[Any]=0.0_2 , _snake_case : int=3 , _snake_case : List[str]=4 , _snake_case : Any=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = 13 UpperCAmelCase_ = 7 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = 99 UpperCAmelCase_ = 384 UpperCAmelCase_ = 2 UpperCAmelCase_ = 4 UpperCAmelCase_ = 37 UpperCAmelCase_ = '''gelu''' UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 2 UpperCAmelCase_ = 0.0_2 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = 128 UpperCAmelCase_ = 2 UpperCAmelCase_ = 9 UpperCAmelCase_ = 1 UpperCAmelCase_ = None def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : str , _snake_case : Any , _snake_case : Dict , _snake_case : str , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = TFConvBertModel(config=_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : Dict , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : str , _snake_case : Optional[int] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = TFConvBertForMaskedLM(config=_snake_case) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFConvBertForSequenceClassification(config=_snake_case) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = TFConvBertForMultipleChoice(config=_snake_case) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : str , _snake_case : List[str] , _snake_case : int , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFConvBertForTokenClassification(config=_snake_case) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : Tuple , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : str , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = TFConvBertForQuestionAnswering(config=_snake_case) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : List[Any] = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TFConvBertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = True if hasattr(_snake_case , '''use_cache'''): UpperCAmelCase_ = True UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case) for model_class in self.all_model_classes: UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = len(model(_snake_case)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case , saved_model=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''saved_model''' , '''1''') UpperCAmelCase_ = tf.keras.models.load_model(_snake_case) UpperCAmelCase_ = model(_snake_case) if self.is_encoder_decoder: UpperCAmelCase_ = outputs['''encoder_hidden_states'''] UpperCAmelCase_ = outputs['''encoder_attentions'''] else: UpperCAmelCase_ = outputs['''hidden_states'''] UpperCAmelCase_ = outputs['''attentions'''] self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_snake_case) , _snake_case) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length) UpperCAmelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case) UpperCAmelCase_ = getattr(self.model_tester , '''key_length''' , _snake_case) def check_decoder_attentions_output(_snake_case : List[str]): UpperCAmelCase_ = len(_snake_case) self.assertEqual(out_len % 2 , 0) UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_snake_case : Optional[Any]): UpperCAmelCase_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = len(_snake_case) self.assertEqual(config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(config.output_hidden_states , _snake_case) check_decoder_attentions_output(_snake_case) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(self._prepare_for_class(_snake_case , _snake_case)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case)) self.assertEqual(model.config.output_hidden_states , _snake_case) check_encoder_attentions_output(_snake_case) @require_tf class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') UpperCAmelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = [1, 6, 768] self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1e-4)
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __snake_case ( a ): UpperCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray] UpperCAmelCase__ : Optional[List[bool]] UpperCAmelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __snake_case ( pl.LightningModule ): def __init__( self : str , _snake_case : List[str]): """simple docstring""" super().__init__() UpperCAmelCase_ = model UpperCAmelCase_ = 2 UpperCAmelCase_ = nn.Linear(self.model.config.hidden_size , self.num_labels) def lowerCamelCase ( self : int): """simple docstring""" pass def A (__A : str , __A : str , __A : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = LongformerModel.from_pretrained(__A ) UpperCAmelCase_ = LightningModel(__A ) UpperCAmelCase_ = torch.load(__A , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model UpperCAmelCase_ = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __snake_case ( nn.Module ): def __init__( self : List[Any]): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def lowerCamelCase ( self : Dict , _snake_case : Union[str, Any]): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(_snake_case))) class __snake_case ( a ): def lowerCamelCase ( self : Union[str, Any] , _snake_case : Tuple , *_snake_case : int , **_snake_case : List[Any]): """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class __snake_case ( a ): def lowerCamelCase ( self : Any , _snake_case : List[str] , _snake_case : Any): """simple docstring""" return output + 1 class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_snake_case , _snake_case) self.assertEqual(test_model._hf_hook , _snake_case) self.assertTrue(hasattr(_snake_case , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_snake_case) self.assertFalse(hasattr(_snake_case , '''_hf_hook''')) self.assertFalse(hasattr(_snake_case , '''_old_forward''')) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_snake_case , _snake_case) add_hook_to_module(_snake_case , _snake_case , append=_snake_case) self.assertEqual(isinstance(test_model._hf_hook , _snake_case) , _snake_case) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_snake_case , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_snake_case) self.assertFalse(hasattr(_snake_case , '''_hf_hook''')) self.assertFalse(hasattr(_snake_case , '''_old_forward''')) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) assert torch.allclose(_snake_case , _snake_case , atol=1e-5) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_snake_case) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) self.assertTrue(torch.allclose(_snake_case , output + 1 , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) self.assertTrue(torch.allclose(_snake_case , output + 1 , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) assert torch.allclose(_snake_case , output + 2 , atol=1e-5) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_snake_case) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_snake_case , _snake_case) UpperCAmelCase_ = test_model(_snake_case) self.assertTrue(torch.allclose(_snake_case , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_snake_case) self.assertFalse(outputa.requires_grad) @require_multi_gpu def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_snake_case , AlignDevicesHook(io_same_device=_snake_case)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , torch.device(0)) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_snake_case)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_snake_case)) add_hook_to_module(model.lineara , AlignDevicesHook(**_snake_case)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _snake_case) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_snake_case)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_snake_case)) add_hook_to_module(model.lineara , AlignDevicesHook(**_snake_case)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_snake_case , execution_device=_snake_case , offload=_snake_case) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_snake_case) self.assertEqual(model.batchnorm.running_mean.device , _snake_case) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_snake_case) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_snake_case , execution_device=_snake_case , offload=_snake_case , offload_buffers=_snake_case) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_snake_case) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _snake_case , execution_device=_snake_case , offload=_snake_case , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_snake_case) self.assertEqual(model.batchnorm.running_mean.device , _snake_case) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_snake_case) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _snake_case , execution_device=_snake_case , offload=_snake_case , weights_map=model.state_dict() , offload_buffers=_snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_snake_case) self.assertEqual(output.device , _snake_case) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_snake_case) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Dict = BertJapaneseTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def lowerCamelCase ( self : Dict , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = '''こんにちは、世界。 \nこんばんは、世界。''' UpperCAmelCase_ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(_snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case) return text, ids def lowerCamelCase ( self : List[Any]): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : List[str]): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : str): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file) UpperCAmelCase_ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''') self.assertListEqual(_snake_case , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''') self.assertIsNotNone(_snake_case) UpperCAmelCase_ = '''こんにちは、世界。\nこんばんは、世界。''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) UpperCAmelCase_ = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(_snake_case , '''wb''') as handle: pickle.dump(_snake_case , _snake_case) with open(_snake_case , '''rb''') as handle: UpperCAmelCase_ = pickle.load(_snake_case) UpperCAmelCase_ = tokenizer_new.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = MecabTokenizer(mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" try: UpperCAmelCase_ = MecabTokenizer(mecab_dic='''unidic_lite''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" try: UpperCAmelCase_ = MecabTokenizer(mecab_dic='''unidic''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = MecabTokenizer(do_lower_case=_snake_case , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def lowerCamelCase ( self : int): """simple docstring""" try: UpperCAmelCase_ = MecabTokenizer( do_lower_case=_snake_case , normalize_text=_snake_case , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = MecabTokenizer(normalize_text=_snake_case , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''') self.assertIsNotNone(_snake_case) UpperCAmelCase_ = '''こんにちは、世界。\nこんばんは、世界。''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) UpperCAmelCase_ = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(_snake_case , '''wb''') as handle: pickle.dump(_snake_case , _snake_case) with open(_snake_case , '''rb''') as handle: UpperCAmelCase_ = pickle.load(_snake_case) UpperCAmelCase_ = tokenizer_new.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) @require_sudachi def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国''', '''人''', '''参政''', '''権''']) @require_sudachi def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人''', '''参政権''']) @require_sudachi def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人参政権''']) @require_sudachi def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(do_lower_case=_snake_case , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(normalize_text=_snake_case , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = SudachiTokenizer(trim_whitespace=_snake_case , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''') self.assertIsNotNone(_snake_case) UpperCAmelCase_ = '''こんにちは、世界。\nこんばんは、世界。''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) UpperCAmelCase_ = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(_snake_case , '''wb''') as handle: pickle.dump(_snake_case , _snake_case) with open(_snake_case , '''rb''') as handle: UpperCAmelCase_ = pickle.load(_snake_case) UpperCAmelCase_ = tokenizer_new.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) @require_jumanpp def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = JumanppTokenizer(do_lower_case=_snake_case) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = JumanppTokenizer(normalize_text=_snake_case) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = JumanppTokenizer(trim_whitespace=_snake_case) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''') , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] UpperCAmelCase_ = {} for i, token in enumerate(_snake_case): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=_snake_case , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こんにちは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは''') , ['''こん''', '''##ばんは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''') , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは''']) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''') UpperCAmelCase_ = tokenizer.subword_tokenizer UpperCAmelCase_ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''') self.assertListEqual(_snake_case , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。''']) UpperCAmelCase_ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''') self.assertListEqual(_snake_case , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは''']) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''') UpperCAmelCase_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = BertJapaneseTokenizer UpperCAmelCase__ : Optional[int] = False def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def lowerCamelCase ( self : Dict , **_snake_case : Any): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = '''こんにちは、世界。 \nこんばんは、世界。''' UpperCAmelCase_ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def lowerCamelCase ( self : str): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : int): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : int): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''') UpperCAmelCase_ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''') self.assertListEqual( _snake_case , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] UpperCAmelCase_ = {} for i, token in enumerate(_snake_case): UpperCAmelCase_ = i UpperCAmelCase_ = CharacterTokenizer(vocab=_snake_case , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こ''', '''ん''', '''に''', '''ち''', '''は''']) self.assertListEqual(tokenizer.tokenize('''こんにちほ''') , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]''']) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''') UpperCAmelCase_ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = '''cl-tohoku/bert-base-japanese''' UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , _snake_case) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertTokenizer.from_pretrained(_snake_case) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''')) UpperCAmelCase_ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertJapaneseTokenizer.from_pretrained(_snake_case) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.'''))
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
from __future__ import annotations from scipy.special import comb # type: ignore class __snake_case : def __init__( self : Union[str, Any] , _snake_case : list[tuple[float, float]]): """simple docstring""" UpperCAmelCase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCAmelCase_ = len(_snake_case) - 1 def lowerCamelCase ( self : Optional[Any] , _snake_case : float): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase_ = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , _snake_case) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_snake_case) , 5) == 1 return output_values def lowerCamelCase ( self : str , _snake_case : float): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase_ = self.basis_function(_snake_case) UpperCAmelCase_ = 0.0 UpperCAmelCase_ = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase ( self : Dict , _snake_case : float = 0.0_1): """simple docstring""" from matplotlib import pyplot as plt # type: ignore UpperCAmelCase_ = [] # x coordinates of points to plot UpperCAmelCase_ = [] # y coordinates of points to plot UpperCAmelCase_ = 0.0 while t <= 1: UpperCAmelCase_ = self.bezier_curve_function(_snake_case) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size UpperCAmelCase_ = [i[0] for i in self.list_of_points] UpperCAmelCase_ = [i[1] for i in self.list_of_points] plt.plot( _snake_case , _snake_case , color='''blue''' , label='''Curve of Degree ''' + str(self.degree) , ) plt.scatter(_snake_case , _snake_case , color='''red''' , label='''Control Points''') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
def A (__A : int ) -> bool: """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True UpperCAmelCase_ = 4 UpperCAmelCase_ = (1 << p) - 1 for _ in range(p - 2 ): UpperCAmelCase_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging snake_case_ : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A (__A : Tuple , __A : List[str] , __A : Optional[Any] , __A : Optional[int]=None ) -> int: """simple docstring""" UpperCAmelCase_ = XLNetConfig.from_json_file(__A ) UpperCAmelCase_ = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase_ = finetuning_task UpperCAmelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: UpperCAmelCase_ = finetuning_task UpperCAmelCase_ = XLNetForQuestionAnswering(__A ) else: UpperCAmelCase_ = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) snake_case_ : int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 0 @slow def lowerCamelCase ( self : Any): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(_snake_case) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) self.assertIsInstance(_snake_case , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(_snake_case) , 0) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , _snake_case) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , config=_snake_case) self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def lowerCamelCase ( self : str): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_snake_case , '''vocab.txt''')) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''bert''' , use_fast=_snake_case) self.assertIsInstance(_snake_case , _snake_case) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_snake_case , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_snake_case , '''merges.txt''')) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''gpt2''' , use_fast=_snake_case) self.assertIsInstance(_snake_case , _snake_case) @require_tokenizers def lowerCamelCase ( self : Tuple): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_snake_case , '''vocab.txt''')) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''bert''') self.assertIsInstance(_snake_case , _snake_case) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_snake_case , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_snake_case , '''merges.txt''')) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , tokenizer_type='''gpt2''') self.assertIsInstance(_snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" with pytest.raises(_snake_case): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''') @require_tokenizers def lowerCamelCase ( self : str): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''') self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast)) if isinstance(_snake_case , _snake_case): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _snake_case) else: self.assertEqual(tokenizer.do_lower_case , _snake_case) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _snake_case , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase_ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''') def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = TOKENIZER_MAPPING.values() UpperCAmelCase_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_snake_case) @require_tokenizers def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_snake_case) , _snake_case) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''') , _snake_case) @require_tokenizers def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_snake_case) UpperCAmelCase_ = '''Hello, world. How are you?''