code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Dict =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __UpperCamelCase ( _a ): lowercase : str ='mobilenet_v1' def __init__( self, lowerCAmelCase=3, lowerCAmelCase=224, lowerCAmelCase=1.0, lowerCAmelCase=8, lowerCAmelCase="relu6", lowerCAmelCase=True, lowerCAmelCase=0.9_9_9, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0_0_1, **lowerCAmelCase, ): """simple docstring""" super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =depth_multiplier lowerCamelCase_ =min_depth lowerCamelCase_ =hidden_act lowerCamelCase_ =tf_padding lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps class __UpperCamelCase ( _a ): lowercase : Optional[int] =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowercase__ ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a_ ( __snake_case : Optional[int]=32 , __snake_case : Optional[Any]=10 , __snake_case : str=100 , __snake_case : Any=1026 , __snake_case : List[str]=True , __snake_case : int="data/tokenized_stories_train_wikitext103.jbl" , __snake_case : Any="igf_context_pairs.jbl" , ) -> List[str]: """simple docstring""" set_seed(3 ) # generate train_data and objective_set lowerCamelCase_ =generate_datasets( _lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1026 , trim=_lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase_ =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowerCamelCase_ =load_gpta('''gpt2''' ).to(_lowerCAmelCase ) print('''computing perplexity on objective set''' ) lowerCamelCase_ =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).item() print('''perplexity on objective set:''' , _lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a_ ( __snake_case : str , __snake_case : Any=15 , __snake_case : Optional[Any]=128 , __snake_case : int=100 , __snake_case : Any="igf_model.pt" , ) -> Union[str, Any]: """simple docstring""" set_seed(42 ) # Load pre-trained model lowerCamelCase_ =GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowerCamelCase_ =SecondaryLearner(_lowerCAmelCase ) # Train secondary learner lowerCamelCase_ =train_secondary_learner( _lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a_ ( __snake_case : int , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Tuple=32 , __snake_case : Optional[Any]=1000 , __snake_case : Union[str, Any]=16 , __snake_case : Union[str, Any]=1.0 , __snake_case : List[Any]=recopy_gpta , __snake_case : Tuple=None , __snake_case : Tuple=10 , __snake_case : Any="gpt2_finetuned.pt" , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowerCamelCase_ =RandomSampler(_lowerCAmelCase ) lowerCamelCase_ =DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase ) lowerCamelCase_ =max_steps // (len(_lowerCAmelCase )) + 1 lowerCamelCase_ =0 lowerCamelCase_ =torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase ) lowerCamelCase_ =recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCAmelCase ) secondary_learner.eval() lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =[] lowerCamelCase_ =[] # Compute the performance of the transformer model at the beginning lowerCamelCase_ =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('''Test perplexity, step''' , _lowerCAmelCase , ''':''' , _lowerCAmelCase ) for epoch in range(int(_lowerCAmelCase ) ): for step, example in enumerate(_lowerCAmelCase ): torch.cuda.empty_cache() lowerCamelCase_ =random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase_ =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) lowerCamelCase_ =True if secondary_learner is not None: lowerCamelCase_ =secondary_learner.forward( torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase_ =-1 if predicted_q < threshold: lowerCamelCase_ =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase_ =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase_ =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase_ =compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) test_perps.append(_lowerCAmelCase ) print('''Test perplexity, step''' , _lowerCAmelCase , ''':''' , _lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=_lowerCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=_lowerCAmelCase , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=_lowerCAmelCase , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=_lowerCAmelCase , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=_lowerCAmelCase , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=_lowerCAmelCase , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=_lowerCAmelCase , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=_lowerCAmelCase , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=_lowerCAmelCase , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=_lowerCAmelCase , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=_lowerCAmelCase , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=_lowerCAmelCase , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowerCAmelCase , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowerCamelCase_ =joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowerCamelCase_ =training_secondary_learner( _lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowerCamelCase_ =GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase_ =generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=_lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path a_ : int = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) a_ : Tuple = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} a_ : Tuple = """zero2""" a_ : Optional[int] = """zero3""" a_ : Union[str, Any] = [ZEROa, ZEROa] def a_ ( __snake_case : Dict , __snake_case : Dict , __snake_case : Dict ) -> int: """simple docstring""" lowerCamelCase_ =parameterized.to_safe_name('''_'''.join(str(__lowerCAmelCase ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test a_ : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __UpperCamelCase ( __lowerCamelCase ): @parameterized.expand(__lowercase, name_func=__lowercase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.run_and_check( stage=__lowercase, model=__lowercase, distributed=__lowercase, fpaa=__lowercase, ) @require_torch_multi_gpu @parameterized.expand(__lowercase, name_func=__lowercase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.run_and_check( stage=__lowercase, model=__lowercase, distributed=__lowercase, fpaa=__lowercase, ) @parameterized.expand(__lowercase, name_func=__lowercase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.run_and_check( stage=__lowercase, model=__lowercase, distributed=__lowercase, fpaa=__lowercase, ) @require_torch_multi_gpu @parameterized.expand(__lowercase, name_func=__lowercase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.run_and_check( stage=__lowercase, model=__lowercase, distributed=__lowercase, fpaa=__lowercase, ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" pass def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 10, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =models[model] lowerCamelCase_ =self.run_trainer( stage=__lowercase, model_name=__lowercase, eval_steps=__lowercase, num_train_epochs=1, distributed=__lowercase, fpaa=__lowercase, ) self.do_checks(__lowercase ) return output_dir def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 10, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =self.get_auto_remove_tmp_dir('''./xxx''', after=__lowercase ) lowerCamelCase_ =f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCamelCase_ =f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() lowerCamelCase_ =[f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] lowerCamelCase_ =self.get_launcher(__lowercase ) lowerCamelCase_ =launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowercase, env=self.get_env() ) return output_dir def lowercase__ ( self, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =min(2, get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
def a_ ( __snake_case : Union[str, Any] ) -> list: """simple docstring""" # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence lowerCamelCase_ =gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): lowerCamelCase_ =int(sequence[i] , 2 ) return sequence def a_ ( __snake_case : int ) -> list: """simple docstring""" # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowerCamelCase_ =1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowerCamelCase_ =gray_code_sequence_string(bit_count - 1 ) lowerCamelCase_ =[] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowerCamelCase_ ='0' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowerCamelCase_ ='1' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' import re import string import numpy as np import datasets a_ : Tuple = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ a_ : Optional[int] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ a_ : Tuple = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), reference_urls=[], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase_ =np.array([re.sub(__SCREAMING_SNAKE_CASE, '''''', __SCREAMING_SNAKE_CASE ) for x in predictions] ) lowerCamelCase_ =np.array([re.sub(__SCREAMING_SNAKE_CASE, '''''', __SCREAMING_SNAKE_CASE ) for x in references] ) else: lowerCamelCase_ =np.asarray(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: lowerCamelCase_ =np.char.lower(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: lowerCamelCase_ =string.punctuation.maketrans('''''', '''''', string.punctuation ) lowerCamelCase_ =np.char.translate(__SCREAMING_SNAKE_CASE, table=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.char.translate(__SCREAMING_SNAKE_CASE, table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: lowerCamelCase_ =string.digits.maketrans('''''', '''''', string.digits ) lowerCamelCase_ =np.char.translate(__SCREAMING_SNAKE_CASE, table=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.char.translate(__SCREAMING_SNAKE_CASE, table=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 100}
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a_ : str = logging.get_logger(__name__) a_ : List[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a_ : Optional[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a_ : List[Any] = { """facebook/blenderbot_small-90M""": 5_12, } class __UpperCamelCase ( snake_case_ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Any =PRETRAINED_VOCAB_FILES_MAP lowercase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Any =BlenderbotSmallTokenizer def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase="<|endoftext|>", lowerCAmelCase="<|endoftext|>", lowerCAmelCase="<|endoftext|>", lowerCAmelCase=False, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=lowerCAmelCase, merges=lowerCAmelCase, add_prefix_space=lowerCAmelCase, trim_offsets=lowerCAmelCase, ), bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, unk_token=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =add_prefix_space def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Tuple = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a_ : Optional[Any] = 'tiny-wmt19-en-ru' # Build # borrowed from a test a_ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a_ : Any = dict(zip(vocab, range(len(vocab)))) a_ : str = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: a_ : Dict = Path(tmpdirname) a_ : Any = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] a_ : List[str] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] a_ : Tuple = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) a_ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a_ : Any = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a_ : Optional[int] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test a_ : Any = tokenizer(["""Making tiny model"""], return_tensors="""pt""") a_ : Union[str, Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( snake_case_ , unittest.TestCase ): lowercase : List[str] =XLMTokenizer lowercase : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) ) with open(self.merges_file, '''w''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='lower newer' lowerCamelCase_ ='lower newer' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XLMTokenizer(self.vocab_file, self.merges_file ) lowerCamelCase_ ='lower' lowerCamelCase_ =['low', 'er</w>'] lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =tokens + ['<unk>'] lowerCamelCase_ =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowerCamelCase_ =tokenizer.encode('''sequence builders''', add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) lowerCamelCase_ =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase, lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def a_ ( __snake_case : NDArray[floataa] , __snake_case : NDArray[floataa] , __snake_case : list[int] , __snake_case : int , ) -> Tuple: """simple docstring""" lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__snake_case ) if colsa != 1: lowerCamelCase_ =F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__snake_case ) if rowsa != rowsa: lowerCamelCase_ =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__snake_case ) if len(__snake_case ) != rowsa: lowerCamelCase_ =( '''Number of initial values must be equal to number of rows in coefficient ''' F'''matrix but received {len(__snake_case )} and {rowsa}''' ) raise ValueError(__snake_case ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ =table.shape strictly_diagonally_dominant(__snake_case ) # Iterates the whole matrix for given number of times for _ in range(__snake_case ): lowerCamelCase_ =[] for row in range(__snake_case ): lowerCamelCase_ =0 for col in range(__snake_case ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(__snake_case ) lowerCamelCase_ =new_val return [float(__snake_case ) for i in new_val] def a_ ( __snake_case : NDArray[floataa] ) -> Tuple: """simple docstring""" lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , __snake_case ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Tuple =IFImgaImgSuperResolutionPipeline lowercase : int =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} lowercase : Any =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) lowercase : Optional[int] =PipelineTesterMixin.required_optional_params - {'latents'} def lowercase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" if str(lowercase__ ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowercase__ ) else: lowerCamelCase_ =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowercase__ ) ).to(lowercase__ ) lowerCamelCase_ =floats_tensor((1, 3, 16, 16), rng=random.Random(lowercase__ ) ).to(lowercase__ ) lowerCamelCase_ ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''', reason='''float16 requires CUDA''' ) def lowercase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase__ ( self ): """simple docstring""" self._test_save_load_local() def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __UpperCamelCase ( pl.LightningModule ): def __init__( self, lowerCAmelCase ): """simple docstring""" super().