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertEqual('''[UNK]''' , tokens[0]) UpperCAmelCase_ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_snake_case) UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertEqual('''[UNK]''' , tokens[0]) @require_tokenizers def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''') self.assertEqual(type(_snake_case) , _snake_case) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 30000) self.assertEqual(tokenizer.unk_token , '''[UNK]''') self.assertEqual(tokenizer.padding_side , '''right''') self.assertEqual(tokenizer.truncation_side , '''right''') def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''ctrl''') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_snake_case , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = get_tokenizer_config('''bert-base-cased''') UpperCAmelCase_ = config.pop('''_commit_hash''' , _snake_case) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_snake_case , {'''do_lower_case''': False}) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ = get_tokenizer_config(_snake_case) self.assertDictEqual(_snake_case , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = get_tokenizer_config(_snake_case) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''') def lowerCamelCase ( self : List[Any]): """simple docstring""" try: AutoConfig.register('''custom''' , _snake_case) AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case): AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case) UpperCAmelCase_ = CustomTokenizer.from_pretrained(_snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , _snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase ( self : str): """simple docstring""" try: AutoConfig.register('''custom''' , _snake_case) # Can register in two steps AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _snake_case , slow_tokenizer_class=_snake_case , fast_tokenizer_class=_snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case): AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = BertTokenizerFast.from_pretrained(_snake_case) bert_tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = CustomTokenizerFast.from_pretrained(_snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case) self.assertIsInstance(_snake_case , _snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , use_fast=_snake_case) self.assertIsInstance(_snake_case , _snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Tuple): """simple docstring""" with self.assertRaises(_snake_case): UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') # If remote code is disabled, we can't load this config. with self.assertRaises(_snake_case): UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , trust_remote_code=_snake_case) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , trust_remote_code=_snake_case , use_fast=_snake_case) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') @require_tokenizers def lowerCamelCase ( self : Any): """simple docstring""" class __snake_case ( a ): UpperCAmelCase__ : Dict = False class __snake_case ( a ): UpperCAmelCase__ : List[str] = NewTokenizer UpperCAmelCase__ : Tuple = False try: AutoConfig.register('''custom''' , _snake_case) AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case) AutoTokenizer.register(_snake_case , fast_tokenizer_class=_snake_case) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_snake_case) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertTrue(tokenizer.special_attribute_present) UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_snake_case , use_fast=_snake_case) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_snake_case) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version UpperCAmelCase_ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_snake_case , use_fast=_snake_case) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def lowerCamelCase ( self : int): """simple docstring""" with self.assertRaisesRegex( _snake_case , '''bert-base is not a local folder and is not a valid model identifier'''): UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base''') def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaisesRegex( _snake_case , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , revision='''aaaaaa''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') with RequestCounter() as counter: UpperCAmelCase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = Dict[str, Any] snake_case_ : Optional[int] = List[Prediction] @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : str , *_snake_case : List[str] , **_snake_case : Any): """simple docstring""" super().__init__(*_snake_case , **_snake_case) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , '''vision''') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def lowerCamelCase ( self : int , **_snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = {} if "threshold" in kwargs: UpperCAmelCase_ = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : Optional[int] , *_snake_case : List[Any] , **_snake_case : str): """simple docstring""" return super().__call__(*_snake_case , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = load_image(_snake_case) UpperCAmelCase_ = torch.IntTensor([[image.height, image.width]]) UpperCAmelCase_ = self.image_processor(images=[image] , return_tensors='''pt''') if self.tokenizer is not None: UpperCAmelCase_ = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''') UpperCAmelCase_ = target_size return inputs def lowerCamelCase ( self : int , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = model_inputs.pop('''target_size''') UpperCAmelCase_ = self.model(**_snake_case) UpperCAmelCase_ = outputs.__class__({'''target_size''': target_size, **outputs}) if self.tokenizer is not None: UpperCAmelCase_ = model_inputs['''bbox'''] return model_outputs def lowerCamelCase ( self : str , _snake_case : Any , _snake_case : List[str]=0.9): """simple docstring""" UpperCAmelCase_ = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase_ , UpperCAmelCase_ = target_size[0].tolist() def unnormalize(_snake_case : Optional[int]): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) UpperCAmelCase_ , UpperCAmelCase_ = model_outputs['''logits'''].squeeze(0).softmax(dim=-1).max(dim=-1) UpperCAmelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase_ = [unnormalize(_snake_case) for bbox in model_outputs['''bbox'''].squeeze(0)] UpperCAmelCase_ = ['''score''', '''label''', '''box'''] UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for vals in zip(scores.tolist() , _snake_case , _snake_case) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase_ = self.image_processor.post_process_object_detection(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = raw_annotations[0] UpperCAmelCase_ = raw_annotation['''scores'''] UpperCAmelCase_ = raw_annotation['''labels'''] UpperCAmelCase_ = raw_annotation['''boxes'''] UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase_ = [self._get_bounding_box(_snake_case) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase_ = ['''score''', '''label''', '''box'''] UpperCAmelCase_ = [ dict(zip(_snake_case , _snake_case)) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes''']) ] return annotation def lowerCamelCase ( self : Union[str, Any] , _snake_case : "torch.Tensor"): """simple docstring""" if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''') UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = box.int().tolist() UpperCAmelCase_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device snake_case_ : Optional[Any] = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Tuple): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe.dual_guided( prompt='''first prompt''' , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case) UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=torch.floataa) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = generator.manual_seed(0) UpperCAmelCase_ = pipe.dual_guided( prompt='''first prompt''' , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = '''cyberpunk 2077''' UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe.dual_guided( prompt=_snake_case , image=_snake_case , text_to_image_strength=0.7_5 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCAmelCase_ = '''A painting of a squirrel eating a burger ''' UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe.text_to_image( prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCAmelCase_ = pipe.image_variation(_snake_case , generator=_snake_case , output_type='''numpy''').images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : int = {"vocab_file": "spiece.model"} snake_case_ : List[str] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } snake_case_ : Union[str, Any] = {"bert_for_seq_generation": 512} class __snake_case ( a ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , _snake_case : List[str] , _snake_case : Optional[int]="<s>" , _snake_case : int="</s>" , _snake_case : List[str]="<unk>" , _snake_case : Any="<pad>" , _snake_case : Tuple="<::::>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[int] , ): """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , sep_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_snake_case) @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self.sp_model.get_piece_size() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase ( self : int , _snake_case : str): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case) def lowerCamelCase ( self : int , _snake_case : List[Any]): """simple docstring""" return self.sp_model.piece_to_id(_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = self.sp_model.IdToPiece(_snake_case) return token def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_snake_case) out_string += self.sp_model.decode(_snake_case) return out_string.strip() def lowerCamelCase ( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
def A (__A : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCAmelCase_ = len(__A ) if (len(__A ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(__A ) , '''Postfix'''.center(__A ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__A ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__A ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__A ) == 0: stack.append(__A ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__A ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__A ) # push x to stack print( x.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format while len(__A ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format return "".join(__A ) # return Postfix as str def A (__A : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__A ) ): if infix[i] == "(": UpperCAmelCase_ = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCAmelCase_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__A ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": snake_case_ : int = input("\nEnter an Infix Equation = ") # Input an Infix equation snake_case_ : str = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import os import jsonlines import numpy as np from tqdm import tqdm snake_case_ : Union[str, Any] = 2048 snake_case_ : str = 4096 snake_case_ : Union[str, Any] = 42 snake_case_ : List[str] = os.environ.pop("PROCESS_TRAIN", "false") snake_case_ : Tuple = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def A (__A : List[Any] ) -> List[str]: """simple docstring""" def choose_first(__A : Any , __A : str=False ): assert isinstance(__A , __A ) if len(__A ) == 1: UpperCAmelCase_ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase_ = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a UpperCAmelCase_ = {'''id''': example['''id''']} UpperCAmelCase_ = example['''annotations'''] UpperCAmelCase_ = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase_ = ['''yes'''] if 1 in yes_no_answer else ['''no'''] UpperCAmelCase_ = UpperCAmelCase_ = [] UpperCAmelCase_ = UpperCAmelCase_ = [] UpperCAmelCase_ = ['''<cls>'''] else: UpperCAmelCase_ = ['''short'''] UpperCAmelCase_ = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available UpperCAmelCase_ = ['''long'''] UpperCAmelCase_ = choose_first(annotation['''long_answer'''] , is_long_answer=__A ) UpperCAmelCase_ = [] answer.update(__A ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase_ = True else: UpperCAmelCase_ = False UpperCAmelCase_ = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , __A ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def A (__A : Optional[int] , __A : Any=False ) -> str: """simple docstring""" UpperCAmelCase_ = _get_single_answer(__A ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase_ = example['''document''']['''tokens'''] UpperCAmelCase_ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(__A ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase_ = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase_ = example['''document''']['''tokens'''] UpperCAmelCase_ = answer['''start_token'''] UpperCAmelCase_ = answer['''end_token'''] UpperCAmelCase_ = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase_ = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase_ = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase_ = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase_ = ''' '''.join([old[i] for i in range(len(__A ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , __A , end='''\n''' ) print('''Old:''' , __A , end='''\n\n''' ) return { "context": " ".join(__A ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def A (__A : Optional[Any] , __A : Optional[int] , __A : Optional[int]=2048 , __A : Union[str, Any]=4096 , __A : List[Any]=True ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = get_context_and_ans(__A , assertion=__A ) UpperCAmelCase_ = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase_ = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids UpperCAmelCase_ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = input_ids[:q_len] UpperCAmelCase_ = range(__A , len(__A ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase_ = i + max_length - q_len UpperCAmelCase_ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(__A ), "end_token": [-100] * len(__A ), "category": category, }, } UpperCAmelCase_ = out['''context'''].split() UpperCAmelCase_ = splitted_context[answer['''end_token''']] UpperCAmelCase_ = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=__A , ).input_ids ) UpperCAmelCase_ = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=__A ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase_ = len(tokenizer(__A , add_special_tokens=__A ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase_ = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive UpperCAmelCase_ = answer['''start_token'''] UpperCAmelCase_ = answer['''end_token'''] if assertion: UpperCAmelCase_ = tokenizer.decode(__A ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , __A , end='''\n\n''' ) if len(__A ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase_ = input_ids[:q_len] UpperCAmelCase_ = range(__A , len(__A ) , max_length - doc_stride ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase_ = i + max_length - q_len UpperCAmelCase_ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase_ = start_token - i + q_len UpperCAmelCase_ = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: UpperCAmelCase_ = -100 UpperCAmelCase_ = -100 answers_category.append('''null''' ) UpperCAmelCase_ = inputs[-1][start_token : end_token + 1] answers_start_token.append(__A ) answers_end_token.append(__A ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(__A ) ) print('''Old:''' , tokenizer.decode(__A ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def A (__A : List[str] , __A : Tuple , __A : List[Any]=2048 , __A : Dict=4096 , __A : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = get_strided_contexts_and_ans( __A , __A , doc_stride=__A , max_length=__A , assertion=__A , ) return example def A (__A : str , __A : Any ) -> Optional[Any]: """simple docstring""" with jsonlines.open(__A , '''a''' ) as writer: for example in tqdm(__A , total=len(__A ) , desc='''Saving samples ... ''' ): UpperCAmelCase_ = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case_ : Optional[Any] = load_dataset("natural_questions") snake_case_ : Optional[Any] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") snake_case_ : Dict = data["train" if PROCESS_TRAIN == "true" else "validation"] snake_case_ : Dict = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } snake_case_ : Dict = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case_ : Any = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) snake_case_ : Tuple = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_snake_case , ) assert hasattr(self , '''env''') def lowerCamelCase ( self : List[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase_ = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_snake_case , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_snake_case , py_version='''py36''' , ) def lowerCamelCase ( self : Optional[int] , _snake_case : str): """simple docstring""" TrainingJobAnalytics(_snake_case).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") @parameterized.expand([(2,)]) def lowerCamelCase ( self : Any , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = self.create_estimator(_snake_case) # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _snake_case)
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
from ...configuration_utils import PretrainedConfig snake_case_ : Optional[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __snake_case ( a ): UpperCAmelCase__ : List[str] = '''tapas''' def __init__( self : Any , _snake_case : Union[str, Any]=30522 , _snake_case : Dict=768 , _snake_case : List[Any]=12 , _snake_case : Union[str, Any]=12 , _snake_case : List[str]=3072 , _snake_case : Dict="gelu" , _snake_case : List[Any]=0.1 , _snake_case : int=0.1 , _snake_case : Optional[int]=1024 , _snake_case : Dict=[3, 256, 256, 2, 256, 256, 10] , _snake_case : Tuple=0.0_2 , _snake_case : List[str]=1e-12 , _snake_case : int=0 , _snake_case : Any=1_0.0 , _snake_case : Tuple=0 , _snake_case : Tuple=1.0 , _snake_case : List[Any]=None , _snake_case : List[str]=1.0 , _snake_case : List[str]=False , _snake_case : Optional[Any]=None , _snake_case : Optional[int]=1.0 , _snake_case : List[Any]=1.0 , _snake_case : List[str]=False , _snake_case : List[Any]=False , _snake_case : str="ratio" , _snake_case : Optional[Any]=None , _snake_case : List[str]=None , _snake_case : Union[str, Any]=64 , _snake_case : str=32 , _snake_case : str=False , _snake_case : Dict=True , _snake_case : int=False , _snake_case : Any=False , _snake_case : List[Any]=True , _snake_case : str=False , _snake_case : str=None , _snake_case : Tuple=None , **_snake_case : str , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_sizes UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase_ = positive_label_weight UpperCAmelCase_ = num_aggregation_labels UpperCAmelCase_ = aggregation_loss_weight UpperCAmelCase_ = use_answer_as_supervision UpperCAmelCase_ = answer_loss_importance UpperCAmelCase_ = use_normalized_answer_loss UpperCAmelCase_ = huber_loss_delta UpperCAmelCase_ = temperature UpperCAmelCase_ = aggregation_temperature UpperCAmelCase_ = use_gumbel_for_cells UpperCAmelCase_ = use_gumbel_for_aggregation UpperCAmelCase_ = average_approximation_function UpperCAmelCase_ = cell_selection_preference UpperCAmelCase_ = answer_loss_cutoff UpperCAmelCase_ = max_num_rows UpperCAmelCase_ = max_num_columns UpperCAmelCase_ = average_logits_per_cell UpperCAmelCase_ = select_one_column UpperCAmelCase_ = allow_empty_column_selection UpperCAmelCase_ = init_cell_selection_weights_to_zero UpperCAmelCase_ = reset_position_index_per_cell UpperCAmelCase_ = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase_ = aggregation_labels UpperCAmelCase_ = no_aggregation_label_index if isinstance(self.aggregation_labels , _snake_case): UpperCAmelCase_ = {int(_snake_case): v for k, v in aggregation_labels.items()}
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( a ): def __init__( self : Any , _snake_case : VQModel , _snake_case : UNetaDModel , _snake_case : DDIMScheduler): """simple docstring""" super().__init__() self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case) @torch.no_grad() def __call__( self : List[str] , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : float = 0.0 , _snake_case : int = 50 , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_snake_case , ) UpperCAmelCase_ = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_snake_case) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps): UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case) # predict the noise residual UpperCAmelCase_ = self.unet(_snake_case , _snake_case).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample # decode the image latents with the VAE UpperCAmelCase_ = self.vqvae.decode(_snake_case).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case)