__init__() lowerCamelCase_ =model lowerCamelCase_ =2 lowerCamelCase_ =nn.Linear(self.model.config.hidden_size, self.num_labels ) def lowercase__ ( self ): """simple docstring""" pass def a_ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ =LongformerModel.from_pretrained(_UpperCAmelCase ) lowerCamelCase_ =LightningModel(_UpperCAmelCase ) lowerCamelCase_ =torch.load(_UpperCAmelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowerCamelCase_ =LongformerForQuestionAnswering.from_pretrained(_UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCAmelCase ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a_ : str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' import string from math import logaa def a_ ( __snake_case : str , __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowerCamelCase_ =document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def a_ ( __snake_case : str , __snake_case : str ) -> tuple[int, int]: """simple docstring""" lowerCamelCase_ =corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ =corpus_without_punctuation.split('''\n''' ) lowerCamelCase_ =term.lower() return (len([doc for doc in docs if term in doc] ), len(a__ )) def a_ ( __snake_case : int , __snake_case : int , __snake_case : Dict=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def a_ ( __snake_case : int , __snake_case : int ) -> float: """simple docstring""" return round(tf * idf , 3 )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) a_ : str = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a_ ( __snake_case : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} state_dict.pop('''pixel_mean''' , __snake_case ) state_dict.pop('''pixel_std''' , __snake_case ) lowerCamelCase_ =r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase_ =key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): lowerCamelCase_ =int(re.match(__snake_case , __snake_case ).group(2 ) ) if layer_nb == 0: lowerCamelCase_ =key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: lowerCamelCase_ =key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: lowerCamelCase_ =key.replace('''layers.2''' , '''proj_out''' ) lowerCamelCase_ =value lowerCamelCase_ =model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def a_ ( __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int="ybelkada/segment-anything" ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =hf_hub_download(__snake_case , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowerCamelCase_ =SamConfig() elif "sam_vit_l" in model_name: lowerCamelCase_ =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCamelCase_ =SamConfig( vision_config=__snake_case , ) elif "sam_vit_h" in model_name: lowerCamelCase_ =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCamelCase_ =SamConfig( vision_config=__snake_case , ) lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' ) lowerCamelCase_ =replace_keys(__snake_case ) lowerCamelCase_ =SamImageProcessor() lowerCamelCase_ =SamProcessor(image_processor=__snake_case ) lowerCamelCase_ =SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) lowerCamelCase_ =hf_model.to('''cuda''' ) lowerCamelCase_ ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) lowerCamelCase_ =[[[400, 650]]] lowerCamelCase_ =[[1]] lowerCamelCase_ =processor(images=np.array(__snake_case ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase_ =hf_model(**__snake_case ) lowerCamelCase_ =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowerCamelCase_ =processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase_ =hf_model(**__snake_case ) lowerCamelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowerCamelCase_ =((75, 275, 1725, 850),) lowerCamelCase_ =processor(images=np.array(__snake_case ) , input_boxes=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase_ =hf_model(**__snake_case ) lowerCamelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowerCamelCase_ =[[[400, 650], [800, 650]]] lowerCamelCase_ =[[1, 1]] lowerCamelCase_ =processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase_ =hf_model(**__snake_case ) lowerCamelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() a_ : Any = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) a_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ : Tuple = logging.get_logger(__name__) def a_ ( __snake_case : Any ) -> List[str]: """simple docstring""" lowerCamelCase_ =SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase_ =MaskFormerConfig(backbone_config=__lowerCAmelCase ) lowerCamelCase_ ="""huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok lowerCamelCase_ =847 lowerCamelCase_ ="""maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok lowerCamelCase_ =150 lowerCamelCase_ ="""ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok lowerCamelCase_ =171 lowerCamelCase_ ="""maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO lowerCamelCase_ =133 lowerCamelCase_ ="""coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok lowerCamelCase_ =19 lowerCamelCase_ ="""cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok lowerCamelCase_ =65 lowerCamelCase_ ="""mapillary-vistas-id2label.json""" lowerCamelCase_ =json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def a_ ( __snake_case : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ =[] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def a_ ( __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ =dct.pop(__lowerCAmelCase ) lowerCamelCase_ =val def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase_ =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowerCamelCase_ =state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[:dim, :] lowerCamelCase_ =in_proj_bias[: dim] lowerCamelCase_ =in_proj_weight[ dim : dim * 2, : ] lowerCamelCase_ =in_proj_bias[ dim : dim * 2 ] lowerCamelCase_ =in_proj_weight[ -dim :, : ] lowerCamelCase_ =in_proj_bias[-dim :] # fmt: on def a_ ( __snake_case : str , __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" # fmt: off lowerCamelCase_ =config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) lowerCamelCase_ =state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[: hidden_size, :] lowerCamelCase_ =in_proj_bias[:config.hidden_size] lowerCamelCase_ =in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase_ =in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase_ =in_proj_weight[-hidden_size :, :] lowerCamelCase_ =in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) lowerCamelCase_ =state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[: hidden_size, :] lowerCamelCase_ =in_proj_bias[:config.hidden_size] lowerCamelCase_ =in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase_ =in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase_ =in_proj_weight[-hidden_size :, :] lowerCamelCase_ =in_proj_bias[-hidden_size :] # fmt: on def a_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ ="""http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ =Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def a_ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] = False ) -> str: """simple docstring""" lowerCamelCase_ =get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: lowerCamelCase_ =pickle.load(__lowerCAmelCase ) lowerCamelCase_ =data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase_ =create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase_ =torch.from_numpy(__lowerCAmelCase ) # load 🤗 model lowerCamelCase_ =MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) lowerCamelCase_ =model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowerCamelCase_ =prepare_img() if "vistas" in model_name: lowerCamelCase_ =65 elif "cityscapes" in model_name: lowerCamelCase_ =6_5535 else: lowerCamelCase_ =255 lowerCamelCase_ =True if """ade""" in model_name else False lowerCamelCase_ =MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) lowerCamelCase_ =image_processor(__lowerCAmelCase , return_tensors='''pt''' ) lowerCamelCase_ =model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase_ =torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ : Dict = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( _A , unittest.TestCase ): lowercase : Union[str, Any] =LayoutLMTokenizer lowercase : Tuple =LayoutLMTokenizerFast lowercase : List[str] =True lowercase : Optional[int] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__SCREAMING_SNAKE_CASE ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" pass
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : List[str] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): lowercase : Tuple ='data2vec-text' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase="absolute", lowerCAmelCase=True, lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE, bos_token_id=_SCREAMING_SNAKE_CASE, eos_token_id=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =classifier_dropout class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a_ : Any = None a_ : int = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a_ : Dict = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class __UpperCamelCase : lowercase : bool =True lowercase : Optional[str] =None # Automatically constructed lowercase : ClassVar[str] ="PIL.Image.Image" lowercase : ClassVar[Any] =pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowercase : str =field(default='Image' , init=__snake_case , repr=__snake_case ) def __call__( self ): """simple docstring""" return self.pa_type def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase_ =np.array(lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase_, lowerCamelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase_ ) elif isinstance(lowerCamelCase_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase_ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: lowerCamelCase_ ={} lowerCamelCase_ =value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCamelCase_ ): lowerCamelCase_ =PIL.Image.open(lowerCamelCase_ ) else: lowerCamelCase_ =path.split('''::''' )[-1] try: lowerCamelCase_ =string_to_dict(lowerCamelCase_, config.HUB_DATASETS_URL )["""repo_id"""] lowerCamelCase_ =token_per_repo_id.get(lowerCamelCase_ ) except ValueError: lowerCamelCase_ =None with xopen(lowerCamelCase_, '''rb''', use_auth_token=lowerCamelCase_ ) as f: lowerCamelCase_ =BytesIO(f.read() ) lowerCamelCase_ =PIL.Image.open(bytes_ ) else: lowerCamelCase_ =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCamelCase_ =pa.array([None] * len(lowerCamelCase_ ), type=pa.binary() ) lowerCamelCase_ =pa.StructArray.from_arrays([bytes_array, storage], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase_ =pa.array([None] * len(lowerCamelCase_ ), type=pa.string() ) lowerCamelCase_ =pa.StructArray.from_arrays([storage, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowerCamelCase_ =storage.field('''bytes''' ) else: lowerCamelCase_ =pa.array([None] * len(lowerCamelCase_ ), type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowerCamelCase_ =storage.field('''path''' ) else: lowerCamelCase_ =pa.array([None] * len(lowerCamelCase_ ), type=pa.string() ) lowerCamelCase_ =pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase_ =pa.array( [encode_np_array(np.array(lowerCamelCase_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) lowerCamelCase_ =pa.array([None] * len(lowerCamelCase_ ), type=pa.string() ) lowerCamelCase_ =pa.StructArray.from_arrays( [bytes_array, path_array], ['''bytes''', '''path'''], mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_, self.pa_type ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase ): with xopen(lowerCamelCase_, '''rb''' ) as f: lowerCamelCase_ =f.read() return bytes_ lowerCamelCase_ =pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) lowerCamelCase_ =pa.array( [os.path.basename(lowerCamelCase_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()], type=pa.string(), ) lowerCamelCase_ =pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_, self.pa_type ) def a_ ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase_ =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def a_ ( __snake_case : "PIL.Image.Image" ) -> Tuple: """simple docstring""" lowerCamelCase_ =BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase_ =image.format else: lowerCamelCase_ ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_a , format=_a ) return buffer.getvalue() def a_ ( __snake_case : "PIL.Image.Image" ) -> Tuple: """simple docstring""" if hasattr(_a , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_a )} def a_ ( __snake_case : np.ndarray ) -> Tuple: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) lowerCamelCase_ =array.dtype lowerCamelCase_ =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowerCamelCase_ =dtype.kind lowerCamelCase_ =dtype.itemsize lowerCamelCase_ =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase_ =np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase_ =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase_ =dtype_byteorder + dtype_kind + str(_a ) lowerCamelCase_ =np.dtype(_a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowerCamelCase_ =PIL.Image.fromarray(array.astype(_a ) ) return {"path": None, "bytes": image_to_bytes(_a )} def a_ ( __snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> Union[str, Any]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: lowerCamelCase_ =first_non_null_value(_a ) if isinstance(_a , _a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_a , np.ndarray ): lowerCamelCase_ =no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] elif isinstance(_a , PIL.Image.Image ): lowerCamelCase_ =no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] else: return objs else: return objs
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def a_ ( __snake_case : Tuple="" ) -> str: """simple docstring""" lowerCamelCase_ =tempfile.mkdtemp() return os.path.join(SCREAMING_SNAKE_CASE_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.rand(12, dtype=torch.floataa ) - 0.5 lowerCamelCase_ =AgentAudio(_lowercase ) lowerCamelCase_ =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_lowercase ) ) # Ensure that the file contains the same value as the original tensor lowerCamelCase_, lowerCamelCase_ =sf.read(_lowercase ) self.assertTrue(torch.allclose(_lowercase, torch.tensor(_lowercase ), atol=1e-4 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.rand(12, dtype=torch.floataa ) - 0.5 lowerCamelCase_ =get_new_path(suffix='''.wav''' ) sf.write(_lowercase, _lowercase, 16_000 ) lowerCamelCase_ =AgentAudio(_lowercase ) self.assertTrue(torch.allclose(_lowercase, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), _lowercase ) @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.randint(0, 256, (64, 64, 3) ) lowerCamelCase_ =AgentImage(_lowercase ) lowerCamelCase_ =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCamelCase_ =Image.open(_lowercase ) lowerCamelCase_ =AgentImage(_lowercase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' lowerCamelCase_ =Image.open(_lowercase ) lowerCamelCase_ =AgentImage(_lowercase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''Hey!''' lowerCamelCase_ =AgentText(_lowercase ) self.assertEqual(_lowercase, agent_type.to_string() ) self.assertEqual(_lowercase, agent_type.to_raw() ) self.assertEqual(_lowercase, _lowercase )