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants snake_case_ : List[Any] = Mapping[str, np.ndarray] snake_case_ : Any = Mapping[str, Any] # Is a nested dict. snake_case_ : Dict = 0.01 @dataclasses.dataclass(frozen=a ) class __snake_case : UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCAmelCase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCAmelCase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCAmelCase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCAmelCase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCAmelCase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) UpperCAmelCase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent UpperCAmelCase__ : Optional[Sequence[int]] = None def A (__A : str ) -> Protein: """simple docstring""" UpperCAmelCase_ = R'''(\[[A-Z]+\]\n)''' UpperCAmelCase_ = [tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] UpperCAmelCase_ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) UpperCAmelCase_ = ["N", "CA", "C"] UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None for g in groups: if "[PRIMARY]" == g[0]: UpperCAmelCase_ = g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: UpperCAmelCase_ = '''X''' # FIXME: strings are immutable UpperCAmelCase_ = np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCAmelCase_ = [] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) UpperCAmelCase_ = np.array(__A ) UpperCAmelCase_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): UpperCAmelCase_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCAmelCase_ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) UpperCAmelCase_ = np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): UpperCAmelCase_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def A (__A : Protein , __A : int = 0 ) -> List[str]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) UpperCAmelCase_ = prot.parents UpperCAmelCase_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCAmelCase_ = [p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: UpperCAmelCase_ = ['''N/A'''] pdb_headers.append(F"""PARENT {" ".join(__A )}""" ) return pdb_headers def A (__A : Protein , __A : str ) -> str: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = pdb_str.split('''\n''' ) UpperCAmelCase_ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) UpperCAmelCase_ = 42 if prot.parents is not None and len(prot.parents ) > 0: UpperCAmelCase_ = [] if prot.parents_chain_index is not None: UpperCAmelCase_ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) UpperCAmelCase_ = max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCAmelCase_ = parent_dict.get(str(__A ) , ['''N/A'''] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCAmelCase_ = [['''N/A''']] def make_parent_line(__A : Sequence[str] ) -> str: return F"""PARENT {" ".join(__A )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCAmelCase_ = 0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): UpperCAmelCase_ = parents_per_chain[chain_counter] else: UpperCAmelCase_ = ['''N/A'''] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def A (__A : Protein ) -> str: """simple docstring""" UpperCAmelCase_ = residue_constants.restypes + ['''X'''] def res_atoa(__A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) UpperCAmelCase_ = residue_constants.atom_types UpperCAmelCase_ = [] UpperCAmelCase_ = prot.atom_mask UpperCAmelCase_ = prot.aatype UpperCAmelCase_ = prot.atom_positions UpperCAmelCase_ = prot.residue_index.astype(np.intaa ) UpperCAmelCase_ = prot.b_factors UpperCAmelCase_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) UpperCAmelCase_ = get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) UpperCAmelCase_ = aatype.shape[0] UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = string.ascii_uppercase UpperCAmelCase_ = None # Add all atom sites. for i in range(__A ): UpperCAmelCase_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCAmelCase_ = '''ATOM''' UpperCAmelCase_ = atom_name if len(__A ) == 4 else F""" {atom_name}""" UpperCAmelCase_ = '''''' UpperCAmelCase_ = '''''' UpperCAmelCase_ = 1.00 UpperCAmelCase_ = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCAmelCase_ = '''''' UpperCAmelCase_ = '''A''' if chain_index is not None: UpperCAmelCase_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCAmelCase_ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(__A ) atom_index += 1 UpperCAmelCase_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCAmelCase_ = True UpperCAmelCase_ = chain_index[i + 1] if should_terminate: # Close the chain. UpperCAmelCase_ = '''TER''' UpperCAmelCase_ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__A ) def A (__A : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A (__A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __snake_case ( a ): UpperCAmelCase__ : int = ['''image_processor'''] UpperCAmelCase__ : Tuple = '''SamImageProcessor''' def __init__( self : Optional[Any] , _snake_case : Any): """simple docstring""" super().__init__(_snake_case) UpperCAmelCase_ = self.image_processor UpperCAmelCase_ = -10 UpperCAmelCase_ = self.image_processor.size['''longest_edge'''] def __call__( self : Union[str, Any] , _snake_case : Any=None , _snake_case : Optional[Any]=None , _snake_case : Tuple=None , _snake_case : List[Any]=None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[Any] , ): """simple docstring""" UpperCAmelCase_ = self.image_processor( _snake_case , return_tensors=_snake_case , **_snake_case , ) # pop arguments that are not used in the foward but used nevertheless UpperCAmelCase_ = encoding_image_processor['''original_sizes'''] if hasattr(_snake_case , '''numpy'''): # Checks if Torch or TF tensor UpperCAmelCase_ = original_sizes.numpy() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._check_and_preprocess_points( input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , ) UpperCAmelCase_ = self._normalize_and_convert( _snake_case , _snake_case , input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , return_tensors=_snake_case , ) return encoding_image_processor def lowerCamelCase ( self : List[Any] , _snake_case : Dict , _snake_case : Tuple , _snake_case : List[str]=None , _snake_case : Optional[int]=None , _snake_case : Any=None , _snake_case : Optional[int]="pt" , ): """simple docstring""" if input_points is not None: if len(_snake_case) != len(_snake_case): UpperCAmelCase_ = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0]) for point in input_points ] else: UpperCAmelCase_ = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case) for point, original_size in zip(_snake_case , _snake_case) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: UpperCAmelCase_ , UpperCAmelCase_ = self._pad_points_and_labels(_snake_case , _snake_case) UpperCAmelCase_ = np.array(_snake_case) if input_labels is not None: UpperCAmelCase_ = np.array(_snake_case) if input_boxes is not None: if len(_snake_case) != len(_snake_case): UpperCAmelCase_ = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0] , is_bounding_box=_snake_case) for box in input_boxes ] else: UpperCAmelCase_ = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case , is_bounding_box=_snake_case) for box, original_size in zip(_snake_case , _snake_case) ] UpperCAmelCase_ = np.array(_snake_case) if input_boxes is not None: if return_tensors == "pt": UpperCAmelCase_ = torch.from_numpy(_snake_case) # boxes batch size of 1 by default UpperCAmelCase_ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": UpperCAmelCase_ = tf.convert_to_tensor(_snake_case) # boxes batch size of 1 by default UpperCAmelCase_ = tf.expand_dims(_snake_case , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes}) if input_points is not None: if return_tensors == "pt": UpperCAmelCase_ = torch.from_numpy(_snake_case) # point batch size of 1 by default UpperCAmelCase_ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": UpperCAmelCase_ = tf.convert_to_tensor(_snake_case) # point batch size of 1 by default UpperCAmelCase_ = tf.expand_dims(_snake_case , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points}) if input_labels is not None: if return_tensors == "pt": UpperCAmelCase_ = torch.from_numpy(_snake_case) # point batch size of 1 by default UpperCAmelCase_ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": UpperCAmelCase_ = tf.convert_to_tensor(_snake_case) # point batch size of 1 by default UpperCAmelCase_ = tf.expand_dims(_snake_case , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels}) return encoding_image_processor def lowerCamelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = max([point.shape[0] for point in input_points]) UpperCAmelCase_ = [] for i, point in enumerate(_snake_case): if point.shape[0] != expected_nb_points: UpperCAmelCase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) UpperCAmelCase_ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(_snake_case) UpperCAmelCase_ = processed_input_points return input_points, input_labels def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : np.ndarray , _snake_case : Any , _snake_case : Dict=False): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = original_size UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor._get_preprocess_shape(_snake_case , longest_edge=_snake_case) UpperCAmelCase_ = deepcopy(_snake_case).astype(_snake_case) if is_bounding_box: UpperCAmelCase_ = coords.reshape(-1 , 2 , 2) UpperCAmelCase_ = coords[..., 0] * (new_w / old_w) UpperCAmelCase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCAmelCase_ = coords.reshape(-1 , 4) return coords def lowerCamelCase ( self : int , _snake_case : Optional[Any]=None , _snake_case : int=None , _snake_case : str=None , ): """simple docstring""" if input_points is not None: if hasattr(_snake_case , '''numpy'''): # Checks for TF or Torch tensor UpperCAmelCase_ = input_points.numpy().tolist() if not isinstance(_snake_case , _snake_case) or not isinstance(input_points[0] , _snake_case): raise ValueError('''Input points must be a list of list of floating points.''') UpperCAmelCase_ = [np.array(_snake_case) for input_point in input_points] else: UpperCAmelCase_ = None if input_labels is not None: if hasattr(_snake_case , '''numpy'''): UpperCAmelCase_ = input_labels.numpy().tolist() if not isinstance(_snake_case , _snake_case) or not isinstance(input_labels[0] , _snake_case): raise ValueError('''Input labels must be a list of list integers.''') UpperCAmelCase_ = [np.array(_snake_case) for label in input_labels] else: UpperCAmelCase_ = None if input_boxes is not None: if hasattr(_snake_case , '''numpy'''): UpperCAmelCase_ = input_boxes.numpy().tolist() if ( not isinstance(_snake_case , _snake_case) or not isinstance(input_boxes[0] , _snake_case) or not isinstance(input_boxes[0][0] , _snake_case) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''') UpperCAmelCase_ = [np.array(_snake_case).astype(np.floataa) for box in input_boxes] else: UpperCAmelCase_ = None return input_points, input_labels, input_boxes @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(_snake_case)) def lowerCamelCase ( self : Tuple , *_snake_case : Tuple , **_snake_case : int): """simple docstring""" return self.image_processor.post_process_masks(*_snake_case , **_snake_case)
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
def A (__A : int , __A : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def A () -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: snake_case_ : Dict = None snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case_ : Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } snake_case_ : int = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off snake_case_ : Any = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __snake_case ( a ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : Tuple = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self : Dict , _snake_case : List[Any]=None , _snake_case : Union[str, Any]=None , _snake_case : List[Any]="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : Optional[int]="</s>" , _snake_case : Tuple="<s>" , _snake_case : Tuple="<unk>" , _snake_case : int="<pad>" , _snake_case : List[str]="<mask>" , _snake_case : Union[str, Any]=None , _snake_case : Tuple=None , _snake_case : str=None , _snake_case : Any=False , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token UpperCAmelCase_ = legacy_behaviour super().__init__( vocab_file=_snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , additional_special_tokens=_snake_case , legacy_behaviour=_snake_case , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens}) UpperCAmelCase_ = { lang_code: self.convert_tokens_to_ids(_snake_case) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase_ = src_lang if src_lang is not None else '''eng_Latn''' UpperCAmelCase_ = self.convert_tokens_to_ids(self._src_lang) UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def lowerCamelCase ( self : int): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase ( self : Any , _snake_case : str): """simple docstring""" UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def lowerCamelCase ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Any): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case) UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) UpperCAmelCase_ = tgt_lang_id return inputs def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : str = "eng_Latn" , _snake_case : Optional[List[str]] = None , _snake_case : str = "fra_Latn" , **_snake_case : Optional[int] , ): """simple docstring""" UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def lowerCamelCase ( self : List[str]): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase ( self : List[str] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.convert_tokens_to_ids(_snake_case) if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] UpperCAmelCase_ = self.convert_ids_to_tokens(self.prefix_tokens) UpperCAmelCase_ = self.convert_ids_to_tokens(self.suffix_tokens) UpperCAmelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case): copyfile(self.vocab_file , _snake_case) return (out_vocab_file,)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self : Union[str, Any] , _snake_case : int , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = 13 UpperCAmelCase_ = 7 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = 2 UpperCAmelCase_ = 99 UpperCAmelCase_ = 0 UpperCAmelCase_ = 32 UpperCAmelCase_ = 2 UpperCAmelCase_ = 4 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 2 UpperCAmelCase_ = 0.0_2 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = '''last''' UpperCAmelCase_ = True UpperCAmelCase_ = None UpperCAmelCase_ = 0 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) UpperCAmelCase_ = None if self.use_input_lengths: UpperCAmelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = TFFlaubertModel(config=_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : Any , _snake_case : Any , _snake_case : Any , _snake_case : List[str] , ): """simple docstring""" UpperCAmelCase_ = TFFlaubertWithLMHeadModel(_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : str , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , ): """simple docstring""" UpperCAmelCase_ = TFFlaubertForQuestionAnsweringSimple(_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : str , _snake_case : str , _snake_case : List[Any] , _snake_case : Union[str, Any] , ): """simple docstring""" UpperCAmelCase_ = TFFlaubertForSequenceClassification(_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowerCamelCase ( self : Optional[Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : str , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFFlaubertForTokenClassification(config=_snake_case) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : List[str] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Tuple , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = TFFlaubertForMultipleChoice(config=_snake_case) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = tf.tile(tf.expand_dims(_snake_case , 1) , (1, self.num_choices, 1)) UpperCAmelCase_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Any = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Optional[int] = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : Dict = False def lowerCamelCase ( self : Tuple , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[str]): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = TFFlaubertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , emb_dim=37) def lowerCamelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_snake_case) @slow def lowerCamelCase ( self : Any): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFFlaubertModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''') UpperCAmelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( a , a ): UpperCAmelCase__ : List[str] = '''swin''' UpperCAmelCase__ : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , _snake_case : Union[str, Any]=224 , _snake_case : Optional[int]=4 , _snake_case : List[str]=3 , _snake_case : Dict=96 , _snake_case : int=[2, 2, 6, 2] , _snake_case : List[Any]=[3, 6, 12, 24] , _snake_case : Dict=7 , _snake_case : List[str]=4.0 , _snake_case : List[Any]=True , _snake_case : Any=0.0 , _snake_case : int=0.0 , _snake_case : Tuple=0.1 , _snake_case : str="gelu" , _snake_case : Tuple=False , _snake_case : Tuple=0.0_2 , _snake_case : Optional[int]=1e-5 , _snake_case : List[Any]=32 , _snake_case : int=None , _snake_case : Tuple=None , **_snake_case : str , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_snake_case) - 1)) UpperCAmelCase_ = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_snake_case) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names) class __snake_case ( a ): UpperCAmelCase__ : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Any): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return 1e-4
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[Any] = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["ConvNextFeatureExtractor"] snake_case_ : List[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : int = (KDPMaDiscreteScheduler,) UpperCAmelCase__ : List[str] = 1_0 def lowerCamelCase ( self : str , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_snake_case) return config def lowerCamelCase ( self : List[Any]): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''') UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(self.num_inference_steps) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case) UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_snake_case)) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if torch_device == "mps": return UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(self.num_inference_steps) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase_ = sample.to(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case) UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_snake_case)) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3 def lowerCamelCase ( self : Any): """simple docstring""" if torch_device == "mps": return UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(self.num_inference_steps , device=_snake_case) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.to(_snake_case) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase_ = scheduler.scale_model_input(_snake_case , _snake_case) UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = output.prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_snake_case)) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) if str(_snake_case).startswith('''cpu'''): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6) < 1e-3
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case_ : List[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def A (__A : str , __A : Tuple ) -> Union[str, Any]: """simple docstring""" inspect_dataset(__A , __A ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def A (__A : int , __A : Dict ) -> Dict: """simple docstring""" inspect_metric(__A , __A ) UpperCAmelCase_ = path + '''.py''' assert script_name in os.listdir(__A ) assert "__pycache__" not in os.listdir(__A ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A (__A : Any , __A : Optional[Any] , __A : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = get_dataset_config_info(__A , config_name=__A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A (__A : int , __A : Union[str, Any] , __A : Optional[Any] ) -> List[Any]: """simple docstring""" with pytest.raises(__A ): get_dataset_config_info(__A , config_name=__A ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def A (__A : int , __A : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = get_dataset_config_names(__A ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def A (__A : List[str] , __A : Any , __A : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = get_dataset_infos(__A ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ = expected_configs[0] assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def A (__A : Any , __A : Optional[Any] , __A : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = get_dataset_infos(__A ) assert expected_config in infos UpperCAmelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def A (__A : Union[str, Any] , __A : Tuple , __A : List[Any] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__A ): get_dataset_split_names(__A , config_name=__A )
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