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a_ : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a_ ( __snake_case : List[str] , __snake_case : tuple , __snake_case : Path , __snake_case : Any , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def a_ ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ) -> str: """simple docstring""" lowerCamelCase_ =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase_ ='''cpu''' lowerCamelCase_ =Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER lowerCamelCase_ =AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowerCamelCase_ =vae_decoder.config.latent_channels # forward only through the decoder part lowerCamelCase_ =vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") a_ : Union[str, Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( __snake_case : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =filter(lambda __snake_case : p.requires_grad , model.parameters() ) lowerCamelCase_ =sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ : List[Any] = logging.getLogger(__name__) def a_ ( __snake_case : Any , __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" if metric == "rouge2": lowerCamelCase_ ="""{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": lowerCamelCase_ ="""{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": lowerCamelCase_ ="""{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) lowerCamelCase_ =ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Dict: """simple docstring""" return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__snake_case , verbose=__snake_case , ) class __UpperCamelCase ( pl.Callback ): def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=True ): """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowerCamelCase_ =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results lowerCamelCase_ =Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCamelCase_ =od / """test_results.txt""" lowerCamelCase_ =od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCamelCase_ =od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowerCamelCase_ =od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase, '''a+''' ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCamelCase_ =metrics[key] if isinstance(__lowerCamelCase, torch.Tensor ): lowerCamelCase_ =val.item() lowerCamelCase_ =f'''{key}: {val:.6f}\n''' writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: lowerCamelCase_ ="""\n""".join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCamelCase ) @rank_zero_only def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" try: lowerCamelCase_ =pl_module.model.model.num_parameters() except AttributeError: lowerCamelCase_ =pl_module.model.num_parameters() lowerCamelCase_ =count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase, __lowerCamelCase, '''test''' ) @rank_zero_only def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
'''simple docstring''' import argparse import copy def a_ ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ ={} with open(a__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCamelCase_ =[] _list.append([line.split()[1], line.split()[2]] ) lowerCamelCase_ =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCamelCase_ =[] _list.append([line.split()[0], line.split()[2]] ) lowerCamelCase_ =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( __snake_case : int , __snake_case : Dict ) -> List[str]: """simple docstring""" with open(a__ ) as f: lowerCamelCase_ =f.read(1 ) lowerCamelCase_ =start_node lowerCamelCase_ =[] lowerCamelCase_ =start_node lowerCamelCase_ =0 while visiting not in first_solution: lowerCamelCase_ =1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a__ ) and k[0] not in first_solution: lowerCamelCase_ =k[1] lowerCamelCase_ =k[0] first_solution.append(a__ ) lowerCamelCase_ =distance_of_first_solution + int(a__ ) lowerCamelCase_ =best_node first_solution.append(a__ ) lowerCamelCase_ =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCamelCase_ =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def a_ ( __snake_case : Any , __snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =[] for n in solution[1:-1]: lowerCamelCase_ =solution.index(a__ ) for kn in solution[1:-1]: lowerCamelCase_ =solution.index(a__ ) if n == kn: continue lowerCamelCase_ =copy.deepcopy(a__ ) lowerCamelCase_ =kn lowerCamelCase_ =n lowerCamelCase_ =0 for k in _tmp[:-1]: lowerCamelCase_ =_tmp[_tmp.index(a__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCamelCase_ =distance + int(i[1] ) _tmp.append(a__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCamelCase_ =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =first_solution lowerCamelCase_ =[] lowerCamelCase_ =distance_of_first_solution lowerCamelCase_ =solution while count <= iters: lowerCamelCase_ =find_neighborhood(a__ , a__ ) lowerCamelCase_ =0 lowerCamelCase_ =neighborhood[index_of_best_solution] lowerCamelCase_ =len(a__ ) - 1 lowerCamelCase_ =False while not found: lowerCamelCase_ =0 while i < len(a__ ): if best_solution[i] != solution[i]: lowerCamelCase_ =best_solution[i] lowerCamelCase_ =solution[i] break lowerCamelCase_ =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCamelCase_ =True lowerCamelCase_ =best_solution[:-1] lowerCamelCase_ =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCamelCase_ =cost lowerCamelCase_ =solution else: lowerCamelCase_ =index_of_best_solution + 1 lowerCamelCase_ =neighborhood[index_of_best_solution] if len(a__ ) >= size: tabu_list.pop(0 ) lowerCamelCase_ =count + 1 return best_solution_ever, best_cost def a_ ( __snake_case : Union[str, Any]=None ) -> Dict: """simple docstring""" lowerCamelCase_ =generate_neighbours(args.File ) lowerCamelCase_ , lowerCamelCase_ =generate_first_solution( args.File , a__ ) lowerCamelCase_ , lowerCamelCase_ =tabu_search( a__ , a__ , a__ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : List[str] = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[Any] = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) lowerCamelCase_ =hex_num[0] == "-" if is_negative: lowerCamelCase_ =hex_num[1:] try: lowerCamelCase_ =int(_SCREAMING_SNAKE_CASE , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) lowerCamelCase_ ="" while int_num > 0: lowerCamelCase_ =str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __UpperCamelCase : lowercase : Optional[Any] =42 # setable values lowercase : List[Any] =42 lowercase : Tuple =42 lowercase : Any =None @classmethod def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return cls(common=lowerCAmelCase, init_noise_sigma=lowerCAmelCase, timesteps=lowerCAmelCase ) @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =42 class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : List[str] =[e.name for e in FlaxKarrasDiffusionSchedulers] lowercase : Dict =42 @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self, lowerCAmelCase = 1_000, lowerCAmelCase = 0.0_0_0_1, lowerCAmelCase = 0.0_2, lowerCAmelCase = "linear", lowerCAmelCase = None, lowerCAmelCase = "fixed_small", lowerCAmelCase = True, lowerCAmelCase = "epsilon", lowerCAmelCase = jnp.floataa, ): """simple docstring""" lowerCamelCase_ =dtype def lowercase__ ( self, lowerCAmelCase = None ): """simple docstring""" if common is None: lowerCamelCase_ =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase_ =jnp.array(1.0, dtype=self.dtype ) lowerCamelCase_ =jnp.arange(0, self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase, init_noise_sigma=lowerCAmelCase, timesteps=lowerCAmelCase, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" return sample def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = () ): """simple docstring""" lowerCamelCase_ =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(jnp.arange(0, lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase, timesteps=lowerCAmelCase, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =state.common.alphas_cumprod[t] lowerCamelCase_ =jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase_ =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase_ =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase_ =jnp.clip(lowerCAmelCase, a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase_ =jnp.log(jnp.clip(lowerCAmelCase, a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCamelCase_ =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase_ =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase_ =variance lowerCamelCase_ =state.common.betas[t] lowerCamelCase_ =(predicted_variance + 1) / 2 lowerCamelCase_ =frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =timestep if key is None: lowerCamelCase_ =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase_ =jnp.split(lowerCAmelCase, sample.shape[1], axis=1 ) else: lowerCamelCase_ =None # 1. compute alphas, betas lowerCamelCase_ =state.common.alphas_cumprod[t] lowerCamelCase_ =jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) lowerCamelCase_ =1 - alpha_prod_t lowerCamelCase_ =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase_ =model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase_ =jnp.clip(lowerCAmelCase, -1, 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase_ =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase_ =jax.random.split(lowerCAmelCase, num=1 ) lowerCamelCase_ =jax.random.normal(lowerCAmelCase, shape=model_output.shape, dtype=self.dtype ) return (self._get_variance(lowerCAmelCase, lowerCAmelCase, predicted_variance=lowerCAmelCase ) ** 0.5) * noise lowerCamelCase_ =jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype ) ) lowerCamelCase_ =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase, state=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" return add_noise_common(state.common, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" return get_velocity_common(state.common, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter a_ : Optional[int] = True except ImportError: a_ : Optional[int] = False a_ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( __snake_case : Namespace ) -> Dict: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __UpperCamelCase ( _lowerCamelCase ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''', action='''store_true''', help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''', type=lowerCAmelCase, help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''', type=lowerCAmelCase, help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, *lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =testing lowerCamelCase_ =testing_file lowerCamelCase_ =path def lowercase__ ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCamelCase_ =[directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowerCAmelCase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) lowerCamelCase_ =( Path(lowerCAmelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCamelCase_ =path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase ) ) else: with open(self._testing_file, '''r''' ) as configuration_file: lowerCamelCase_ =json.load(lowerCAmelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ), no_input=lowerCAmelCase, extra_context=lowerCAmelCase, ) lowerCamelCase_ =[directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''', '''r''' ) as configuration_file: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ =configuration['''lowercase_modelname'''] lowerCamelCase_ =configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f'''{directory}/configuration.json''' ) lowerCamelCase_ ='''PyTorch''' in generate_tensorflow_pytorch_and_flax lowerCamelCase_ ='''TensorFlow''' in generate_tensorflow_pytorch_and_flax lowerCamelCase_ ='''Flax''' in generate_tensorflow_pytorch_and_flax lowerCamelCase_ =f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''', exist_ok=lowerCAmelCase ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''', '''w''' ): pass shutil.move( f'''{directory}/__init__.py''', f'''{model_dir}/__init__.py''', ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''', f'''{model_dir}/configuration_{lowercase_model_name}.py''', ) def remove_copy_lines(lowerCAmelCase ): with open(lowerCAmelCase, '''r''' ) as f: lowerCamelCase_ =f.readlines() with open(lowerCAmelCase, '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''', f'''{model_dir}/modeling_{lowercase_model_name}.py''', ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''', f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''', ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''', f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''', ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''', f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''', ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''', f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''', ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''', f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''', ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''', f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''', ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''', f'''{model_dir}/tokenization_{lowercase_model_name}.py''', ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''', f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''', ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): # Create temp file lowerCamelCase_, lowerCamelCase_ =mkstemp() lowerCamelCase_ =False with fdopen(lowerCAmelCase, '''w''' ) as new_file: with open(lowerCAmelCase ) as old_file: for line in old_file: new_file.write(lowerCAmelCase ) if line_to_copy_below in line: lowerCamelCase_ =True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase, lowerCAmelCase ) # Remove original file remove(lowerCAmelCase ) # Move new file move(lowerCAmelCase, lowerCAmelCase ) def skip_units(lowerCAmelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase ): with open(lowerCAmelCase ) as datafile: lowerCamelCase_ =[] lowerCamelCase_ =False lowerCamelCase_ =False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCamelCase_ =line.split('''\"''' )[1] lowerCamelCase_ =skip_units(lowerCAmelCase ) elif "# Below: " in line and "##" not in line: lowerCamelCase_ =line.split('''\"''' )[1] lowerCamelCase_ =skip_units(lowerCAmelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =[] elif "# Replace with" in line and "##" not in line: lowerCamelCase_ =[] elif "##" not in line: lines_to_copy.append(lowerCAmelCase ) remove(lowerCAmelCase ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowerCAmelCase )
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =384 lowerCamelCase_ =7 if "tiny" in model_name: lowerCamelCase_ =96 lowerCamelCase_ =(2, 2, 6, 2) lowerCamelCase_ =(3, 6, 12, 24) elif "small" in model_name: lowerCamelCase_ =96 lowerCamelCase_ =(2, 2, 18, 2) lowerCamelCase_ =(3, 6, 12, 24) elif "base" in model_name: lowerCamelCase_ =128 lowerCamelCase_ =(2, 2, 18, 2) lowerCamelCase_ =(4, 8, 16, 32) lowerCamelCase_ =12 lowerCamelCase_ =512 elif "large" in model_name: lowerCamelCase_ =192 lowerCamelCase_ =(2, 2, 18, 2) lowerCamelCase_ =(6, 12, 24, 48) lowerCamelCase_ =12 lowerCamelCase_ =768 # set label information lowerCamelCase_ =150 lowerCamelCase_ ="huggingface/label-files" lowerCamelCase_ ="ade20k-id2label.json" lowerCamelCase_ =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =SwinConfig( embed_dim=_lowerCAmelCase , depths=_lowerCAmelCase , num_heads=_lowerCAmelCase , window_size=_lowerCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowerCamelCase_ =UperNetConfig( backbone_config=_lowerCAmelCase , auxiliary_in_channels=_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase , ) return config def a_ ( __snake_case : int ) -> List[str]: """simple docstring""" lowerCamelCase_ =[] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a_ ( __snake_case : Any , __snake_case : Dict , __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =dct.pop(_lowerCAmelCase ) lowerCamelCase_ =val def a_ ( __snake_case : Optional[int] , __snake_case : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase_ =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowerCamelCase_ =state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[:dim, :] lowerCamelCase_ =in_proj_bias[: dim] lowerCamelCase_ =in_proj_weight[ dim : dim * 2, : ] lowerCamelCase_ =in_proj_bias[ dim : dim * 2 ] lowerCamelCase_ =in_proj_weight[ -dim :, : ] lowerCamelCase_ =in_proj_bias[-dim :] # fmt: on def a_ ( __snake_case : str ) -> List[str]: """simple docstring""" lowerCamelCase_ =x.shape lowerCamelCase_ =x.reshape(_lowerCAmelCase , 4 , in_channel // 4 ) lowerCamelCase_ =x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) return x def a_ ( __snake_case : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ =x.shape lowerCamelCase_ =x.reshape(_lowerCAmelCase , in_channel // 4 , 4 ) lowerCamelCase_ =x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) return x def a_ ( __snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =x.shape[0] lowerCamelCase_ =x.reshape(4 , in_channel // 4 ) lowerCamelCase_ =x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowerCAmelCase ) return x def a_ ( __snake_case : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ =x.shape[0] lowerCamelCase_ =x.reshape(in_channel // 4 , 4 ) lowerCamelCase_ =x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowerCAmelCase ) return x def a_ ( __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={ "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } lowerCamelCase_ =model_name_to_url[model_name] lowerCamelCase_ =torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='''cpu''' , file_name=_lowerCAmelCase )[ "state_dict" ] for name, param in state_dict.items(): print(_lowerCAmelCase , param.shape ) lowerCamelCase_ =get_upernet_config(_lowerCAmelCase ) lowerCamelCase_ =UperNetForSemanticSegmentation(_lowerCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ =state_dict.pop(_lowerCAmelCase ) if "bn" in key: lowerCamelCase_ =key.replace('''bn''' , '''batch_norm''' ) lowerCamelCase_ =val # rename keys lowerCamelCase_ =create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCamelCase_ =reverse_correct_unfold_reduction_order(_lowerCAmelCase ) if "norm" in key: lowerCamelCase_ =reverse_correct_unfold_norm_order(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify on image lowerCamelCase_ ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('''RGB''' ) lowerCamelCase_ =SegformerImageProcessor() lowerCamelCase_ =processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCamelCase_ =model(_lowerCAmelCase ) lowerCamelCase_ =outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCamelCase_ =torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": lowerCamelCase_ =torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": lowerCamelCase_ =torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": lowerCamelCase_ =torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Dict =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Tuple =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Dict =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Optional[Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Union[str, Any] =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] )
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ =[] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def a_ ( __snake_case : List[Any] , __snake_case : List[str] ) -> List[str]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowerCamelCase_ =state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase_ =in_proj_weight[ : encoder_config.hidden_size, : ] lowerCamelCase_ =in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCamelCase_ =in_proj_weight[ -encoder_config.hidden_size :, : ] def a_ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict ) -> str: """simple docstring""" lowerCamelCase_ =dct.pop(lowercase_ ) lowerCamelCase_ =val def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: lowerCamelCase_ ='''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase_ ='''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowerCamelCase_ =Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def a_ ( __snake_case : Any , __snake_case : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ =ViTConfig(image_size=384 , qkv_bias=lowercase_ ) lowerCamelCase_ =TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCamelCase_ =768 elif "large" in checkpoint_url: # use ViT-large encoder lowerCamelCase_ =1024 lowerCamelCase_ =4096 lowerCamelCase_ =24 lowerCamelCase_ =16 lowerCamelCase_ =1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase_ =False lowerCamelCase_ ='''relu''' lowerCamelCase_ =1024 lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =False # load HuggingFace model lowerCamelCase_ =ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) lowerCamelCase_ =TrOCRForCausalLM(lowercase_ ) lowerCamelCase_ =VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys lowerCamelCase_ =torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] lowerCamelCase_ =create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCamelCase_ =state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: lowerCamelCase_ =val else: lowerCamelCase_ =val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image lowerCamelCase_ =ViTImageProcessor(size=encoder_config.image_size ) lowerCamelCase_ =RobertaTokenizer.from_pretrained('''roberta-large''' ) lowerCamelCase_ =TrOCRProcessor(lowercase_ , lowercase_ ) lowerCamelCase_ =processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits lowerCamelCase_ =torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowerCamelCase_ =model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) lowerCamelCase_ =outputs.logits lowerCamelCase_ =torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: lowerCamelCase_ =torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: lowerCamelCase_ =torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: lowerCamelCase_ =torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: lowerCamelCase_ =torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a_ : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' from math import factorial a_ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def a_ ( __snake_case : List[Any] ) -> str: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A_ ) ) def a_ ( __snake_case : List[Any] = 60 , __snake_case : int = 100_0000 ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not isinstance(A_ , A_ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length lowerCamelCase_ =0 # the cached sizes of the previous chains lowerCamelCase_ ={} for start_chain_element in range(1 , A_ ): # The temporary set will contain the elements of the chain lowerCamelCase_ =set() lowerCamelCase_ =0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase_ =start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A_ ) chain_set_length += 1 lowerCamelCase_ =digit_factorial_sum(A_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase_ =chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' from math import factorial def a_ ( __snake_case : Union[str, Any] = 100 ) -> Tuple: """simple docstring""" return sum(int(_lowercase ) for x in str(factorial(_lowercase ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =9, 14 # noqa: F841 lowerCamelCase_ =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase_ =defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase_ =mst(__snake_case ) lowerCamelCase_ =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase_ =tuple(answer[:2] ) lowerCamelCase_ =tuple(edge[::-1] ) assert edge in result or reverse in result
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : float , __snake_case : float , __snake_case : float , ) -> List[Any]: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' def a_ ( __snake_case : Tuple ) -> list: """simple docstring""" lowerCamelCase_ =[0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming lowerCamelCase_ =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCamelCase_ =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCamelCase_ =j return prefix_result def a_ ( __snake_case : int ) -> int: """simple docstring""" return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a_ ( __snake_case : str ) -> Tuple: """simple docstring""" lowerCamelCase_ =384 if "tiny" in model_name: lowerCamelCase_ =[3, 3, 9, 3] lowerCamelCase_ =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ =[3, 3, 27, 3] lowerCamelCase_ =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ =[3, 3, 27, 3] lowerCamelCase_ =[128, 256, 512, 1024] lowerCamelCase_ =512 if "large" in model_name: lowerCamelCase_ =[3, 3, 27, 3] lowerCamelCase_ =[192, 384, 768, 1536] lowerCamelCase_ =768 if "xlarge" in model_name: lowerCamelCase_ =[3, 3, 27, 3] lowerCamelCase_ =[256, 512, 1024, 2048] lowerCamelCase_ =1024 # set label information lowerCamelCase_ =150 lowerCamelCase_ ="huggingface/label-files" lowerCamelCase_ ="ade20k-id2label.json" lowerCamelCase_ =json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =ConvNextConfig( depths=_lowercase , hidden_sizes=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase_ =UperNetConfig( backbone_config=_lowercase , auxiliary_in_channels=_lowercase , num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase , ) return config def a_ ( __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a_ ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =dct.pop(_lowercase ) lowerCamelCase_ =val def a_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ =model_name_to_url[model_name] lowerCamelCase_ =torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )["state_dict"] lowerCamelCase_ =get_upernet_config(_lowercase ) lowerCamelCase_ =UperNetForSemanticSegmentation(_lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ =state_dict.pop(_lowercase ) if "bn" in key: lowerCamelCase_ =key.replace('''bn''' , '''batch_norm''' ) lowerCamelCase_ =val # rename keys lowerCamelCase_ =create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) model.load_state_dict(_lowercase ) # verify on image lowerCamelCase_ ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ =Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' ) lowerCamelCase_ =SegformerImageProcessor() lowerCamelCase_ =processor(_lowercase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCamelCase_ =model(_lowercase ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ =torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ =torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ =torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ =torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ =torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' from __future__ import annotations import math def a_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) ) def a_ ( ) -> None: """simple docstring""" lowerCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 3_4423] lowerCamelCase_ =math.log(len(__snake_case ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __snake_case , __snake_case , __snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" return number | (1 << position) def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" return number & ~(1 << position) def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" return number ^ (1 << position) def a_ ( __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def a_ ( __snake_case : int , __snake_case : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' from functools import lru_cache @lru_cache def a_ ( __snake_case : int ) -> Any: """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a_ ( *__snake_case : List[Any] , __snake_case : int = None , __snake_case : Union[str, Any]=True , __snake_case : List[str]=2 ) -> List[Any]: """simple docstring""" from .. import __version__ lowerCamelCase_ =take_from lowerCamelCase_ =() if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): lowerCamelCase_ =(args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) lowerCamelCase_ =None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) lowerCamelCase_ =F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) lowerCamelCase_ =F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: lowerCamelCase_ =F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: lowerCamelCase_ =warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCamelCase_ =inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase_ =call_frame.filename lowerCamelCase_ =call_frame.lineno lowerCamelCase_ =call_frame.function lowerCamelCase_ =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a_ : List[str] = 1.0_5457_1817e-34 # unit of ℏ : J * s a_ : Union[str, Any] = 3e8 # unit of c : m * s^-1 def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Tuple ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: lowerCamelCase_ =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase_ =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase_ =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __UpperCamelCase ( __a ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): lowerCamelCase_ =pa.array(TypedSequence([1, 2, 3] ), type=pa.intaa() ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): lowerCamelCase_ =pa.array(TypedSequence([1, 2, 3], try_type=Value('''bool''' ), type=Value('''int64''' ) ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence([1, 2, 3], type=Value('''int32''' ) ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase_ =pa.array(TypedSequence(['''foo''', '''bar'''], type=Value('''int64''' ) ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence([1, 2, 3], try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type, pa.intaa() ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence(['''foo''', '''bar'''], try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type, pa.string() ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence([[[1, 2, 3]]], type=ArrayaD((1, 