import argparse import json import subprocess def A (__A : List[str] , __A : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) UpperCAmelCase_ = subprocess.run(__A , shell=__A , stdout=subprocess.PIPE ) UpperCAmelCase_ = output.stdout.decode('''utf-8''' ) UpperCAmelCase_ = json.loads(__A ) UpperCAmelCase_ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(__A ) ) if len(__A ) > 0: UpperCAmelCase_ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def A (__A : Optional[int] ) -> List[Any]: """simple docstring""" return values.split(''',''' ) snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) snake_case_ : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : def __init__( self : Dict , _snake_case : Any , _snake_case : List[Any]=13 , _snake_case : List[str]=2 , _snake_case : Union[str, Any]=24 , _snake_case : Tuple=16 , _snake_case : Optional[int]=True , _snake_case : Dict=True , _snake_case : int=32 , _snake_case : Optional[int]=5 , _snake_case : str=4 , _snake_case : Optional[int]=37 , _snake_case : Any="gelu" , _snake_case : Optional[Any]=0.1 , _snake_case : str=0.1 , _snake_case : List[Any]=10 , _snake_case : Union[str, Any]=0.0_2 , _snake_case : Any=None , _snake_case : Tuple=2 , _snake_case : int=2 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = max_length UpperCAmelCase_ = num_mel_bins UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = frequency_stride UpperCAmelCase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase_ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase_ = frequency_out_dimension * time_out_dimension UpperCAmelCase_ = num_patches + 2 def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = self.get_config() return config, input_values, labels def lowerCamelCase ( self : List[Any]): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = ASTModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_values''': input_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : List[Any] = False def lowerCamelCase ( self : List[str] , _snake_case : int , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = ASTModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37) def lowerCamelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear)) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''input_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) @slow def lowerCamelCase ( self : Dict): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ASTModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCAmelCase_ , UpperCAmelCase_ = torchaudio.load(__A ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[Any]): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''') if is_torchaudio_available() else None ) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''').to(_snake_case) UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ , UpperCAmelCase_ = prepare_audio() UpperCAmelCase_ = audio.squeeze().numpy() UpperCAmelCase_ = feature_extractor(_snake_case , sampling_rate=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
from __future__ import annotations import requests snake_case_ : Any = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def A (__A : str , __A : int = 1 , __A : str = "new" , __A : list | None = None ) -> dict: """simple docstring""" UpperCAmelCase_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__A ) - valid_terms ) ): UpperCAmelCase_ = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(__A ) UpperCAmelCase_ = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError UpperCAmelCase_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__A )} UpperCAmelCase_ = {} for id_ in range(__A ): UpperCAmelCase_ = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Dict = logging.get_logger(__name__) def A (__A : Optional[int] , __A : Dict=False , __A : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase_ = '''backbone.''' if is_semantic else '''''' UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (F"""{prefix}cls_token""", '''beit.embeddings.cls_token'''), (F"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A (__A : Dict , __A : Union[str, Any] , __A : List[str]=False , __A : Optional[int]=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): UpperCAmelCase_ = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" ) UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = q_bias UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" ) UpperCAmelCase_ = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" ) UpperCAmelCase_ = gamma_a UpperCAmelCase_ = gamma_a def A (__A : Optional[Any] , __A : List[str] , __A : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ = dct.pop(__A ) UpperCAmelCase_ = val def A () -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A (__A : str , __A : List[str] , __A : Dict=False ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase_ = BeitConfig(use_absolute_position_embeddings=__A , use_mask_token=__A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase_ = 16 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''rvlcdip-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' )['''model'''] UpperCAmelCase_ = create_rename_keys(__A , has_lm_head=__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , has_lm_head=__A ) # load HuggingFace model UpperCAmelCase_ = BeitForMaskedImageModeling(__A ) if has_lm_head else BeitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # Check outputs on an image UpperCAmelCase_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__A ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__A , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = model(__A ) UpperCAmelCase_ = outputs.logits # verify logits UpperCAmelCase_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__A ), "Shape of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: if has_lm_head: UpperCAmelCase_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__A , ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__A , ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) snake_case_ : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin snake_case_ : int = False @skip_mps class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : Any = StableDiffusionAttendAndExcitePipeline UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase ( cls : Optional[int]): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_snake_case) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase ( self : Dict , _snake_case : Optional[int] , _snake_case : List[Any]=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = UpperCAmelCase_ = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_snake_case) pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = self.get_dummy_inputs(_snake_case) UpperCAmelCase_ = pipe(**_snake_case).images UpperCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCAmelCase_ = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6]) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_snake_case , 1e-3) def lowerCamelCase ( self : str): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5e-4) def lowerCamelCase ( self : Dict): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def lowerCamelCase ( self : int): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4) def lowerCamelCase ( self : List[Any]): """simple docstring""" super().test_save_load_local(expected_max_difference=5e-4) def lowerCamelCase ( self : Tuple): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4e-4) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Any): """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_snake_case) @classmethod def lowerCamelCase ( cls : Tuple): """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_snake_case) def lowerCamelCase ( self : str): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = torch.manual_seed(51) UpperCAmelCase_ = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=_snake_case , torch_dtype=torch.floataa) pipe.to('''cuda''') UpperCAmelCase_ = '''a painting of an elephant with glasses''' UpperCAmelCase_ = [5, 7] UpperCAmelCase_ = pipe( prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''') assert np.abs((expected_image - image).max()) < 5e-1
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
snake_case_ : Dict = "Alexander Joslin" import operator as op from .stack import Stack def A (__A : str ) -> int: """simple docstring""" UpperCAmelCase_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} UpperCAmelCase_ = Stack() UpperCAmelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 UpperCAmelCase_ = operator_stack.peek() operator_stack.pop() UpperCAmelCase_ = operand_stack.peek() operand_stack.pop() UpperCAmelCase_ = operand_stack.peek() operand_stack.pop() UpperCAmelCase_ = operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case_ : Optional[int] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A (__A : List[str] ) -> str: """simple docstring""" UpperCAmelCase_ = [] for line in lines: UpperCAmelCase_ = re.sub(R'''#.*''' , '''''' , __A ) # remove comments if line: filtered_lines.append(__A ) UpperCAmelCase_ = '''\n'''.join(__A ) # Make a hash from all this code UpperCAmelCase_ = full_str.encode('''utf-8''' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching snake_case_ : Dict = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions snake_case_ : Any = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) snake_case_ : Tuple = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name snake_case_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def A (__A : List[str] , __A : int , __A : Optional[Any] , __A : int=1024 ) -> List[str]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = list(zip(__A , __A ) ) UpperCAmelCase_ , UpperCAmelCase_ = sorted_examples[0] def is_too_big(__A : Optional[Any] ): return tok(__A , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase_ = new_src + ''' ''' + src UpperCAmelCase_ = new_tgt + ''' ''' + tgt if is_too_big(__A ) or is_too_big(__A ): # cant fit, finalize example finished_src.append(__A ) finished_tgt.append(__A ) UpperCAmelCase_ , UpperCAmelCase_ = src, tgt else: # can fit, keep adding UpperCAmelCase_ , UpperCAmelCase_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__A ) finished_tgt.append(__A ) return finished_src, finished_tgt def A (__A : Optional[Any] , __A : Path , __A : str , __A : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ = Path(__A ) save_path.mkdir(exist_ok=__A ) for split in ["train"]: UpperCAmelCase_ , UpperCAmelCase_ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCAmelCase_ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase_ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase_ , UpperCAmelCase_ = pack_examples(__A , __A , __A , __A ) print(F"""packed {split} split from {len(__A )} examples -> {len(__A )}.""" ) Path(save_path / F"""{split}.source""" ).open('''w''' ).write('''\n'''.join(__A ) ) Path(save_path / F"""{split}.target""" ).open('''w''' ).write('''\n'''.join(__A ) ) for split in ["val", "test"]: UpperCAmelCase_ , UpperCAmelCase_ = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(__A , save_path / F"""{split}.source""" ) shutil.copyfile(__A , save_path / F"""{split}.target""" ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__A , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__A , default=128 ) parser.add_argument('''--data_dir''' , type=__A ) parser.add_argument('''--save_path''' , type=__A ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case_ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): UpperCAmelCase__ : Optional[datasets.Features] = None UpperCAmelCase__ : str = "utf-8" UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : bool = True # deprecated UpperCAmelCase__ : Optional[int] = None # deprecated UpperCAmelCase__ : int = 1_0 << 2_0 # 10MB UpperCAmelCase__ : Optional[bool] = None class __snake_case ( datasets.ArrowBasedBuilder ): UpperCAmelCase__ : Optional[int] = JsonConfig def lowerCamelCase ( self : Any): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') UpperCAmelCase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def lowerCamelCase ( self : Dict , _snake_case : Optional[int]): """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(_snake_case , (str, list, tuple)): UpperCAmelCase_ = data_files if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(_snake_case) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = [files] UpperCAmelCase_ = [dl_manager.iter_files(_snake_case) for file in files] splits.append(datasets.SplitGenerator(name=_snake_case , gen_kwargs={'''files''': files})) return splits def lowerCamelCase ( self : str , _snake_case : pa.Table): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): UpperCAmelCase_ = self.config.features.arrow_schema.field(_snake_case).type UpperCAmelCase_ = pa_table.append_column(_snake_case , pa.array([None] * len(_snake_case) , type=_snake_case)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(_snake_case , self.config.features.arrow_schema) return pa_table def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_snake_case)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: UpperCAmelCase_ = json.load(_snake_case) # We keep only the field we are interested in UpperCAmelCase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_snake_case , (list, tuple)): UpperCAmelCase_ = set().union(*[row.keys() for row in dataset]) UpperCAmelCase_ = {col: [row.get(_snake_case) for row in dataset] for col in keys} else: UpperCAmelCase_ = dataset UpperCAmelCase_ = pa.Table.from_pydict(_snake_case) yield file_idx, self._cast_table(_snake_case) # If the file has one json object per line else: with open(_snake_case , '''rb''') as f: UpperCAmelCase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ = max(self.config.chunksize // 32 , 16 << 10) UpperCAmelCase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: UpperCAmelCase_ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_snake_case) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ = batch.decode(self.config.encoding , errors=_snake_case).encode('''utf-8''') try: while True: try: UpperCAmelCase_ = paj.read_json( io.BytesIO(_snake_case) , read_options=paj.ReadOptions(block_size=_snake_case)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_snake_case , pa.ArrowInvalid) and "straddling" not in str(_snake_case) or block_size > len(_snake_case) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_snake_case)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: UpperCAmelCase_ = json.load(_snake_case) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(_snake_case)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_snake_case , _snake_case): # list is the only sequence type supported in JSON try: UpperCAmelCase_ = set().union(*[row.keys() for row in dataset]) UpperCAmelCase_ = {col: [row.get(_snake_case) for row in dataset] for col in keys} UpperCAmelCase_ = pa.Table.from_pydict(_snake_case) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(_snake_case)}: {e}""") raise ValueError(F"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(_snake_case) break else: logger.error(F"""Failed to read file '{file}' with error {type(_snake_case)}: {e}""") raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_snake_case) batch_idx += 1
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
def A (__A : dict ) -> set: """simple docstring""" UpperCAmelCase_ = set() # edges = list of graph's edges UpperCAmelCase_ = get_edges(__A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase_ , UpperCAmelCase_ = edges.pop() chosen_vertices.add(__A ) chosen_vertices.add(__A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__A ) return chosen_vertices def A (__A : dict ) -> set: """simple docstring""" UpperCAmelCase_ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool snake_case_ : Optional[int] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __snake_case ( a ): UpperCAmelCase__ : str = '''facebook/nllb-200-distilled-600M''' UpperCAmelCase__ : Optional[int] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) UpperCAmelCase__ : Tuple = '''translator''' UpperCAmelCase__ : Dict = AutoTokenizer UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM UpperCAmelCase__ : str = LANGUAGE_CODES UpperCAmelCase__ : Any = ['''text''', '''text''', '''text'''] UpperCAmelCase__ : Optional[int] = ['''text'''] def lowerCamelCase ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Any , _snake_case : Any): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""") if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""") UpperCAmelCase_ = self.lang_to_code[src_lang] UpperCAmelCase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _snake_case , return_tensors='''pt''' , src_lang=_snake_case , tgt_lang=_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : List[Any]): """simple docstring""" return self.model.generate(**_snake_case) def lowerCamelCase ( self : Dict , _snake_case : Tuple): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_snake_case)
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
def A (__A : int | float | str ) -> tuple[int, int]: """simple docstring""" try: UpperCAmelCase_ = float(__A ) except ValueError: raise ValueError('''Please enter a valid number''' ) UpperCAmelCase_ = decimal - int(__A ) if fractional_part == 0: return int(__A ), 1 else: UpperCAmelCase_ = len(str(__A ).split('''.''' )[1] ) UpperCAmelCase_ = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase_ = 10**number_of_frac_digits UpperCAmelCase_ , UpperCAmelCase_ = denominator, numerator while True: UpperCAmelCase_ = dividend % divisor if remainder == 0: break UpperCAmelCase_ , UpperCAmelCase_ = divisor, remainder UpperCAmelCase_ , UpperCAmelCase_ = numerator / divisor, denominator / divisor return int(__A ), int(__A ) if __name__ == "__main__": print(f"{decimal_to_fraction(2) = }") print(f"{decimal_to_fraction(89.0) = }") print(f"{decimal_to_fraction('67') = }") print(f"{decimal_to_fraction('45.0') = }") print(f"{decimal_to_fraction(1.5) = }") print(f"{decimal_to_fraction('6.25') = }") print(f"{decimal_to_fraction('78td') = }")
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
def A (__A : int = 600851475143 ) -> int: """simple docstring""" try: UpperCAmelCase_ = int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) UpperCAmelCase_ = 2 UpperCAmelCase_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase_ = i while n % i == 0: UpperCAmelCase_ = n // i i += 1 return int(__A ) if __name__ == "__main__": print(f"{solution() = }")
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Any = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) snake_case_ : List[Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : Dict = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : List[Any] = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : List[Any] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } snake_case_ : Any = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } snake_case_ : Tuple = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def A (__A : List[Any] ) -> Any: """simple docstring""" if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def A (__A : Any , __A : Union[str, Any] , __A : Optional[int] , __A : Tuple , __A : Tuple=False ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def A (__A : Optional[int] , __A : Optional[int] , __A : Union[str, Any] , __A : Dict , __A : str=None ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.weight"""] UpperCAmelCase_ = checkpoint[F"""{old_prefix}.norm.bias"""] UpperCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A (__A : str , __A : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = torch.load(__A , map_location='''cpu''' ) UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ = checkpoint['''label_emb.weight'''] UpperCAmelCase_ = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ = unet_config['''down_block_types'''] UpperCAmelCase_ = unet_config['''layers_per_block'''] UpperCAmelCase_ = unet_config['''attention_head_dim'''] UpperCAmelCase_ = unet_config['''block_out_channels'''] UpperCAmelCase_ = 1 UpperCAmelCase_ = channels_list[0] for i, layer_type in enumerate(__A ): UpperCAmelCase_ = channels_list[i] UpperCAmelCase_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__A ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A , has_skip=__A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__A ): UpperCAmelCase_ = F"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A , has_skip=__A ) UpperCAmelCase_ = F"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( __A , __A , __A , __A , __A ) current_layer += 1 if i != len(__A ) - 1: UpperCAmelCase_ = F"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase_ = F"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A ) current_layer += 1 UpperCAmelCase_ = current_channels # hardcoded the mid-block for now UpperCAmelCase_ = '''mid_block.resnets.0''' UpperCAmelCase_ = '''middle_block.0''' UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A ) UpperCAmelCase_ = '''mid_block.attentions.0''' UpperCAmelCase_ = '''middle_block.1''' UpperCAmelCase_ = convert_attention(__A , __A , __A , __A , __A ) UpperCAmelCase_ = '''mid_block.resnets.1''' UpperCAmelCase_ = '''middle_block.2''' UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A ) UpperCAmelCase_ = 0 UpperCAmelCase_ = unet_config['''up_block_types'''] for i, layer_type in enumerate(__A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A , has_skip=__A ) current_layer += 1 if i != len(__A ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.1""" UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = F"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A , has_skip=__A ) UpperCAmelCase_ = F"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = F"""output_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( __A , __A , __A , __A , __A ) current_layer += 1 if i != len(__A ) - 1: UpperCAmelCase_ = F"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = F"""output_blocks.{current_layer-1}.2""" UpperCAmelCase_ = convert_resnet(__A , __A , __A , __A ) UpperCAmelCase_ = checkpoint['''out.0.weight'''] UpperCAmelCase_ = checkpoint['''out.0.bias'''] UpperCAmelCase_ = checkpoint['''out.2.weight'''] UpperCAmelCase_ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") snake_case_ : Any = parser.parse_args() snake_case_ : Optional[int] = strabool(args.class_cond) snake_case_ : Optional[Any] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: snake_case_ : Tuple = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case_ : List[str] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: snake_case_ : str = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: snake_case_ : List[str] = None snake_case_ : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) snake_case_ : Dict = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: snake_case_ : Tuple = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: snake_case_ : Tuple = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case_ : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") snake_case_ : List[Any] = CMStochasticIterativeScheduler(**scheduler_config) snake_case_ : Any = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A (*__A : List[str] , __A : Optional[Union[Dict, Any]] = None , __A : str=True , __A : str=2 ) -> str: """simple docstring""" from .. import __version__ UpperCAmelCase_ = take_from UpperCAmelCase_ = () if not isinstance(args[0] , __A ): UpperCAmelCase_ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) UpperCAmelCase_ = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) UpperCAmelCase_ = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__A , __A ): values += (getattr(__A , __A ),) UpperCAmelCase_ = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: UpperCAmelCase_ = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: UpperCAmelCase_ = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: UpperCAmelCase_ = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase_ = call_frame.filename UpperCAmelCase_ = call_frame.lineno UpperCAmelCase_ = call_frame.function UpperCAmelCase_ , UpperCAmelCase_ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ : Optional[Any] = logging.get_logger(__name__) class __snake_case ( enum.Enum ): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Optional[int] = 1 @add_end_docstrings(a ) class __snake_case ( a ): UpperCAmelCase__ : Dict = '''generated''' def __init__( self : Optional[int] , *_snake_case : Optional[Any] , **_snake_case : Tuple): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) def lowerCamelCase ( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : Any=None , _snake_case : Optional[int]=None , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = {} if truncation is not None: UpperCAmelCase_ = truncation UpperCAmelCase_ = generate_kwargs UpperCAmelCase_ = {} if return_tensors is not None and return_type is None: UpperCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ = self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case) if len(_snake_case) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''') UpperCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase ( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : int): """simple docstring""" return True def lowerCamelCase ( self : Union[str, Any] , *_snake_case : Union[str, Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _snake_case): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''') UpperCAmelCase_ = ([prefix + arg for arg in args[0]],) UpperCAmelCase_ = True elif isinstance(args[0] , _snake_case): UpperCAmelCase_ = (prefix + args[0],) UpperCAmelCase_ = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""") UpperCAmelCase_ = self.tokenizer(*_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[Any] , *_snake_case : str , **_snake_case : Any): """simple docstring""" UpperCAmelCase_ = super().__call__(*_snake_case , **_snake_case) if ( isinstance(args[0] , _snake_case) and all(isinstance(_snake_case , _snake_case) for el in args[0]) and all(len(_snake_case) == 1 for res in result) ): return [res[0] for res in result] return result def lowerCamelCase ( self : Tuple , _snake_case : Any , _snake_case : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **_snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = self._parse_and_tokenize(_snake_case , truncation=_snake_case , **_snake_case) return inputs def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , **_snake_case : List[str]): """simple docstring""" if self.framework == "pt": UpperCAmelCase_ , UpperCAmelCase_ = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase_ , UpperCAmelCase_ = tf.shape(model_inputs['''input_ids''']).numpy() UpperCAmelCase_ = generate_kwargs.get('''min_length''' , self.model.config.min_length) UpperCAmelCase_ = generate_kwargs.get('''max_length''' , self.model.config.max_length) self.check_inputs(_snake_case , generate_kwargs['''min_length'''] , generate_kwargs['''max_length''']) UpperCAmelCase_ = self.model.generate(**_snake_case , **_snake_case) UpperCAmelCase_ = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase_ = output_ids.reshape(_snake_case , out_b // in_b , *output_ids.shape[1:]) elif self.framework == "tf": UpperCAmelCase_ = tf.reshape(_snake_case , (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Any=ReturnType.TEXT , _snake_case : Dict=False): """simple docstring""" UpperCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase_ = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase_ = { F"""{self.return_name}_text""": self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case , ) } records.append(_snake_case) return records @add_end_docstrings(a ) class __snake_case ( a ): UpperCAmelCase__ : Union[str, Any] = '''summary''' def __call__( self : Dict , *_snake_case : Dict , **_snake_case : Dict): """simple docstring""" return super().__call__(*_snake_case , **_snake_case) def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : int , _snake_case : int): """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""") if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""") @add_end_docstrings(a ) class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''translation''' def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : int , _snake_case : int): """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''') return True def lowerCamelCase ( self : Any , *_snake_case : Any , _snake_case : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , _snake_case : int=None , _snake_case : str=None): """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _snake_case): return self.tokenizer._build_translation_inputs( *_snake_case , return_tensors=self.framework , truncation=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case) else: return super()._parse_and_tokenize(*_snake_case , truncation=_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]=None , _snake_case : Dict=None , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = super()._sanitize_parameters(**_snake_case) if src_lang is not None: UpperCAmelCase_ = src_lang if tgt_lang is not None: UpperCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase_ = kwargs.get('''task''' , self.task) UpperCAmelCase_ = task.split('''_''') if task and len(_snake_case) == 4: # translation, XX, to YY UpperCAmelCase_ = items[1] UpperCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : Optional[Any]): """simple docstring""" return super().__call__(*_snake_case , **_snake_case)
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") snake_case_ : Optional[Any] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) snake_case_ : Tuple = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) snake_case_ : str = BeautifulSoup(res.text, "html.parser") snake_case_ : Union[str, Any] = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
from collections import deque class __snake_case : def __init__( self : Tuple , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = process_name # process name UpperCAmelCase_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase_ = arrival_time UpperCAmelCase_ = burst_time # remaining burst time UpperCAmelCase_ = 0 # total time of the process wait in ready queue UpperCAmelCase_ = 0 # time from arrival time to completion time class __snake_case : def __init__( self : Tuple , _snake_case : int , _snake_case : list[int] , _snake_case : deque[Process] , _snake_case : int , ): """simple docstring""" UpperCAmelCase_ = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase_ = time_slices # unfinished process is in this ready_queue UpperCAmelCase_ = queue # current time UpperCAmelCase_ = current_time # finished process is in this sequence queue UpperCAmelCase_ = deque() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def lowerCamelCase ( self : Optional[Any] , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): waiting_times.append(queue[i].waiting_time) return waiting_times def lowerCamelCase ( self : Dict , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def lowerCamelCase ( self : Optional[Any] , _snake_case : list[Process]): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): completion_times.append(queue[i].stop_time) return completion_times def lowerCamelCase ( self : Dict , _snake_case : deque[Process]): """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase ( self : Tuple , _snake_case : Process): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase ( self : List[str] , _snake_case : deque[Process]): """simple docstring""" UpperCAmelCase_ = deque() # sequence deque of finished process while len(_snake_case) != 0: UpperCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase_ = 0 # set the process's turnaround time because it is finished UpperCAmelCase_ = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase_ = self.current_time # add the process to queue that has finished queue finished.append(_snake_case) self.finish_queue.extend(_snake_case) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase ( self : Dict , _snake_case : deque[Process] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case)): UpperCAmelCase_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase_ = 0 # set the finish time UpperCAmelCase_ = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case) self.finish_queue.extend(_snake_case) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for i in range(self.number_of_queues - 1): UpperCAmelCase_ , UpperCAmelCase_ = self.round_robin( self.ready_queue , self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest snake_case_ : Union[str, Any] = Process("P1", 0, 53) snake_case_ : List[Any] = Process("P2", 0, 17) snake_case_ : Tuple = Process("P3", 0, 68) snake_case_ : Optional[Any] = Process("P4", 0, 24) snake_case_ : Dict = 3 snake_case_ : Optional[Any] = [17, 25] snake_case_ : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) snake_case_ : int = Process("P1", 0, 53) snake_case_ : Tuple = Process("P2", 0, 17) snake_case_ : Union[str, Any] = Process("P3", 0, 68) snake_case_ : Optional[Any] = Process("P4", 0, 24) snake_case_ : str = 3 snake_case_ : str = [17, 25] snake_case_ : List[str] = deque([Pa, Pa, Pa, Pa]) snake_case_ : int = MLFQ(number_of_queues, time_slices, queue, 0) snake_case_ : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case_ : List[str] = logging.get_logger(__name__) def A (__A : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__A ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class __snake_case ( a ): UpperCAmelCase__ : int = ['''pixel_values'''] def __init__( self : List[Any] , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Any , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(_snake_case , param_name='''crop_size''') UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = offset UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_snake_case , size['''shortest_edge'''] , default_to_square=_snake_case) elif "height" in size and "width" in size: UpperCAmelCase_ = (size['''height'''], size['''width''']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""") return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""") return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Any , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : bool = True , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" UpperCAmelCase_ = image.astype(np.floataa) if offset: UpperCAmelCase_ = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Union[str, Any] , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''') # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_snake_case) if do_resize: UpperCAmelCase_ = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) if do_center_crop: UpperCAmelCase_ = self.center_crop(_snake_case , size=_snake_case) if do_rescale: UpperCAmelCase_ = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case) if do_normalize: UpperCAmelCase_ = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) UpperCAmelCase_ = to_channel_dimension_format(_snake_case , _snake_case) return image def lowerCamelCase ( self : Any , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = offset if offset is not None else self.offset UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_snake_case , param_name='''crop_size''') if not valid_images(_snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') UpperCAmelCase_ = make_batched(_snake_case) UpperCAmelCase_ = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] UpperCAmelCase_ = {'''pixel_values''': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case)
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
from __future__ import annotations import time snake_case_ : Union[str, Any] = list[tuple[int, int]] snake_case_ : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __snake_case : def __init__( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = pos_x UpperCAmelCase_ = pos_y UpperCAmelCase_ = (pos_y, pos_x) UpperCAmelCase_ = goal_x UpperCAmelCase_ = goal_y UpperCAmelCase_ = parent class __snake_case : def __init__( self : List[Any] , _snake_case : tuple[int, int] , _snake_case : tuple[int, int]): """simple docstring""" UpperCAmelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , _snake_case) UpperCAmelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _snake_case) UpperCAmelCase_ = [self.start] UpperCAmelCase_ = False def lowerCamelCase ( self : List[Any]): """simple docstring""" while self.node_queue: UpperCAmelCase_ = self.node_queue.pop(0) if current_node.pos == self.target.pos: UpperCAmelCase_ = True return self.retrace_path(_snake_case) UpperCAmelCase_ = self.get_successors(_snake_case) for node in successors: self.node_queue.append(_snake_case) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self : Tuple , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = [] for action in delta: UpperCAmelCase_ = parent.pos_x + action[1] UpperCAmelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_snake_case) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_snake_case , _snake_case , self.target.pos_y , self.target.pos_x , _snake_case)) return successors def lowerCamelCase ( self : Union[str, Any] , _snake_case : Node | None): """simple docstring""" UpperCAmelCase_ = node UpperCAmelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) UpperCAmelCase_ = current_node.parent path.reverse() return path class __snake_case : def __init__( self : Dict , _snake_case : Optional[int] , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = BreadthFirstSearch(_snake_case , _snake_case) UpperCAmelCase_ = BreadthFirstSearch(_snake_case , _snake_case) UpperCAmelCase_ = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase_ = self.fwd_bfs.node_queue.pop(0) UpperCAmelCase_ = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase_ = True return self.retrace_bidirectional_path( _snake_case , _snake_case) UpperCAmelCase_ = current_bwd_node UpperCAmelCase_ = current_fwd_node UpperCAmelCase_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_snake_case), self.bwd_bfs: self.bwd_bfs.get_successors(_snake_case), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_snake_case) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase ( self : int , _snake_case : Node , _snake_case : Node): """simple docstring""" UpperCAmelCase_ = self.fwd_bfs.retrace_path(_snake_case) UpperCAmelCase_ = self.bwd_bfs.retrace_path(_snake_case) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case_ : Dict = (0, 0) snake_case_ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case_ : Any = time.time() snake_case_ : Dict = BreadthFirstSearch(init, goal) snake_case_ : Tuple = bfs.search() snake_case_ : Optional[int] = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) snake_case_ : Any = time.time() snake_case_ : List[Any] = BidirectionalBreadthFirstSearch(init, goal) snake_case_ : Optional[int] = bd_bfs.search() snake_case_ : Union[str, Any] = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A () -> Optional[int]: """simple docstring""" UpperCAmelCase_ = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__A , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__A , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__A ) return parser.parse_args() def A () -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = parse_args() # Import training_script as a module. UpperCAmelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase_ = script_fpath.stem UpperCAmelCase_ = importlib.import_module(__A ) # Patch sys.argv UpperCAmelCase_ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor snake_case_ : int = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Any , *_snake_case : Union[str, Any] , **_snake_case : List[str]): """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
def A (__A : int = 10**12 ) -> int: """simple docstring""" UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"{solution() = }")
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
from typing import Union import fire import torch from tqdm import tqdm def A (__A : str , __A : str = "cpu" , __A : Union[str, None] = None ) -> None: """simple docstring""" UpperCAmelCase_ = torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase_ = v.half() if save_path is None: # overwrite src_path UpperCAmelCase_ = src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