3), '''int64''' ) ) ) self.assertEqual(arr.type, ArrayaDExtensionType((1, 3), '''int64''' ) ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCamelCase_ =pa.array(TypedSequence(['''foo''', '''bar'''], type=ArrayaD((1, 3), '''int64''' ) ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence([[[1, 2, 3]]], try_type=ArrayaD((1, 3), '''int64''' ) ) ) self.assertEqual(arr.type, ArrayaDExtensionType((1, 3), '''int64''' ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence(['''foo''', '''bar'''], try_type=ArrayaD((1, 3), '''int64''' ) ) ) self.assertEqual(arr.type, pa.string() ) @require_pil def lowercase__ ( self ): """simple docstring""" import PIL.Image lowerCamelCase_ =PIL.Image.fromarray(np.arange(10, dtype=np.uinta ).reshape(2, 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''', side_effect=UpperCamelCase__ ) as mock_cast_to_python_objects: lowerCamelCase_ =pa.array(TypedSequence([{'''path''': None, '''bytes''': B'''image_bytes'''}, pil_image], type=Image() ) ) lowerCamelCase_ , lowerCamelCase_ =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''', UpperCamelCase__ ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def a_ ( __snake_case : List[str] , __snake_case : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) lowerCamelCase_ =pa.ipc.open_stream(__UpperCamelCase ) lowerCamelCase_ =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def a_ ( __snake_case : List[str] , __snake_case : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() lowerCamelCase_ =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase_ ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def a_ ( ) -> int: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() lowerCamelCase_ =Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCamelCase_ =pa.BufferReader(output.getvalue() ) lowerCamelCase_ =pa.ipc.open_stream(__UpperCamelCase ) lowerCamelCase_ =f.read_all() lowerCamelCase_ =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def a_ ( __snake_case : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def a_ ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def a_ ( __snake_case : Dict , __snake_case : Any ) -> List[str]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() lowerCamelCase_ =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase_ ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def a_ ( __snake_case : List[Any] , __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() lowerCamelCase_ =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase_ ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def a_ ( __snake_case : str , __snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() lowerCamelCase_ =pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCamelCase_ ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def a_ ( ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ ={'''col_1''': pa.string(), '''col_2''': pa.intaa()} lowerCamelCase_ =os.path.join(__UpperCamelCase , '''test.arrow''' ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def a_ ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def a_ ( __snake_case : Union[str, Any] , __snake_case : Dict ) -> List[Any]: """simple docstring""" if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: lowerCamelCase_ =value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def a_ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ =pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCamelCase_ =copy.deepcopy(__UpperCamelCase ) lowerCamelCase_ =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ =pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def a_ ( __snake_case : str , __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def a_ ( __snake_case : Optional[int] ) -> str: """simple docstring""" lowerCamelCase_ ='''mock://dataset-train.arrow''' with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) lowerCamelCase_ , lowerCamelCase_ =writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCamelCase_ =pa.BufferReader(output.getvalue() ) lowerCamelCase_ =pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def a_ ( __snake_case : Optional[int] , __snake_case : int ) -> Dict: """simple docstring""" import PIL.Image lowerCamelCase_ =str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format='''png''' ) lowerCamelCase_ =pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() lowerCamelCase_ =pa.BufferReader(output.getvalue() ) lowerCamelCase_ =pq.read_table(__UpperCamelCase ) lowerCamelCase_ =pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __UpperCamelCase ) with open(__UpperCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =pa.schema([pa.field('''col_1''' , pa.string() , nullable=__UpperCamelCase )] ) lowerCamelCase_ =pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Optional[Any] = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __UpperCamelCase ( _lowerCAmelCase ): lowercase : Union[str, Any] ="mobilenet_v2" def __init__( self, lowerCAmelCase=3, lowerCAmelCase=224, lowerCAmelCase=1.0, lowerCAmelCase=8, lowerCAmelCase=8, lowerCAmelCase=6, lowerCAmelCase=32, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase="relu6", lowerCAmelCase=True, lowerCAmelCase=0.8, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0_0_1, lowerCAmelCase=255, **lowerCAmelCase, ): """simple docstring""" super().__init__(**_lowercase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =depth_multiplier lowerCamelCase_ =depth_divisible_by lowerCamelCase_ =min_depth lowerCamelCase_ =expand_ratio lowerCamelCase_ =output_stride lowerCamelCase_ =first_layer_is_expansion lowerCamelCase_ =finegrained_output lowerCamelCase_ =hidden_act lowerCamelCase_ =tf_padding lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =semantic_loss_ignore_index class __UpperCamelCase ( _lowerCAmelCase ): lowercase : Any =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowercase__ ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput a_ : int = """scheduler_config.json""" class __UpperCamelCase ( _a ): lowercase : List[Any] =1 lowercase : str =2 lowercase : Dict =3 lowercase : Any =4 lowercase : str =5 @dataclass class __UpperCamelCase ( _a ): lowercase : jnp.ndarray class __UpperCamelCase : lowercase : Optional[Any] =SCHEDULER_CONFIG_NAME lowercase : Tuple =["""dtype"""] lowercase : List[str] =[] lowercase : str =True @classmethod def lowercase__ ( cls, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase=False, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =cls.load_config( pretrained_model_name_or_path=__lowerCAmelCase, subfolder=__lowerCAmelCase, return_unused_kwargs=__lowerCAmelCase, **__lowerCAmelCase, ) lowerCamelCase_, lowerCamelCase_ =cls.from_config(__lowerCAmelCase, return_unused_kwargs=__lowerCAmelCase, **__lowerCAmelCase ) if hasattr(__lowerCAmelCase, '''create_state''' ) and getattr(__lowerCAmelCase, '''has_state''', __lowerCAmelCase ): lowerCamelCase_ =scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = False, **lowerCAmelCase ): """simple docstring""" self.save_config(save_directory=__lowerCAmelCase, push_to_hub=__lowerCAmelCase, **__lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =list(set([cls.__name__] + cls._compatibles ) ) lowerCamelCase_ =importlib.import_module(__name__.split('''.''' )[0] ) lowerCamelCase_ =[ getattr(__lowerCAmelCase, __lowerCAmelCase ) for c in compatible_classes_str if hasattr(__lowerCAmelCase, __lowerCAmelCase ) ] return compatible_classes def a_ ( __snake_case : jnp.ndarray , __snake_case : Tuple[int] ) -> str: """simple docstring""" assert len(a__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(a__ ) - x.ndim) ) , a__ ) def a_ ( __snake_case : int , __snake_case : str=0.9_9_9 , __snake_case : List[Any]=jnp.floataa ) -> List[str]: """simple docstring""" def alpha_bar(__snake_case : List[str] ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 lowerCamelCase_ =[] for i in range(a__ ): lowerCamelCase_ =i / num_diffusion_timesteps lowerCamelCase_ =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(a__ ) / alpha_bar(a__ ) , a__ ) ) return jnp.array(a__ , dtype=a__ ) @flax.struct.dataclass class __UpperCamelCase : lowercase : jnp.ndarray lowercase : jnp.ndarray lowercase : jnp.ndarray @classmethod def lowercase__ ( cls, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =scheduler.config if config.trained_betas is not None: lowerCamelCase_ =jnp.asarray(config.trained_betas, dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCamelCase_ =jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_ =( jnp.linspace( config.beta_start**0.5, config.beta_end**0.5, config.num_train_timesteps, dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_ =betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) lowerCamelCase_ =1.0 - betas lowerCamelCase_ =jnp.cumprod(__lowerCAmelCase, axis=0 ) return cls( alphas=__lowerCAmelCase, betas=__lowerCAmelCase, alphas_cumprod=__lowerCAmelCase, ) def a_ ( __snake_case : CommonSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray ) -> List[Any]: """simple docstring""" lowerCamelCase_ =state.alphas_cumprod lowerCamelCase_ =alphas_cumprod[timesteps] ** 0.5 lowerCamelCase_ =sqrt_alpha_prod.flatten() lowerCamelCase_ =broadcast_to_shape_from_left(a__ , original_samples.shape ) lowerCamelCase_ =(1 - alphas_cumprod[timesteps]) ** 0.5 lowerCamelCase_ =sqrt_one_minus_alpha_prod.flatten() lowerCamelCase_ =broadcast_to_shape_from_left(a__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def a_ ( __snake_case : CommonSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray ) -> str: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) lowerCamelCase_ =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def a_ ( __snake_case : CommonSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray ) -> Tuple: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) lowerCamelCase_ =sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Any = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCamelCase ( _SCREAMING_SNAKE_CASE ): lowercase : Union[str, Any] ='codegen' lowercase : Union[str, Any] ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, lowerCAmelCase=50_400, lowerCAmelCase=2_048, lowerCAmelCase=2_048, lowerCAmelCase=4_096, lowerCAmelCase=28, lowerCAmelCase=16, lowerCAmelCase=64, lowerCAmelCase=None, lowerCAmelCase="gelu_new", lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=1e-5, lowerCAmelCase=0.0_2, lowerCAmelCase=True, lowerCAmelCase=50_256, lowerCAmelCase=50_256, lowerCAmelCase=False, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =n_ctx lowerCamelCase_ =n_positions lowerCamelCase_ =n_embd lowerCamelCase_ =n_layer lowerCamelCase_ =n_head lowerCamelCase_ =n_inner lowerCamelCase_ =rotary_dim lowerCamelCase_ =activation_function lowerCamelCase_ =resid_pdrop lowerCamelCase_ =embd_pdrop lowerCamelCase_ =attn_pdrop lowerCamelCase_ =layer_norm_epsilon lowerCamelCase_ =initializer_range lowerCamelCase_ =use_cache lowerCamelCase_ =bos_token_id lowerCamelCase_ =eos_token_id super().__init__( bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, tie_word_embeddings=lowerCAmelCase, **lowerCAmelCase ) class __UpperCamelCase ( _SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase, lowerCAmelCase = "default", lowerCAmelCase = None, lowerCAmelCase = False, ): """simple docstring""" super().__init__(lowerCAmelCase, task=lowerCAmelCase, patching_specs=lowerCAmelCase, use_past=lowerCAmelCase ) if not getattr(self._config, '''pad_token_id''', lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase_ =0 @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase, direction='''inputs''' ) lowerCamelCase_ ={0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase_ ={0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self ): """simple docstring""" return self._config.n_layer @property def lowercase__ ( self ): """simple docstring""" return self._config.n_head def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =super(lowerCAmelCase, self ).generate_dummy_inputs( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase_ =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_ =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase_ =seqlen + 2 lowerCamelCase_ =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase_ =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase_ =common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase_ =ordered_inputs["""attention_mask"""].dtype lowerCamelCase_ =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 ) return ordered_inputs @property def lowercase__ ( self ): """simple docstring""" return 13
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def a_ ( __snake_case : Optional[Any] ) -> List[str]: """simple docstring""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def a_ ( __snake_case : str ) -> Any: """simple docstring""" # word like '180' or '身高' or '神' for char in word: lowerCamelCase_ =ord(lowerCAmelCase__ ) if not _is_chinese_char(lowerCAmelCase__ ): return 0 return 1 def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =set() for token in tokens: lowerCamelCase_ =len(lowerCAmelCase__ ) > 1 and is_chinese(lowerCAmelCase__ ) if chinese_word: word_set.add(lowerCAmelCase__ ) lowerCamelCase_ =list(lowerCAmelCase__ ) return word_list def a_ ( __snake_case : List[str] , __snake_case : set() ) -> Union[str, Any]: """simple docstring""" if not chinese_word_set: return bert_tokens lowerCamelCase_ =max([len(lowerCAmelCase__ ) for w in chinese_word_set] ) lowerCamelCase_ =bert_tokens lowerCamelCase_ =0, len(lowerCAmelCase__ ) while start < end: lowerCamelCase_ =True if is_chinese(bert_word[start] ): lowerCamelCase_ =min(end - start , lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , 1 , -1 ): lowerCamelCase_ =''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase_ ='''##''' + bert_word[j] lowerCamelCase_ =start + i lowerCamelCase_ =False break if single_word: start += 1 return bert_word def a_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): lowerCamelCase_ =ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCamelCase_ =[get_chinese_word(lowerCAmelCase__ ) for r in res] ltp_res.extend(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) lowerCamelCase_ =[] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): lowerCamelCase_ =bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) lowerCamelCase_ =[] for input_ids, chinese_word in zip(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCamelCase_ =[] for id in input_ids: lowerCamelCase_ =bert_tokenizer._convert_id_to_token(lowerCAmelCase__ ) input_tokens.append(lowerCAmelCase__ ) lowerCamelCase_ =add_sub_symbol(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase_ =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase__ ): if token[:2] == "##": lowerCamelCase_ =token[2:] # save chinese tokens' pos if len(lowerCAmelCase__ ) == 1 and _is_chinese_char(ord(lowerCAmelCase__ ) ): ref_id.append(lowerCAmelCase__ ) ref_ids.append(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) return ref_ids def a_ ( __snake_case : str ) -> Optional[Any]: """simple docstring""" # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =f.readlines() lowerCamelCase_ =[line.strip() for line in data if len(lowerCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase_ =LTP(args.ltp ) # faster in GPU device lowerCamelCase_ =BertTokenizer.from_pretrained(args.bert ) lowerCamelCase_ =prepare_ref(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =[json.dumps(lowerCAmelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") a_ : int = parser.parse_args() main(args)
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : List[Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} a_ : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } a_ : List[Any] = { "moussaKam/mbarthez": 10_24, "moussaKam/barthez": 10_24, "moussaKam/barthez-orangesum-title": 10_24, } a_ : Any = "▁" class __UpperCamelCase ( lowercase_ ): lowercase : List[Any] = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = ["input_ids", "attention_mask"] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =AddedToken(a__, lstrip=a__, rstrip=a__ ) if isinstance(a__, a__ ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__, eos_token=a__, unk_token=a__, sep_token=a__, cls_token=a__, pad_token=a__, mask_token=a__, sp_model_kwargs=self.sp_model_kwargs, **a__, ) lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) lowerCamelCase_ ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCamelCase_ =len(self.sp_model ) - 1 lowerCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] lowerCamelCase_ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__, token_ids_a=a__, already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(a__, out_type=a__ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ =self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ ='''''' lowerCamelCase_ =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token lowerCamelCase_ =True lowerCamelCase_ =[] else: current_sub_tokens.append(a__ ) lowerCamelCase_ =False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(a__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( a__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' a_ : List[Any] = 8.31_44_62 # Unit - J mol-1 K-1 def a_ ( __snake_case : int , __snake_case : List[str] , __snake_case : List[Any] ) -> int: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def a_ ( __snake_case : str , __snake_case : Dict , __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : str = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ['ConditionalDetrFeatureExtractor'] a_ : Union[str, Any] = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowercase : str =field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] =Features({'question': Value('string' ), 'context': Value('string' )} ) lowercase : ClassVar[Features] =Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) lowercase : str ="question" lowercase : str ="context" lowercase : str ="answers" @property def lowercase__ ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' import string import numpy def a_ ( __snake_case : Any , __snake_case : str ) -> List[str]: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _A ) class __UpperCamelCase : lowercase : Dict =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase : Union[str, Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) lowercase : List[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.modulus(__snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCamelCase_ =encrypt_key.shape[0] def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.key_string.index(__snake_case ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.key_string[round(__snake_case )] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase_ =det % len(self.key_string ) lowerCamelCase_ =len(self.key_string ) if greatest_common_divisor(__snake_case, len(self.key_string ) ) != 1: lowerCamelCase_ =( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(__snake_case ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[char for char in text.upper() if char in self.key_string] lowerCamelCase_ =chars[-1] while len(__snake_case ) % self.break_key != 0: chars.append(__snake_case ) return "".join(__snake_case ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.process_text(text.upper() ) lowerCamelCase_ ='' for i in range(0, len(__snake_case ) - self.break_key + 1, self.break_key ): lowerCamelCase_ =text[i : i + self.break_key] lowerCamelCase_ =[self.replace_letters(__snake_case ) for char in batch] lowerCamelCase_ =numpy.array([vec] ).T lowerCamelCase_ =self.modulus(self.encrypt_key.dot(__snake_case ) ).T.tolist()[ 0 ] lowerCamelCase_ =''.join( self.replace_digits(__snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase_ =det % len(self.key_string ) lowerCamelCase_ =None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCamelCase_ =i break lowerCamelCase_ =( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__snake_case ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.make_decrypt_key() lowerCamelCase_ =self.process_text(text.upper() ) lowerCamelCase_ ='' for i in range(0, len(__snake_case ) - self.break_key + 1, self.break_key ): lowerCamelCase_ =text[i : i + self.break_key] lowerCamelCase_ =[self.replace_letters(__snake_case ) for char in batch] lowerCamelCase_ =numpy.array([vec] ).T lowerCamelCase_ =self.modulus(decrypt_key.dot(__snake_case ) ).T.tolist()[0] lowerCamelCase_ =''.join( self.replace_digits(__snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ =int(input('''Enter the order of the encryption key: ''' ) ) lowerCamelCase_ =[] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(_A ): lowerCamelCase_ =[int(_A ) for x in input().split()] hill_matrix.append(_A ) lowerCamelCase_ =HillCipher(numpy.array(_A ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) lowerCamelCase_ =input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": lowerCamelCase_ =input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(_A ) ) elif option == "2": lowerCamelCase_ =input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ : Tuple = pd.read_csv("""sample_data.csv""", header=None) a_ : List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column a_ : List[str] = df.iloc[:, 1:2] a_ : Optional[int] = actual_data.values.reshape(len_data, 1) a_ : Any = MinMaxScaler().fit_transform(actual_data) a_ : Any = 10 a_ : List[Any] = 5 a_ : str = 20 a_ : List[str] = len_data - periods * look_back a_ : List[str] = actual_data[:division] a_ : int = actual_data[division - look_back :] a_ : Optional[int] = [], [] a_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ : Union[str, Any] = np.array(train_x) a_ : Tuple = np.array(test_x) a_ : Optional[int] = np.array([list(i.ravel()) for i in train_y]) a_ : Dict = np.array([list(i.ravel()) for i in test_y]) a_ : Dict = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") a_ : Optional[Any] = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) a_ : List[Any] = model.predict(x_test)
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( __snake_case : Union[str, Any] , __snake_case : Any ) -> List[str]: """simple docstring""" assert isinstance(__snake_case , __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def a_ ( __snake_case : Dict , __snake_case : Any , __snake_case : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =features.copy() if features else default_expected_features lowerCamelCase_ =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ =TextDatasetReader(__snake_case , features=__snake_case , cache_dir=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case , split=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if issubclass(__snake_case , __snake_case ): lowerCamelCase_ =text_path elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ =[text_path] lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) def a_ ( __snake_case : List[str] , __snake_case : int , __snake_case : str=("train",) ) -> Dict: """simple docstring""" assert isinstance(__snake_case , __snake_case ) for split in splits: lowerCamelCase_ =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a_ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ =TextDatasetReader({'''train''': text_path} , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def a_ ( __snake_case : str , __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =features.copy() if features else default_expected_features lowerCamelCase_ =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ =TextDatasetReader({'''train''': text_path} , features=__snake_case , cache_dir=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a_ ( __snake_case : int , __snake_case : Dict , __snake_case : Any ) -> List[str]: """simple docstring""" if split: lowerCamelCase_ ={split: text_path} else: lowerCamelCase_ ='''train''' lowerCamelCase_ ={'''train''': text_path, '''test''': text_path} lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' a_ : Optional[Any] = 2_56 # Modulus to hash a string a_ : Tuple = 1_00_00_03 def a_ ( __snake_case : str , __snake_case : str ) -> bool: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =len(__snake_case ) if p_len > t_len: return False lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =1 # Calculating the hash of pattern and substring of text for i in range(__snake_case ): lowerCamelCase_ =(ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCamelCase_ =(ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCamelCase_ =(modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCamelCase_ =( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a_ ( ) -> None: """simple docstring""" lowerCamelCase_ ='''abc1abc12''' lowerCamelCase_ ='''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase_ ='''alskfjaldsk23adsfabcabc''' assert rabin_karp(__snake_case , __snake_case ) and not rabin_karp(__snake_case , __snake_case ) # Test 2) lowerCamelCase_ ='''ABABX''' lowerCamelCase_ ='''ABABZABABYABABX''' assert rabin_karp(__snake_case , __snake_case ) # Test 3) lowerCamelCase_ ='''AAAB''' lowerCamelCase_ ='''ABAAAAAB''' assert rabin_karp(__snake_case , __snake_case ) # Test 4) lowerCamelCase_ ='''abcdabcy''' lowerCamelCase_ ='''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__snake_case , __snake_case ) # Test 5) lowerCamelCase_ ='''Lü''' lowerCamelCase_ ='''Lüsai''' assert rabin_karp(__snake_case , __snake_case ) lowerCamelCase_ ='''Lue''' assert not rabin_karp(__snake_case , __snake_case ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : int = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a_ : Union[str, Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a_ : List[Any] = { """vinai/phobert-base""": 2_56, """vinai/phobert-large""": 2_56, } def a_ ( __snake_case : int ) -> Tuple: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char lowerCamelCase_ =set(__snake_case ) return pairs class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str =VOCAB_FILES_NAMES lowercase : int =PRETRAINED_VOCAB_FILES_MAP lowercase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", **lowerCAmelCase, ): """simple docstring""" super().__init__( bos_token=__a, eos_token=__a, unk_token=__a, sep_token=__a, cls_token=__a, pad_token=__a, mask_token=__a, **__a, ) lowerCamelCase_ =vocab_file lowerCamelCase_ =merges_file lowerCamelCase_ ={} lowerCamelCase_ =0 lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =3 self.add_from_file(__a ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} with open(__a, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[:-1] lowerCamelCase_ =[tuple(merge.split()[:-1] ) for merge in merges] lowerCamelCase_ =dict(zip(__a, range(len(__a ) ) ) ) lowerCamelCase_ ={} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] lowerCamelCase_ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ =tuple(__a ) lowerCamelCase_ =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase_ =get_pairs(__a ) if not pairs: return token while True: lowerCamelCase_ =min(__a, key=lambda lowerCAmelCase : self.bpe_ranks.get(__a, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(__a ): try: lowerCamelCase_ =word.index(__a, __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ =j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(__a ) lowerCamelCase_ =new_word if len(__a ) == 1: break else: lowerCamelCase_ =get_pairs(__a ) lowerCamelCase_ ='''@@ '''.join(__a ) lowerCamelCase_ =word[:-4] lowerCamelCase_ =word return word def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =re.findall(R'''\S+\n?''', __a ) for token in words: split_tokens.extend(list(self.bpe(__a ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.encoder.get(__a, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(__a, self.unk_token ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''' '''.join(__a ).replace('''@@ ''', '''''' ).strip() return out_string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( __a, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( __a, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file, __a ) if os.path.abspath(self.merges_file ) != os.path.abspath(__a ): copyfile(self.merges_file, __a ) return out_vocab_file, out_merge_file def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if isinstance(__a, __a ): try: with open(__a, '''r''', encoding='''utf-8''' ) as fd: self.add_from_file(__a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return lowerCamelCase_ =f.readlines() for lineTmp in lines: lowerCamelCase_ =lineTmp.strip() lowerCamelCase_ =line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowerCamelCase_ =line[:idx] lowerCamelCase_ =len(self.encoder )