def A (__A : str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__A ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case_ : Dict = None snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} snake_case_ : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } snake_case_ : int = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } snake_case_ : List[Any] = "▁" class __snake_case ( a ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BigBirdTokenizer UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[int] = [] def __init__( self : List[Any] , _snake_case : List[Any]=None , _snake_case : str=None , _snake_case : List[str]="<unk>" , _snake_case : Tuple="<s>" , _snake_case : Union[str, Any]="</s>" , _snake_case : List[Any]="<pad>" , _snake_case : Optional[Any]="[SEP]" , _snake_case : Tuple="[MASK]" , _snake_case : Tuple="[CLS]" , **_snake_case : Optional[Any] , ): """simple docstring""" UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else bos_token UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else eos_token UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else unk_token UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else pad_token UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else cls_token UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case) if isinstance(_snake_case , _snake_case) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_snake_case)) + [1] return [1] + ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1] def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case): copyfile(self.vocab_file , _snake_case) return (out_vocab_file,)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=13 , _snake_case : Dict=32 , _snake_case : List[Any]=2 , _snake_case : List[Any]=3 , _snake_case : Tuple=16 , _snake_case : Union[str, Any]=[1, 2, 1] , _snake_case : Optional[Any]=[2, 2, 4] , _snake_case : Any=2 , _snake_case : Optional[Any]=2.0 , _snake_case : List[Any]=True , _snake_case : Any=0.0 , _snake_case : str=0.0 , _snake_case : Optional[Any]=0.1 , _snake_case : int="gelu" , _snake_case : Any=False , _snake_case : str=True , _snake_case : Optional[int]=0.0_2 , _snake_case : str=1e-5 , _snake_case : Tuple=True , _snake_case : Tuple=None , _snake_case : Union[str, Any]=True , _snake_case : str=10 , _snake_case : Union[str, Any]=8 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = patch_norm UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = is_training UpperCAmelCase_ = scope UpperCAmelCase_ = use_labels UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = encoder_stride def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Dict): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase ( self : int , _snake_case : int , _snake_case : Dict , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = SwinvaModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) UpperCAmelCase_ = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def lowerCamelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = SwinvaForMaskedImageModeling(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = SwinvaForMaskedImageModeling(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def lowerCamelCase ( self : Any , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = SwinvaForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : str = False def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = SwinvaModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , embed_dim=37) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear)) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.attentions UpperCAmelCase_ = len(self.model_tester.depths) self.assertEqual(len(_snake_case) , _snake_case) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = config.window_size**2 UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.attentions self.assertEqual(len(_snake_case) , _snake_case) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase_ = len(_snake_case) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) if hasattr(self.model_tester , '''num_hidden_states_types'''): UpperCAmelCase_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ = 2 self.assertEqual(out_len + added_hidden_states , len(_snake_case)) UpperCAmelCase_ = outputs.attentions self.assertEqual(len(_snake_case) , _snake_case) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : str): """simple docstring""" UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(_snake_case) , _snake_case) # Swinv2 has a different seq_length UpperCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = reshaped_hidden_states[0].shape UpperCAmelCase_ = ( reshaped_hidden_states[0].view(_snake_case , _snake_case , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = 3 UpperCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def lowerCamelCase ( self : int): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwinvaModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(_snake_case) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_snake_case) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[Any]): """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''') if is_vision_available() else None ) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to( _snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Tuple = OpenAIGPTTokenizer UpperCAmelCase__ : Any = OpenAIGPTTokenizerFast UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = False def lowerCamelCase ( self : str): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(_snake_case)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(_snake_case)) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any]): """simple docstring""" return "lower newer", "lower newer" def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , _snake_case) def lowerCamelCase ( self : int , _snake_case : List[Any]=15): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case) # Simple input UpperCAmelCase_ = '''This is a simple input''' UpperCAmelCase_ = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''') # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''') # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''') # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''') # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) def lowerCamelCase ( self : Tuple): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class __snake_case ( a ): pass
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A (__A : str ) -> List[Any]: """simple docstring""" if "img_encoder.pos_embed" in name: UpperCAmelCase_ = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: UpperCAmelCase_ = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: UpperCAmelCase_ = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: UpperCAmelCase_ = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: UpperCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: UpperCAmelCase_ = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCAmelCase_ = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: UpperCAmelCase_ = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: UpperCAmelCase_ = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: UpperCAmelCase_ = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: UpperCAmelCase_ = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: UpperCAmelCase_ = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: UpperCAmelCase_ = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: UpperCAmelCase_ = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: UpperCAmelCase_ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: UpperCAmelCase_ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: UpperCAmelCase_ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: UpperCAmelCase_ = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: UpperCAmelCase_ = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: UpperCAmelCase_ = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: UpperCAmelCase_ = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: UpperCAmelCase_ = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: UpperCAmelCase_ = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: UpperCAmelCase_ = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def A (__A : Any , __A : List[str] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__A ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ , UpperCAmelCase_ = int(key_split[2] ), int(key_split[4] ) UpperCAmelCase_ = config.vision_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = rename_key(__A ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCAmelCase_ = val.squeeze_() else: UpperCAmelCase_ = val return orig_state_dict def A () -> Any: """simple docstring""" UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A (__A : Union[str, Any] , __A : Optional[Any] , __A : List[str]="groupvit-gcc-yfcc" , __A : Tuple=False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = GroupViTConfig() UpperCAmelCase_ = GroupViTModel(__A ).eval() UpperCAmelCase_ = torch.load(__A , map_location='''cpu''' )['''model'''] UpperCAmelCase_ = convert_state_dict(__A , __A ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A ) == 0) # verify result UpperCAmelCase_ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=__A , padding=__A , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase_ = model(**__A ) if model_name == "groupvit-gcc-yfcc": UpperCAmelCase_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": UpperCAmelCase_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , __A , atol=1E-3 ) processor.save_pretrained(__A ) model.save_pretrained(__A ) print('''Successfully saved processor and model to''' , __A ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(__A , organization='''nielsr''' ) model.push_to_hub(__A , organization='''nielsr''' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) snake_case_ : Optional[int] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL snake_case_ : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A (__A : List[Any] , __A : tuple , __A : Path , __A : Optional[Any] , __A : str , __A : List[str] , __A : Tuple , __A : Tuple=False , ) -> Optional[int]: """simple docstring""" output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A (__A : str , __A : str , __A : int , __A : bool = False ) -> Any: """simple docstring""" UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = Path(__A ) # VAE DECODER UpperCAmelCase_ = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) UpperCAmelCase_ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") snake_case_ : Any = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
from math import pow, sqrt def A (*__A : float ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) > 0 and all(value > 0.0 for value in values ) return result def A (__A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def A (__A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A (__A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A (__A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A (__A : float , __A : float , __A : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__A , __A , __A ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def A (__A : List[str] ) -> Any: """simple docstring""" UpperCAmelCase_ = 384 UpperCAmelCase_ = 7 if "tiny" in model_name: UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 6, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif "small" in model_name: UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif "base" in model_name: UpperCAmelCase_ = 128 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (4, 8, 16, 32) UpperCAmelCase_ = 12 UpperCAmelCase_ = 512 elif "large" in model_name: UpperCAmelCase_ = 192 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (6, 12, 24, 48) UpperCAmelCase_ = 12 UpperCAmelCase_ = 768 # set label information UpperCAmelCase_ = 150 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''ade20k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = SwinConfig( embed_dim=__A , depths=__A , num_heads=__A , window_size=__A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase_ = UperNetConfig( backbone_config=__A , auxiliary_in_channels=__A , num_labels=__A , idalabel=__A , labelaid=__A , ) return config def A (__A : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def A (__A : Optional[int] , __A : Any , __A : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = dct.pop(__A ) UpperCAmelCase_ = val def A (__A : str , __A : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def A (__A : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = x.shape UpperCAmelCase_ = x.reshape(__A , 4 , in_channel // 4 ) UpperCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__A , __A ) return x def A (__A : str ) -> Tuple: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = x.shape UpperCAmelCase_ = x.reshape(__A , in_channel // 4 , 4 ) UpperCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__A , __A ) return x def A (__A : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ = x.shape[0] UpperCAmelCase_ = x.reshape(4 , in_channel // 4 ) UpperCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__A ) return x def A (__A : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = x.shape[0] UpperCAmelCase_ = x.reshape(in_channel // 4 , 4 ) UpperCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__A ) return x def A (__A : Any , __A : Dict , __A : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } UpperCAmelCase_ = model_name_to_url[model_name] UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' , file_name=__A )[ '''state_dict''' ] for name, param in state_dict.items(): print(__A , param.shape ) UpperCAmelCase_ = get_upernet_config(__A ) UpperCAmelCase_ = UperNetForSemanticSegmentation(__A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(__A ) if "bn" in key: UpperCAmelCase_ = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ = val # rename keys UpperCAmelCase_ = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase_ = reverse_correct_unfold_reduction_order(__A ) if "norm" in key: UpperCAmelCase_ = reverse_correct_unfold_norm_order(__A ) model.load_state_dict(__A ) # verify on image UpperCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ).convert('''RGB''' ) UpperCAmelCase_ = SegformerImageProcessor() UpperCAmelCase_ = processor(__A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ = model(__A ) UpperCAmelCase_ = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase_ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase_ = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase_ = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase_ = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case_ : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import math def A (__A : list , __A : int = 0 , __A : int = 0 ) -> list: """simple docstring""" UpperCAmelCase_ = end or len(__A ) for i in range(__A , __A ): UpperCAmelCase_ = i UpperCAmelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ = temp_index_value return array def A (__A : list , __A : int , __A : int ) -> None: # Max Heap """simple docstring""" UpperCAmelCase_ = index UpperCAmelCase_ = 2 * index + 1 # Left Node UpperCAmelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index] heapify(__A , __A , __A ) def A (__A : list ) -> list: """simple docstring""" UpperCAmelCase_ = len(__A ) for i in range(n // 2 , -1 , -1 ): heapify(__A , __A , __A ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i] heapify(__A , 0 , __A ) return array def A (__A : list , __A : int , __A : int , __A : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A (__A : list , __A : int , __A : int , __A : int ) -> int: """simple docstring""" UpperCAmelCase_ = low UpperCAmelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i] i += 1 def A (__A : list ) -> list: """simple docstring""" if len(__A ) == 0: return array UpperCAmelCase_ = 2 * math.ceil(math.loga(len(__A ) ) ) UpperCAmelCase_ = 16 return intro_sort(__A , 0 , len(__A ) , __A , __A ) def A (__A : list , __A : int , __A : int , __A : int , __A : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(__A ) max_depth -= 1 UpperCAmelCase_ = median_of_a(__A , __A , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase_ = partition(__A , __A , __A , __A ) intro_sort(__A , __A , __A , __A , __A ) UpperCAmelCase_ = p return insertion_sort(__A , __A , __A ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = input("Enter numbers separated by a comma : ").strip() snake_case_ : Any = [float(item) for item in user_input.split(",")] print(sort(unsorted))
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( a , a ): UpperCAmelCase__ : Any = '''resnet''' UpperCAmelCase__ : List[Any] = ['''basic''', '''bottleneck'''] def __init__( self : Optional[Any] , _snake_case : Tuple=3 , _snake_case : Tuple=64 , _snake_case : Optional[Any]=[256, 512, 1024, 2048] , _snake_case : List[Any]=[3, 4, 6, 3] , _snake_case : List[Any]="bottleneck" , _snake_case : int="relu" , _snake_case : int=False , _snake_case : str=None , _snake_case : Any=None , **_snake_case : int , ): """simple docstring""" super().__init__(**_snake_case) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types)}""") UpperCAmelCase_ = num_channels UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = layer_type UpperCAmelCase_ = hidden_act UpperCAmelCase_ = downsample_in_first_stage UpperCAmelCase_ = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_snake_case) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names) class __snake_case ( a ): UpperCAmelCase__ : str = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowerCamelCase ( self : int): """simple docstring""" return 1e-3
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch snake_case_ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( a , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class __snake_case ( a ): def lowerCamelCase ( self : Any , _snake_case : GenericTensor): """simple docstring""" if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case) else: raise ValueError('''Unsupported framework''') return masked_index def lowerCamelCase ( self : Optional[Any] , _snake_case : GenericTensor): """simple docstring""" UpperCAmelCase_ = self.get_masked_index(_snake_case) UpperCAmelCase_ = np.prod(masked_index.shape) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase ( self : List[Any] , _snake_case : GenericTensor): """simple docstring""" if isinstance(_snake_case , _snake_case): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : str , _snake_case : Union[str, Any]=None , **_snake_case : Dict): """simple docstring""" if return_tensors is None: UpperCAmelCase_ = self.framework UpperCAmelCase_ = self.tokenizer(_snake_case , return_tensors=_snake_case) self.ensure_exactly_one_mask_token(_snake_case) return model_inputs def lowerCamelCase ( self : Tuple , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) UpperCAmelCase_ = model_inputs['''input_ids'''] return model_outputs def lowerCamelCase ( self : Any , _snake_case : int , _snake_case : Union[str, Any]=5 , _snake_case : Optional[int]=None): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ = target_ids.shape[0] UpperCAmelCase_ = model_outputs['''input_ids'''][0] UpperCAmelCase_ = model_outputs['''logits'''] if self.framework == "tf": UpperCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] UpperCAmelCase_ = outputs.numpy() UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = stable_softmax(_snake_case , axis=-1) if target_ids is not None: UpperCAmelCase_ = tf.gather_nd(tf.squeeze(_snake_case , 0) , target_ids.reshape(-1 , 1)) UpperCAmelCase_ = tf.expand_dims(_snake_case , 0) UpperCAmelCase_ = tf.math.top_k(_snake_case , k=_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ = outputs[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=-1) if target_ids is not None: UpperCAmelCase_ = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) UpperCAmelCase_ = [] UpperCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): UpperCAmelCase_ = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place UpperCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ = target_ids[p].tolist() UpperCAmelCase_ = p # Filter padding out: UpperCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence} row.append(_snake_case) result.append(_snake_case) if single_mask: return result[0] return result def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Optional[Any]=None): """simple docstring""" if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = [targets] try: UpperCAmelCase_ = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ = {} UpperCAmelCase_ = [] for target in targets: UpperCAmelCase_ = vocab.get(_snake_case , _snake_case) if id_ is None: UpperCAmelCase_ = self.tokenizer( _snake_case , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , max_length=1 , truncation=_snake_case , )['''input_ids'''] if len(_snake_case) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''') continue UpperCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""") target_ids.append(id_) UpperCAmelCase_ = list(set(_snake_case)) if len(_snake_case) == 0: raise ValueError('''At least one target must be provided when passed.''') UpperCAmelCase_ = np.array(_snake_case) return target_ids def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]=None , _snake_case : List[Any]=None): """simple docstring""" UpperCAmelCase_ = {} if targets is not None: UpperCAmelCase_ = self.get_target_ids(_snake_case , _snake_case) UpperCAmelCase_ = target_ids if top_k is not None: UpperCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''') return {}, {}, postprocess_params def __call__( self : str , _snake_case : Dict , *_snake_case : Tuple , **_snake_case : str): """simple docstring""" UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) if isinstance(_snake_case , _snake_case) and len(_snake_case) == 1: return outputs[0] return outputs
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : str): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_snake_case , ) assert hasattr(self , '''env''') def lowerCamelCase ( self : List[Any] , _snake_case : Union[str, Any]=1): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def lowerCamelCase ( self : int , _snake_case : Dict): """simple docstring""" TrainingJobAnalytics(_snake_case).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _snake_case)
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[int] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : List[Any] = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''t5''' UpperCAmelCase__ : Optional[int] = ['''past_key_values'''] UpperCAmelCase__ : List[str] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Tuple , _snake_case : Optional[Any]=32128 , _snake_case : int=512 , _snake_case : Union[str, Any]=64 , _snake_case : List[str]=2048 , _snake_case : Tuple=6 , _snake_case : List[str]=None , _snake_case : List[Any]=8 , _snake_case : List[Any]=32 , _snake_case : Dict=128 , _snake_case : Tuple=0.1 , _snake_case : str=1e-6 , _snake_case : List[str]=1.0 , _snake_case : List[Any]="relu" , _snake_case : str=True , _snake_case : Optional[Any]=True , _snake_case : str=0 , _snake_case : int=1 , **_snake_case : int , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_heads UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = self.feed_forward_proj.split('''-''') UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == '''gated''' if len(_snake_case) > 1 and act_info[0] != "gated" or len(_snake_case) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = '''gelu_new''' super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , **_snake_case , ) class __snake_case ( a ): @property def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: UpperCAmelCase_ = '''past_encoder_sequence + sequence''' UpperCAmelCase_ = {0: '''batch'''} UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''') return common_inputs @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return 13
7
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = FlaxAutoencoderKL @property def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = jax.random.PRNGKey(0) UpperCAmelCase_ = jax.random.uniform(_snake_case , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict
7
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A (__A : bool = True , *__A : Optional[Any] , **__A : Any ) -> Union[str, Any]: """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCAmelCase_ = False if main_process_only: UpperCAmelCase_ = PartialState().local_process_index == 0 return _tqdm(*__A , **__A , disable=__A )
7
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib snake_case_ : List[Any] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } snake_case_ : Dict = logging.WARNING def A () -> Optional[int]: """simple docstring""" UpperCAmelCase_ = os.getenv('''DATASETS_VERBOSITY''' , __A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def A () -> str: """simple docstring""" return __name__.split('''.''' )[0] def A () -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def A () -> None: """simple docstring""" UpperCAmelCase_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def A () -> None: """simple docstring""" UpperCAmelCase_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def A (__A : Optional[str] = None ) -> logging.Logger: """simple docstring""" if name is None: UpperCAmelCase_ = _get_library_name() return logging.getLogger(__A ) def A () -> int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def A (__A : int ) -> None: """simple docstring""" _get_library_root_logger().setLevel(__A ) def A () -> Dict: """simple docstring""" return set_verbosity(__A ) def A () -> Optional[int]: """simple docstring""" return set_verbosity(__A ) def A () -> Optional[Any]: """simple docstring""" return set_verbosity(__A ) def A () -> Optional[int]: """simple docstring""" return set_verbosity(__A ) def A () -> None: """simple docstring""" UpperCAmelCase_ = False def A () -> None: """simple docstring""" UpperCAmelCase_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __snake_case : def __init__( self : str , *_snake_case : int , **_snake_case : List[str]): # pylint: disable=unused-argument """simple docstring""" UpperCAmelCase_ = args[0] if args else None def __iter__( self : Optional[Any]): """simple docstring""" return iter(self._iterator) def __getattr__( self : Any , _snake_case : List[Any]): """simple docstring""" def empty_fn(*_snake_case : Any , **_snake_case : Tuple): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict): """simple docstring""" return self def __exit__( self : List[Any] , _snake_case : Dict , _snake_case : int , _snake_case : List[Any]): """simple docstring""" return snake_case_ : Optional[int] = True class __snake_case : def __call__( self : int , *_snake_case : str , _snake_case : Tuple=False , **_snake_case : Union[str, Any]): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*_snake_case , **_snake_case) else: return EmptyTqdm(*_snake_case , **_snake_case) def lowerCamelCase ( self : Tuple , *_snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() snake_case_ : Tuple = _tqdm_cls() def A () -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A () -> int: """simple docstring""" global _tqdm_active UpperCAmelCase_ = True def A () -> Optional[int]: """simple docstring""" global _tqdm_active UpperCAmelCase_ = False
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
def A (__A : list ) -> float: """simple docstring""" UpperCAmelCase_ = 0 while len(__A ) > 1: UpperCAmelCase_ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCAmelCase_ = files.index(min(__A ) ) temp += files[min_index] files.pop(__A ) files.append(__A ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
from maths.prime_factors import prime_factors def A (__A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): UpperCAmelCase_ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__A ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__A ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
7
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : int = '''BridgeTowerImageProcessor''' UpperCAmelCase__ : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : str): """simple docstring""" super().__init__(_snake_case , _snake_case) def __call__( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel_values + pixel_mask UpperCAmelCase_ = self.image_processor( _snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case) encoding.update(_snake_case) return encoding def lowerCamelCase ( self : List[str] , *_snake_case : List[Any] , **_snake_case : Optional[int]): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : List[Any] , **_snake_case : str): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : int = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Dict=3 , _snake_case : Dict=32 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=10 , _snake_case : Tuple=[10, 20, 30, 40] , _snake_case : Dict=[1, 1, 2, 1] , _snake_case : List[Any]=True , _snake_case : Dict=True , _snake_case : Union[str, Any]="relu" , _snake_case : Tuple=3 , _snake_case : Union[str, Any]=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embeddings_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope UpperCAmelCase_ = len(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = self.get_config() return config, pixel_values def lowerCamelCase ( self : List[Any]): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModel(config=_snake_case) UpperCAmelCase_ = model(_snake_case) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = FlaxRegNetForImageClassification(config=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = FlaxRegNetModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[str]): """simple docstring""" return def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(_snake_case : List[str] , _snake_case : Dict , _snake_case : List[str]): UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_snake_case) , expected_num_stages + 1) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case) UpperCAmelCase_ = model_class(_snake_case) @jax.jit def model_jitted(_snake_case : str , **_snake_case : Union[str, Any]): return model(pixel_values=_snake_case , **_snake_case) with self.subTest('''JIT Enabled'''): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**_snake_case).to_tuple() self.assertEqual(len(_snake_case) , len(_snake_case)) for jitted_output, output in zip(_snake_case , _snake_case): self.assertEqual(jitted_output.shape , output.shape) def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Dict): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''np''') UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
7
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __snake_case : def __init__( self : int , _snake_case : str , _snake_case : Optional[int]=13 , _snake_case : List[Any]=7 , _snake_case : Optional[int]=True , _snake_case : Optional[int]=True , _snake_case : List[Any]=True , _snake_case : Optional[Any]=True , _snake_case : Any=99 , _snake_case : Dict=64 , _snake_case : Optional[Any]=32 , _snake_case : str=5 , _snake_case : str=4 , _snake_case : Union[str, Any]=37 , _snake_case : Optional[int]="gelu" , _snake_case : Dict=0.1 , _snake_case : List[str]=0.1 , _snake_case : Dict=512 , _snake_case : Tuple=16 , _snake_case : List[str]=2 , _snake_case : str=0.0_2 , _snake_case : List[Any]=3 , _snake_case : Optional[Any]=4 , _snake_case : str=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = embedding_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_token_type_ids: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : Tuple): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : int , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = MegatronBertModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case , token_type_ids=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def lowerCamelCase ( self : Optional[int] , _snake_case : int , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Any , _snake_case : int , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = MegatronBertForMaskedLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : str , _snake_case : List[Any] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : int , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = MegatronBertForCausalLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int , _snake_case : List[Any] , _snake_case : str , _snake_case : Tuple , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = MegatronBertForNextSentencePrediction(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def lowerCamelCase ( self : Dict , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Dict , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = MegatronBertForPreTraining(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , next_sentence_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = MegatronBertForQuestionAnswering(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : int , _snake_case : Tuple , _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MegatronBertForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MegatronBertForTokenClassification(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.num_choices UpperCAmelCase_ = MegatronBertForMultipleChoice(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] = True # test_resize_embeddings = False UpperCAmelCase__ : str = False def lowerCamelCase ( self : Optional[int] , _snake_case : Dict , _snake_case : int , _snake_case : List[str]=False): """simple docstring""" UpperCAmelCase_ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if return_labels: if model_class in get_values(_snake_case): UpperCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case) UpperCAmelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case) return inputs_dict def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = MegatronBertModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=37) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_snake_case) def A (__A : int ) -> Any: """simple docstring""" return torch.tensor( __A , dtype=torch.long , device=__A , ) snake_case_ : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''') def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: UpperCAmelCase_ = os.path.join(os.environ['''MYDIR'''] , _snake_case) UpperCAmelCase_ = MegatronBertModel.from_pretrained(_snake_case) model.to(_snake_case) model.half() UpperCAmelCase_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]]) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)[0] UpperCAmelCase_ = torch.Size((1, 9, 1024)) self.assertEqual(output.shape , _snake_case) UpperCAmelCase_ = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): UpperCAmelCase_ = output[0, ii, jj] UpperCAmelCase_ = expected[3 * ii + jj] UpperCAmelCase_ = '''ii={} jj={} a={} b={}'''.format(_snake_case , _snake_case , _snake_case , _snake_case) self.assertTrue(math.isclose(_snake_case , _snake_case , rel_tol=_snake_case , abs_tol=_snake_case) , msg=_snake_case)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __snake_case : def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=13 , _snake_case : Dict=7 , _snake_case : Union[str, Any]=True , _snake_case : int=True , _snake_case : Optional[Any]=True , _snake_case : Optional[Any]=True , _snake_case : str=99 , _snake_case : Tuple=64 , _snake_case : str=5 , _snake_case : Any=4 , _snake_case : str=37 , _snake_case : Dict="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Any=0.1 , _snake_case : Tuple=512 , _snake_case : Union[str, Any]=16 , _snake_case : Optional[Any]=2 , _snake_case : Any=0.0_2 , _snake_case : Any=3 , _snake_case : Dict=4 , _snake_case : Any=None , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_token_type_ids UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = num_choices UpperCAmelCase_ = scope UpperCAmelCase_ = vocab_size - 1 def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase ( self : Dict): """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = True return config, input_ids, input_mask, token_labels def lowerCamelCase ( self : Union[str, Any] , _snake_case : str , _snake_case : Tuple , _snake_case : int): """simple docstring""" UpperCAmelCase_ = GPTNeoXModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case) UpperCAmelCase_ = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : str , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXModel(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase ( self : str , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = GPTNeoXForCausalLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase ( self : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForQuestionAnswering(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase ( self : Dict , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = GPTNeoXForTokenClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase ( self : str , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = True UpperCAmelCase_ = GPTNeoXForCausalLM(config=_snake_case) model.to(_snake_case) model.eval() # first forward pass UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case) UpperCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1) UpperCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1) UpperCAmelCase_ = model(_snake_case , attention_mask=_snake_case , output_hidden_states=_snake_case) UpperCAmelCase_ = output_from_no_past['''hidden_states'''][0] UpperCAmelCase_ = model( _snake_case , attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['''hidden_states'''][0] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3)) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( a , a , a , unittest.TestCase ): UpperCAmelCase__ : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = False def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = GPTNeoXModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , hidden_size=64 , num_attention_heads=8) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case) @unittest.skip(reason='''Feed forward chunking is not implemented''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)]) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = ids_tensor([1, 10] , config.vocab_size) UpperCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = GPTNeoXModel(_snake_case) original_model.to(_snake_case) original_model.eval() UpperCAmelCase_ = original_model(_snake_case).last_hidden_state UpperCAmelCase_ = original_model(_snake_case).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ = {'''type''': scaling_type, '''factor''': 1_0.0} UpperCAmelCase_ = GPTNeoXModel(_snake_case) scaled_model.to(_snake_case) scaled_model.eval() UpperCAmelCase_ = scaled_model(_snake_case).last_hidden_state UpperCAmelCase_ = scaled_model(_snake_case).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5)) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5)) @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''') for checkpointing in [True, False]: UpperCAmelCase_ = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''') if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_snake_case) UpperCAmelCase_ = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(_snake_case) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase_ = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' UpperCAmelCase_ = model.generate(**_snake_case , do_sample=_snake_case , max_new_tokens=20) UpperCAmelCase_ = tokenizer.batch_decode(_snake_case)[0] self.assertEqual(_snake_case , _snake_case)
7
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : str = (('''num_inference_steps''', 2_5),) def lowerCamelCase ( self : Dict , **_snake_case : Dict): """simple docstring""" UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_snake_case) return config def lowerCamelCase ( self : Dict , _snake_case : int=0 , **_snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) new_scheduler.set_timesteps(_snake_case) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any]=0 , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _snake_case) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_snake_case) scheduler.set_timesteps(_snake_case) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case) UpperCAmelCase_ = scheduler_class.from_pretrained(_snake_case) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample UpperCAmelCase_ = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Dict , _snake_case : int=None , **_snake_case : Optional[Any]): """simple docstring""" if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_snake_case) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample return sample def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_snake_case) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_5_7_4) < 1e-3 def lowerCamelCase ( self : int): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(thresholding=_snake_case) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='''dpmsolver++''' , solver_order=_snake_case , solver_type=_snake_case , ) def lowerCamelCase ( self : Dict): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) UpperCAmelCase_ = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case).any(), "Samples have nan numbers" def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case) self.check_over_configs(lower_order_final=_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def lowerCamelCase ( self : int): """simple docstring""" self.check_over_configs(variance_type=_snake_case) self.check_over_configs(variance_type='''learned_range''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_7_9_1) < 1e-3 def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.2_2_4_8) < 1e-3 def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.1_4_5_3) < 1e-3 def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_snake_case) UpperCAmelCase_ = torch.mean(torch.abs(_snake_case)) assert abs(result_mean.item() - 0.0_6_4_9) < 1e-3 def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_snake_case) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_snake_case , _snake_case) UpperCAmelCase_ = scheduler.step(_snake_case , _snake_case , _snake_case).prev_sample assert sample.dtype == torch.floataa
7
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __snake_case ( a ): UpperCAmelCase__ : Optional[int] = '''M-CLIP''' def __init__( self : Any , _snake_case : List[Any]=1024 , _snake_case : str=768 , **_snake_case : str): """simple docstring""" UpperCAmelCase_ = transformerDimSize UpperCAmelCase_ = imageDimSize super().__init__(**_snake_case) class __snake_case ( a ): UpperCAmelCase__ : Any = MCLIPConfig def __init__( self : List[str] , _snake_case : str , *_snake_case : Union[str, Any] , **_snake_case : Union[str, Any]): """simple docstring""" super().__init__(_snake_case , *_snake_case , **_snake_case) UpperCAmelCase_ = XLMRobertaModel(_snake_case) UpperCAmelCase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def lowerCamelCase ( self : Optional[Any] , _snake_case : Tuple , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.transformer(input_ids=_snake_case , attention_mask=_snake_case)[0] UpperCAmelCase_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(_snake_case), embs