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _snake_case , _snake_case , unittest.TestCase ): lowercase : List[Any] =IFInpaintingPipeline lowercase : Union[str, Any] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase : str =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : List[Any] =PipelineTesterMixin.required_optional_params - {'latents'} def lowercase__ ( self ): """simple docstring""" return self._get_dummy_components() def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase_ =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''', reason='''float16 requires CUDA''' ) def lowercase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase__ ( self ): """simple docstring""" self._test_save_load_local() def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' a_ : Tuple = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( a__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase : Tuple ="ssube/stable-diffusion-x4-upscaler-onnx" def lowercase__ ( self, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 128, 128), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ =torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.get_dummy_inputs() lowerCamelCase_ =pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ =image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' ) lowerCamelCase_ =PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.get_dummy_inputs() lowerCamelCase_ =pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' ) lowerCamelCase_ =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.get_dummy_inputs() lowerCamelCase_ =pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' ) lowerCamelCase_ =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.get_dummy_inputs() lowerCamelCase_ =pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' ) lowerCamelCase_ =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.get_dummy_inputs() lowerCamelCase_ =pipe(**SCREAMING_SNAKE_CASE_ ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def lowercase__ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ort.SessionOptions() lowerCamelCase_ =False return options def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ =init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ='A fantasy landscape, trending on artstation' lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =pipe( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, guidance_scale=7.5, num_inference_steps=10, generator=SCREAMING_SNAKE_CASE_, output_type='''np''', ) lowerCamelCase_ =output.images lowerCamelCase_ =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ =init_image.resize((128, 128) ) lowerCamelCase_ =LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''', subfolder='''scheduler''' ) lowerCamelCase_ =OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''', scheduler=SCREAMING_SNAKE_CASE_, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ ='A fantasy landscape, trending on artstation' lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =pipe( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, guidance_scale=7.5, num_inference_steps=20, generator=SCREAMING_SNAKE_CASE_, output_type='''np''', ) lowerCamelCase_ =output.images lowerCamelCase_ =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase_ =np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __UpperCamelCase : lowercase : Union[str, Any] =None lowercase : int =False lowercase : str =False lowercase : List[Any] =False lowercase : Dict =None lowercase : List[Any] =None lowercase : Any =False lowercase : List[Any] =False lowercase : int =False lowercase : Tuple =True lowercase : Union[str, Any] =None lowercase : Optional[Any] =1 lowercase : List[Any] =None lowercase : List[str] =False lowercase : Tuple =None lowercase : str =None def lowercase__ ( self ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase ) for k, v in self.__dict__.items()} )
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
from torch import nn class __UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() lowerCamelCase_ =class_size lowerCamelCase_ =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCamelCase_ =nn.Linear(__lowercase, __lowercase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.mlp(__lowercase ) return logits
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =data lowerCamelCase_ =None class __UpperCamelCase : def __init__( self ): """simple docstring""" lowerCamelCase_ =None lowerCamelCase_ =None def __iter__( self ): """simple docstring""" lowerCamelCase_ =self.head while self.head: yield node.data lowerCamelCase_ =node.next if node == self.head: break def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.insert_nth(len(self ), _UpperCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.insert_nth(0, _UpperCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) lowerCamelCase_ =Node(_UpperCAmelCase ) if self.head is None: lowerCamelCase_ =new_node # first node points itself lowerCamelCase_ =new_node elif index == 0: # insert at head lowerCamelCase_ =self.head lowerCamelCase_ =new_node else: lowerCamelCase_ =self.head for _ in range(index - 1 ): lowerCamelCase_ =temp.next lowerCamelCase_ =temp.next lowerCamelCase_ =new_node if index == len(self ) - 1: # insert at tail lowerCamelCase_ =new_node def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self, lowerCAmelCase = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) lowerCamelCase_ =self.head if self.head == self.tail: # just one node lowerCamelCase_ =None elif index == 0: # delete head node lowerCamelCase_ =self.tail.next.next lowerCamelCase_ =self.head.next else: lowerCamelCase_ =self.head for _ in range(index - 1 ): lowerCamelCase_ =temp.next lowerCamelCase_ =temp.next lowerCamelCase_ =temp.next.next if index == len(self ) - 1: # delete at tail lowerCamelCase_ =temp return delete_node.data def lowercase__ ( self ): """simple docstring""" return len(self ) == 0 def a_ ( ) -> None: """simple docstring""" lowerCamelCase_ =CircularLinkedList() assert len(lowerCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase_ ) == i circular_linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a_ : Optional[int] = getLogger(__name__) a_ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def a_ ( __snake_case : Tuple , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] = 8 , __snake_case : Union[str, Any] = DEFAULT_DEVICE , __snake_case : Dict=False , __snake_case : Dict="summarization" , __snake_case : Tuple=None , **__snake_case : Optional[Any] , ) -> Dict: """simple docstring""" lowerCamelCase_ =Path(__SCREAMING_SNAKE_CASE ).open('''w''' , encoding='''utf-8''' ) lowerCamelCase_ =str(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) if fpaa: lowerCamelCase_ =model.half() lowerCamelCase_ =AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. lowerCamelCase_ =time.time() # update config with task specific params use_task_specific_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if prefix is None: lowerCamelCase_ =prefix or getattr(model.config , '''prefix''' , '''''' ) or "" for examples_chunk in tqdm(list(chunks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ): lowerCamelCase_ =[prefix + text for text in examples_chunk] lowerCamelCase_ =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , truncation=__SCREAMING_SNAKE_CASE , padding='''longest''' ).to(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() lowerCamelCase_ =int(time.time() - start_time ) # seconds lowerCamelCase_ =len(__SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a_ ( ) -> List[Any]: """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def a_ ( __snake_case : Optional[Any]=True ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser() parser.add_argument('''model_name''' , type=__SCREAMING_SNAKE_CASE , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=__SCREAMING_SNAKE_CASE , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=__SCREAMING_SNAKE_CASE , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=__SCREAMING_SNAKE_CASE , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__SCREAMING_SNAKE_CASE , default=8 , required=__SCREAMING_SNAKE_CASE , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=__SCREAMING_SNAKE_CASE , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCamelCase_ =parser.parse_known_args() lowerCamelCase_ =parse_numeric_n_bool_cl_kwargs(__SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) lowerCamelCase_ =[" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCamelCase_ =examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) lowerCamelCase_ =generate_summaries_or_translations( __SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores lowerCamelCase_ =calculate_bleu if "translation" in args.task else calculate_rouge lowerCamelCase_ =[x.rstrip() for x in open(args.save_path ).readlines()] lowerCamelCase_ =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(__SCREAMING_SNAKE_CASE )] lowerCamelCase_ =score_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) scores.update(__SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(__SCREAMING_SNAKE_CASE ) if args.info: lowerCamelCase_ =args.info if verbose: print(__SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(__SCREAMING_SNAKE_CASE , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor a_ : Optional[Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase_ ): def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''', __snake_case, ) super().__init__(*__snake_case, **__snake_case )
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' def a_ ( __snake_case : Union[str, Any] ) -> bool: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def a_ ( __snake_case : List[Any] ) -> bool: """simple docstring""" lowerCamelCase_ =credit_card_number lowerCamelCase_ =0 lowerCamelCase_ =len(__snake_case ) - 2 for i in range(__snake_case , -1 , -2 ): # double the value of every second digit lowerCamelCase_ =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCamelCase_ =cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def a_ ( __snake_case : Union[str, Any] ) -> bool: """simple docstring""" lowerCamelCase_ =F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__snake_case ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__snake_case ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__snake_case ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=4, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_attention_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_choices def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =None if self.use_attention_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase_ =RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs lowerCamelCase_ =True lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Tuple =True lowercase : List[Any] =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaxRobertaModelTester(self ) @slow def lowercase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ =model_class_name.from_pretrained('''roberta-base''', from_pt=lowerCAmelCase ) lowerCamelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase )
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Optional[Any] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[str, Any] =['image_processor', 'tokenizer'] lowercase : Any ='BlipImageProcessor' lowercase : List[Any] =('BertTokenizer', 'BertTokenizerFast') def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =False super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor def __call__( self, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase_ =self.tokenizer lowerCamelCase_ =self.tokenizer( text=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) return text_encoding # add pixel_values lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors=lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer( text=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) else: lowerCamelCase_ =None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase ) return encoding_image_processor def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a_ : List[Any] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-config''' ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) config.push_to_hub('''test-config''', use_auth_token=self._token ) lowerCamelCase_ =BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase, repo_id='''test-config''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''', use_auth_token=self._token ) lowerCamelCase_ =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase, repo_id='''valid_org/test-config-org''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" CustomConfig.register_for_auto_class() lowerCamelCase_ =CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) lowerCamelCase_ =AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, '''CustomConfig''' ) self.assertEqual(new_config.attribute, 42 ) class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase_ =c.n_embd + 1 # int lowerCamelCase_ =c.resid_pdrop + 1.0 # float lowerCamelCase_ =not c.scale_attn_weights # bool lowerCamelCase_ =c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase, c.n_embd, '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase, c.resid_pdrop, '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase, c.scale_attn_weights, '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase, c.summary_type, '''mismatch for key: summary_type''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =PretrainedConfig() lowerCamelCase_ =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase, ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) lowerCamelCase_ =[key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase, lowerCAmelCase )] if len(lowerCAmelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase )}.''' ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''', subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =mock.Mock() lowerCamelCase_ =500 lowerCamelCase_ ={} lowerCamelCase_ =HTTPError lowerCamelCase_ ={} # Download this model to make sure it's in the cache. lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=lowerCAmelCase ) as mock_head: lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =AutoConfig.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =2 json.dump(configuration.to_dict(), open(os.path.join(lowerCAmelCase, '''config.4.0.0.json''' ), '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase_ =['''config.42.0.0.json'''] lowerCamelCase_ =768 configuration.save_pretrained(lowerCAmelCase ) shutil.move(os.path.join(lowerCAmelCase, '''config.4.0.0.json''' ), os.path.join(lowerCAmelCase, '''config.42.0.0.json''' ) ) lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase ) self.assertEqual(new_configuration.hidden_size, 768 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''hf-internal-testing/test-two-configs''' import transformers as new_transformers lowerCamelCase_ ='''v4.0.0''' lowerCamelCase_, lowerCamelCase_ =new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase, return_unused_kwargs=lowerCAmelCase ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase_ ='''v3.0.0''' lowerCamelCase_ =old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase ) self.assertEqual(old_configuration.hidden_size, 768 )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import os import sys import transformers a_ : str = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ : Union[str, Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BILINEAR, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 256} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> float: """simple docstring""" def get_matched_characters(__snake_case : str , __snake_case : str ) -> str: lowerCamelCase_ =[] lowerCamelCase_ =min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowerCamelCase_ =int(max(0 , i - limit ) ) lowerCamelCase_ =int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__snake_case ) lowerCamelCase_ =F'''{_stra[0:_stra.index(__snake_case )]} {_stra[_stra.index(__snake_case ) + 1:]}''' return "".join(__snake_case ) # matching characters lowerCamelCase_ =get_matched_characters(__snake_case , __snake_case ) lowerCamelCase_ =get_matched_characters(__snake_case , __snake_case ) lowerCamelCase_ =len(__snake_case ) # transposition lowerCamelCase_ =( len([(ca, ca) for ca, ca in zip(__snake_case , __snake_case ) if ca != ca] ) // 2 ) if not match_count: lowerCamelCase_ =0.0 else: lowerCamelCase_ =( 1 / 3 * ( match_count / len(__snake_case ) + match_count / len(__snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowerCamelCase_ =0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' from