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A (__A : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase_ = [144, 192, 240] UpperCAmelCase_ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase_ = [96, 120, 144] UpperCAmelCase_ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase_ = [64, 80, 96] UpperCAmelCase_ = [16, 16, 24, 48, 64, 80, 320] UpperCAmelCase_ = 0.05 UpperCAmelCase_ = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 21 UpperCAmelCase_ = '''pascal-voc-id2label.json''' else: UpperCAmelCase_ = 1000 UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A (__A : Any , __A : List[Any]=False ) -> Union[str, Any]: """simple docstring""" for i in range(1 , 6 ): if F"""layer_{i}.""" in name: UpperCAmelCase_ = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: UpperCAmelCase_ = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: UpperCAmelCase_ = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: UpperCAmelCase_ = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: UpperCAmelCase_ = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: UpperCAmelCase_ = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: UpperCAmelCase_ = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: UpperCAmelCase_ = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: UpperCAmelCase_ = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: UpperCAmelCase_ = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: UpperCAmelCase_ = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: UpperCAmelCase_ = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: UpperCAmelCase_ = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: UpperCAmelCase_ = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: UpperCAmelCase_ = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: UpperCAmelCase_ = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: UpperCAmelCase_ = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: UpperCAmelCase_ = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: UpperCAmelCase_ = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase_ = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: UpperCAmelCase_ = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: UpperCAmelCase_ = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: UpperCAmelCase_ = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: UpperCAmelCase_ = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: UpperCAmelCase_ = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase_ = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: UpperCAmelCase_ = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase_ = '''mobilevit.''' + name return name def A (__A : Optional[int] , __A : Optional[int] , __A : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" if base_model: UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = '''mobilevit.''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__A ) if key[:8] == "encoder.": UpperCAmelCase_ = key[8:] if "qkv" in key: UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ = int(key_split[0][6:] ) - 1 UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) UpperCAmelCase_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase_ = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = val return orig_state_dict def A () -> int: """simple docstring""" UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A (__A : Any , __A : List[str] , __A : Optional[Any] , __A : int=False ) -> str: """simple docstring""" UpperCAmelCase_ = get_mobilevit_config(__A ) # load original state_dict UpperCAmelCase_ = torch.load(__A , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): UpperCAmelCase_ = MobileViTForSemanticSegmentation(__A ).eval() else: UpperCAmelCase_ = MobileViTForImageClassification(__A ).eval() UpperCAmelCase_ = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = model(**__A ) UpperCAmelCase_ = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase_ = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase_ = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase_ = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCAmelCase_ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase_ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase_ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , __A , atol=1E-4 ) Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: UpperCAmelCase_ = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) UpperCAmelCase_ = model_mapping[mobilevit_name] image_processor.push_to_hub(__A , organization='''apple''' ) model.push_to_hub(__A , organization='''apple''' ) if __name__ == "__main__": snake_case_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs'," " 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case_ : Union[str, Any] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
7
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets snake_case_ : Dict = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" snake_case_ : List[str] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" snake_case_ : List[Any] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Tuple): """simple docstring""" if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" UpperCAmelCase_ = len(references[0]) if any(len(_snake_case) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(_snake_case)] UpperCAmelCase_ = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) UpperCAmelCase_ = sb_ter.corpus_score(_snake_case , _snake_case) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
7
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Tuple = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Union[str, Any] = '''bloom''' UpperCAmelCase__ : Union[str, Any] = ['''past_key_values'''] UpperCAmelCase__ : List[str] = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : Optional[Any] , _snake_case : Dict=250880 , _snake_case : str=64 , _snake_case : List[str]=2 , _snake_case : Tuple=8 , _snake_case : Any=1e-5 , _snake_case : List[str]=0.0_2 , _snake_case : Any=True , _snake_case : Dict=1 , _snake_case : List[Any]=2 , _snake_case : Dict=False , _snake_case : Tuple=0.0 , _snake_case : List[str]=0.0 , _snake_case : List[Any]=1 , _snake_case : Any=False , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ = kwargs.pop('''n_embed''' , _snake_case) UpperCAmelCase_ = hidden_size if n_embed is None else n_embed UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = use_cache UpperCAmelCase_ = pretraining_tp UpperCAmelCase_ = apply_residual_connection_post_layernorm UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = slow_but_exact super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) class __snake_case ( a ): UpperCAmelCase__ : Tuple = version.parse('''1.12''' ) def __init__( self : int , _snake_case : PretrainedConfig , _snake_case : str = "default" , _snake_case : List[PatchingSpec] = None , _snake_case : bool = False , ): """simple docstring""" super().__init__(_snake_case , task=_snake_case , patching_specs=_snake_case , use_past=_snake_case) if not getattr(self._config , '''pad_token_id''' , _snake_case): # TODO: how to do that better? UpperCAmelCase_ = 0 @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_snake_case , direction='''inputs''' , inverted_values_shape=_snake_case) UpperCAmelCase_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return self._config.n_layer @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self._config.n_head @property def lowerCamelCase ( self : Any): """simple docstring""" return 1e-3 def lowerCamelCase ( self : Dict , _snake_case : "PreTrainedTokenizer" , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional["TensorType"] = None , ): """simple docstring""" UpperCAmelCase_ = super(_snake_case , self).generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case) # We need to order the input in the way they appears in the forward() UpperCAmelCase_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ = self._config.hidden_size // self.num_attention_heads UpperCAmelCase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase_ = [ (torch.zeros(_snake_case), torch.zeros(_snake_case)) for _ in range(self.num_layers) ] UpperCAmelCase_ = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase_ = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case)] , dim=1) return ordered_inputs @property def lowerCamelCase ( self : int): """simple docstring""" return 13
7
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __snake_case ( unittest.TestCase , a ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = load_tool('''text-to-speech''') self.tool.setup() def lowerCamelCase ( self : int): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , )) def lowerCamelCase ( self : Any): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ = self.tool('''hey''') UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5]) , ))
7
1
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def A (__A : Any=None ) -> Tuple: """simple docstring""" if subparsers is not None: UpperCAmelCase_ = subparsers.add_parser('''env''' ) else: UpperCAmelCase_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=__A , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=__A ) return parser def A (__A : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase_ = torch.__version__ UpperCAmelCase_ = torch.cuda.is_available() UpperCAmelCase_ = is_xpu_available() UpperCAmelCase_ = is_npu_available() UpperCAmelCase_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(__A ): UpperCAmelCase_ = load_config_from_file(args.config_file ).to_dict() UpperCAmelCase_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(__A ), '''PyTorch NPU available''': str(__A ), '''System RAM''': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: UpperCAmelCase_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) UpperCAmelCase_ = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__A , __A ) else F"""\t{accelerate_config}""" ) print(__A ) UpperCAmelCase_ = accelerate_config return info def A () -> int: """simple docstring""" UpperCAmelCase_ = env_command_parser() UpperCAmelCase_ = parser.parse_args() env_command(__A ) return 0 if __name__ == "__main__": raise SystemExit(main())
7
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : List[str] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __snake_case ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = TOKEN HfFolder.save_token(_snake_case) @classmethod def lowerCamelCase ( cls : List[str]): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_snake_case , repo_id='''test-config''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _snake_case , repo_id='''valid_org/test-config-org''' , push_to_hub=_snake_case , use_auth_token=self._token) UpperCAmelCase_ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_snake_case , getattr(_snake_case , _snake_case)) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase_ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) UpperCAmelCase_ = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=_snake_case) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase_ = c.n_embd + 1 # int UpperCAmelCase_ = c.resid_pdrop + 1.0 # float UpperCAmelCase_ = not c.scale_attn_weights # bool UpperCAmelCase_ = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(_snake_case , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(_snake_case , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(_snake_case , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(_snake_case , c.summary_type , '''mismatch for key: summary_type''') def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = PretrainedConfig() UpperCAmelCase_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _snake_case , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) UpperCAmelCase_ = [key for key, value in config_common_kwargs.items() if value == getattr(_snake_case , _snake_case)] if len(_snake_case) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(_snake_case)}.""") def lowerCamelCase ( self : str): """simple docstring""" with self.assertRaises(_snake_case): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = mock.Mock() UpperCAmelCase_ = 500 UpperCAmelCase_ = {} UpperCAmelCase_ = HTTPError UpperCAmelCase_ = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case) as mock_head: UpperCAmelCase_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = AutoConfig.from_pretrained('''bert-base-cased''') UpperCAmelCase_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_snake_case) UpperCAmelCase_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_snake_case , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase_ = ['''config.42.0.0.json'''] UpperCAmelCase_ = 768 configuration.save_pretrained(_snake_case) shutil.move(os.path.join(_snake_case , '''config.4.0.0.json''') , os.path.join(_snake_case , '''config.42.0.0.json''')) UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) self.assertEqual(new_configuration.hidden_size , 768) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase_ = '''v4.0.0''' UpperCAmelCase_ , UpperCAmelCase_ = new_transformers.models.auto.AutoConfig.from_pretrained( _snake_case , return_unused_kwargs=_snake_case) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_snake_case , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase_ = '''v3.0.0''' UpperCAmelCase_ = old_transformers.models.auto.AutoConfig.from_pretrained(_snake_case) self.assertEqual(old_configuration.hidden_size , 768)
7
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } snake_case_ : List[str] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } snake_case_ : Optional[Any] = "</w>" snake_case_ : Optional[int] = "@@ " def A (__A : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = set() UpperCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ = char return pairs # Speech2Text2 has no max input length snake_case_ : str = {"facebook/s2t-wav2vec2-large-en-de": 1024} class __snake_case ( a ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Tuple="<s>" , _snake_case : int="<pad>" , _snake_case : Tuple="</s>" , _snake_case : int="<unk>" , _snake_case : Optional[Any]=False , _snake_case : Optional[int]=None , **_snake_case : Optional[int] , ): """simple docstring""" super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , do_lower_case=_snake_case , **_snake_case , ) UpperCAmelCase_ = do_lower_case with open(_snake_case , encoding='''utf-8''') as vocab_handle: UpperCAmelCase_ = json.load(_snake_case) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""") UpperCAmelCase_ = None UpperCAmelCase_ = None else: with open(_snake_case , encoding='''utf-8''') as merges_handle: UpperCAmelCase_ = merges_handle.read().split('''\n''')[:-1] UpperCAmelCase_ = [tuple(merge.split()[:2]) for merge in merges] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = {} @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return len(self.decoder) def lowerCamelCase ( self : Any): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def lowerCamelCase ( self : List[Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase_ = get_pairs(_snake_case) if not pairs: return token while True: UpperCAmelCase_ = min(_snake_case , key=lambda _snake_case: self.bpe_ranks.get(_snake_case , float('''inf'''))) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ = bigram UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while i < len(_snake_case): try: UpperCAmelCase_ = word.index(_snake_case , _snake_case) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCAmelCase_ = j if word[i] == first and i < len(_snake_case) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCAmelCase_ = tuple(_snake_case) UpperCAmelCase_ = new_word if len(_snake_case) == 1: break else: UpperCAmelCase_ = get_pairs(_snake_case) UpperCAmelCase_ = ''' '''.join(_snake_case) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase_ = '''\n''' + BPE_TOKEN_MERGES if word.endswith(_snake_case): UpperCAmelCase_ = word.replace(_snake_case , '''''') UpperCAmelCase_ = word.replace(''' ''' , _snake_case) UpperCAmelCase_ = word return word def lowerCamelCase ( self : int , _snake_case : Union[str, Any]): """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''') if self.do_lower_case: UpperCAmelCase_ = text.lower() UpperCAmelCase_ = text.split() UpperCAmelCase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(_snake_case).split(''' '''))) return split_tokens def lowerCamelCase ( self : Optional[Any] , _snake_case : str): """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token)) def lowerCamelCase ( self : List[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.decoder.get(_snake_case , self.unk_token) return result def lowerCamelCase ( self : Dict , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = ''' '''.join(_snake_case) # make sure @@ tokens are concatenated UpperCAmelCase_ = ''''''.join(string.split(_snake_case)) return string def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(_snake_case , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case) + '''\n''') UpperCAmelCase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_snake_case , '''w''' , encoding='''utf-8''') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''') UpperCAmelCase_ = token_index writer.write(''' '''.join(_snake_case) + '''\n''') index += 1 return (vocab_file, merges_file)
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = IFPipeline UpperCAmelCase__ : str = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} UpperCAmelCase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCamelCase ( self : int): """simple docstring""" return self._get_dummy_components() def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : List[str]=0): """simple docstring""" if str(_snake_case).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_snake_case) else: UpperCAmelCase_ = torch.Generator(device=_snake_case).manual_seed(_snake_case) UpperCAmelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self : Tuple): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def lowerCamelCase ( self : Dict): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1) def lowerCamelCase ( self : Dict): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self._test_save_load_local() def lowerCamelCase ( self : Any): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : List[str]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) UpperCAmelCase_ = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=_snake_case , tokenizer=_snake_case) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') UpperCAmelCase_ , UpperCAmelCase_ = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase_ = None UpperCAmelCase_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_snake_case , _snake_case , _snake_case , _snake_case) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase_ = IFImgaImgPipeline(**pipe_a.components) UpperCAmelCase_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_snake_case , _snake_case , _snake_case , _snake_case) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase_ = IFInpaintingPipeline(**pipe_a.components) UpperCAmelCase_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_snake_case , _snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Dict): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Union[str, Any]): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def lowerCamelCase ( self : Dict , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : List[Any]): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_snake_case) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_snake_case) UpperCAmelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_snake_case) UpperCAmelCase_ = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(_snake_case , _snake_case) def A () -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
7
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A (__A : Namespace ) -> Dict: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) snake_case_ : int = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_snake_case , required=_snake_case , help='''Model\'s type.''') train_parser.add_argument( '''--tf_checkpoint''' , type=_snake_case , required=_snake_case , help='''TensorFlow checkpoint path or folder.''') train_parser.add_argument( '''--pytorch_dump_output''' , type=_snake_case , required=_snake_case , help='''Path to the PyTorch saved model output.''') train_parser.add_argument('''--config''' , type=_snake_case , default='''''' , help='''Configuration file path or folder.''') train_parser.add_argument( '''--finetuning_task_name''' , type=_snake_case , default=_snake_case , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_snake_case) def __init__( self : Optional[int] , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : str , *_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ = logging.get_logger('''transformers-cli/converting''') self._logger.info(F"""Loading model {model_type}""") UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_snake_case) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = '''''' else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = '''''' convert_transfo_xl_checkpoint_to_pytorch( _snake_case , self._config , self._pytorch_dump_output , _snake_case) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_snake_case) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''')
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A (__A : np.ndarray , __A : np.ndarray ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__A , __A ) ) ) def A (__A : np.ndarray , __A : np.ndarray ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: UpperCAmelCase_ = ( '''Wrong input data\'s dimensions... ''' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase_ = ( '''Wrong input data\'s shape... ''' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: UpperCAmelCase_ = ( '''Input data have different datatype... ''' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__A ) UpperCAmelCase_ = [] for value in value_array: UpperCAmelCase_ = euclidean(__A , dataset[0] ) UpperCAmelCase_ = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase_ = euclidean(__A , __A ) if dist > temp_dist: UpperCAmelCase_ = temp_dist UpperCAmelCase_ = dataset_value.tolist() answer.append([vector, dist] ) return answer def A (__A : np.ndarray , __A : np.ndarray ) -> float: """simple docstring""" return np.dot(__A , __A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1