sklearn.metrics import recall_score import datasets a_ : List[Any] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ a_ : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ a_ : Optional[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ), reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=1, lowerCAmelCase="binary", lowerCAmelCase=None, lowerCAmelCase="warn", ): """simple docstring""" lowerCamelCase_ =recall_score( lowerCAmelCase, lowerCAmelCase, labels=lowerCAmelCase, pos_label=lowerCAmelCase, average=lowerCAmelCase, sample_weight=lowerCAmelCase, zero_division=lowerCAmelCase, ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" def count_of_possible_combinations(__snake_case : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__snake_case ) def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __snake_case : int , __snake_case : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase_ =sum( count_of_possible_combinations_with_dp_array(target - item , __snake_case ) for item in array ) lowerCamelCase_ =answer return answer lowerCamelCase_ =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__snake_case , __snake_case ) def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =[0] * (target + 1) lowerCamelCase_ =1 for i in range(1 , target + 1 ): for j in range(__snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a_ : List[str] = 3 a_ : str = 5 a_ : Union[str, Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class __UpperCamelCase : def __init__( self ): """simple docstring""" lowerCamelCase_ ={} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=1 ): """simple docstring""" if self.graph.get(lowerCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase_ =[[w, v]] if not self.graph.get(lowerCAmelCase ): lowerCamelCase_ =[] def lowercase__ ( self ): """simple docstring""" return list(self.graph ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if self.graph.get(lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ): """simple docstring""" if s == d: return [] lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return visited def lowercase__ ( self, lowerCAmelCase=-1 ): """simple docstring""" if c == -1: lowerCamelCase_ =floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase_ =floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase, lowerCAmelCase, 1 ) def lowercase__ ( self, lowerCAmelCase=-2 ): """simple docstring""" lowerCamelCase_ =deque() lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] d.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) while d: lowerCamelCase_ =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return len(self.graph[u] ) def lowercase__ ( self, lowerCAmelCase=-2 ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =s lowerCamelCase_ =[] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return sorted_nodes def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =False indirect_parents.append(lowerCAmelCase ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return list(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =False indirect_parents.append(lowerCAmelCase ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return False def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ): """simple docstring""" lowerCamelCase_ =time() self.dfs(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =time() return end - begin def lowercase__ ( self, lowerCAmelCase=-2 ): """simple docstring""" lowerCamelCase_ =time() self.bfs(lowerCAmelCase ) lowerCamelCase_ =time() return end - begin class __UpperCamelCase : def __init__( self ): """simple docstring""" lowerCamelCase_ ={} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=1 ): """simple docstring""" if self.graph.get(lowerCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase_ =[[w, v]] # add the other way if self.graph.get(lowerCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase_ =[[w, u]] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if self.graph.get(lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase ) # the other way round if self.graph.get(lowerCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ): """simple docstring""" if s == d: return [] lowerCamelCase_ =[] lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return visited def lowercase__ ( self, lowerCAmelCase=-1 ): """simple docstring""" if c == -1: lowerCamelCase_ =floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase_ =floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase, lowerCAmelCase, 1 ) def lowercase__ ( self, lowerCAmelCase=-2 ): """simple docstring""" lowerCamelCase_ =deque() lowerCamelCase_ =[] if s == -2: lowerCamelCase_ =list(self.graph )[0] d.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) while d: lowerCamelCase_ =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return len(self.graph[u] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =False indirect_parents.append(lowerCAmelCase ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return list(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =list(self.graph )[0] stack.append(lowerCAmelCase ) visited.append(lowerCAmelCase ) lowerCamelCase_ =-2 lowerCamelCase_ =[] lowerCamelCase_ =s lowerCamelCase_ =False lowerCamelCase_ =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase_ =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase_ =len(lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase_ =node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase_ =True if len(lowerCAmelCase ) != 0: lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1] else: lowerCamelCase_ =False indirect_parents.append(lowerCAmelCase ) lowerCamelCase_ =s lowerCamelCase_ =ss # check if se have reached the starting point if len(lowerCAmelCase ) == 0: return False def lowercase__ ( self ): """simple docstring""" return list(self.graph ) def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ): """simple docstring""" lowerCamelCase_ =time() self.dfs(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =time() return end - begin def lowercase__ ( self, lowerCAmelCase=-2 ): """simple docstring""" lowerCamelCase_ =time() self.bfs(lowerCAmelCase ) lowerCamelCase_ =time() return end - begin
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' a_ : int = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a_ : Optional[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=3, lowerCAmelCase=18, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =size if size is not None else {'''height''': 20, '''width''': 20} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =size lowerCamelCase_ =do_normalize lowerCamelCase_ =do_convert_rgb lowerCamelCase_ =[512, 1_024, 2_048, 4_096] lowerCamelCase_ =patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowercase__ ( self ): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' lowerCamelCase_ =Image.open(requests.get(lowerCAmelCase, stream=lowerCAmelCase ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : List[str] =PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =PixaStructImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processor_tester.prepare_dummy_image() lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) lowerCamelCase_ =2_048 lowerCamelCase_ =image_processor(lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowerCamelCase_ =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowerCamelCase_ =image_processor( lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowerCamelCase_ =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 lowerCamelCase_ =True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches lowerCamelCase_ ='''Hello''' lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowerCamelCase_ =image_processor( lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, np.ndarray ) lowerCamelCase_ =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowerCamelCase_ =image_processor( lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, torch.Tensor ) # Test not batched input lowerCamelCase_ =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowerCamelCase_ =image_processor( lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : int =PixaStructImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =PixaStructImageProcessingTester(self, num_channels=4 ) lowerCamelCase_ =3 @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowerCamelCase_ =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase_ =image_processor( image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowerCamelCase_ =image_processor( lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a_ : Dict = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a_ : int = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a_ : Optional[int] = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''], reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=4, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =compute_bleu( reference_corpus=lowerCAmelCase, translation_corpus=lowerCAmelCase, max_order=lowerCAmelCase, smooth=lowerCAmelCase ) ((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int]=0.9_9_9 , __snake_case : List[str]="cosine" , ) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case : Tuple ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case : Any ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase_ =[] for i in range(__snake_case ): lowerCamelCase_ =i / num_diffusion_timesteps lowerCamelCase_ =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : List[Any] =[e.name for e in KarrasDiffusionSchedulers] lowercase : str =2 @register_to_config def __init__( self, lowerCAmelCase = 1_000, lowerCAmelCase = 0.0_0_0_8_5, lowerCAmelCase = 0.0_1_2, lowerCAmelCase = "linear", lowerCAmelCase = None, lowerCAmelCase = "epsilon", lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = 1.0, lowerCAmelCase = "linspace", lowerCAmelCase = 0, ): """simple docstring""" if trained_betas is not None: lowerCamelCase_ =torch.tensor(lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase_ =torch.linspace(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_ =( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCAmelCase, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_ =betas_for_alpha_bar(lowerCAmelCase, alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowerCamelCase_ =betas_for_alpha_bar(lowerCAmelCase, alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase_ =1.0 - self.betas lowerCamelCase_ =torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =use_karras_sigmas def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if schedule_timesteps is None: lowerCamelCase_ =self.timesteps lowerCamelCase_ =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase_ =1 if len(lowerCAmelCase ) > 1 else 0 else: lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep lowerCamelCase_ =self._index_counter[timestep_int] return indices[pos].item() @property def lowercase__ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(lowerCAmelCase ) lowerCamelCase_ =self.sigmas[step_index] lowerCamelCase_ =sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =num_inference_steps lowerCamelCase_ =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase_ =np.linspace(0, num_train_timesteps - 1, lowerCAmelCase, dtype=lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase_ =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(0, lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase_ =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(lowerCAmelCase, 0, -step_ratio )).round().copy().astype(lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCamelCase_ =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase_ =np.log(lowerCAmelCase ) lowerCamelCase_ =np.interp(lowerCAmelCase, np.arange(0, len(lowerCAmelCase ) ), lowerCAmelCase ) if self.config.use_karras_sigmas: lowerCamelCase_ =self._convert_to_karras(in_sigmas=lowerCAmelCase, num_inference_steps=self.num_inference_steps ) lowerCamelCase_ =np.array([self._sigma_to_t(lowerCAmelCase, lowerCAmelCase ) for sigma in sigmas] ) lowerCamelCase_ =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ).to(device=lowerCAmelCase ) lowerCamelCase_ =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ) lowerCamelCase_ =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase ).startswith('''mps''' ): # mps does not support float64 lowerCamelCase_ =timesteps.to(lowerCAmelCase, dtype=torch.floataa ) else: lowerCamelCase_ =timesteps.to(device=lowerCAmelCase ) # empty dt and derivative lowerCamelCase_ =None lowerCamelCase_ =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase_ =defaultdict(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =np.log(lowerCAmelCase ) # get distribution lowerCamelCase_ =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCamelCase_ =np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCamelCase_ =low_idx + 1 lowerCamelCase_ =log_sigmas[low_idx] lowerCamelCase_ =log_sigmas[high_idx] # interpolate sigmas lowerCamelCase_ =(low - log_sigma) / (low - high) lowerCamelCase_ =np.clip(lowerCAmelCase, 0, 1 ) # transform interpolation to time range lowerCamelCase_ =(1 - w) * low_idx + w * high_idx lowerCamelCase_ =t.reshape(sigma.shape ) return t def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =in_sigmas[-1].item() lowerCamelCase_ =in_sigmas[0].item() lowerCamelCase_ =7.0 # 7.0 is the value used in the paper lowerCamelCase_ =np.linspace(0, 1, lowerCAmelCase ) lowerCamelCase_ =sigma_min ** (1 / rho) lowerCamelCase_ =sigma_max ** (1 / rho) lowerCamelCase_ =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase__ ( self ): """simple docstring""" return self.dt is None def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(lowerCAmelCase ) # advance index counter by 1 lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase_ =self.sigmas[step_index] lowerCamelCase_ =self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCamelCase_ =self.sigmas[step_index - 1] lowerCamelCase_ =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase_ =0 lowerCamelCase_ =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_next lowerCamelCase_ =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_next lowerCamelCase_ =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCamelCase_ =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCamelCase_ =pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase_ =(sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase_ =sigma_next - sigma_hat # store for 2nd order step lowerCamelCase_ =derivative lowerCamelCase_ =dt lowerCamelCase_ =sample else: # 2. 2nd order / Heun's method lowerCamelCase_ =(sample - pred_original_sample) / sigma_next lowerCamelCase_ =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCamelCase_ =self.dt lowerCamelCase_ =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase ): # mps does not support float64 lowerCamelCase_ =self.timesteps.to(original_samples.device, dtype=torch.floataa ) lowerCamelCase_ =timesteps.to(original_samples.device, dtype=torch.floataa ) else: lowerCamelCase_ =self.timesteps.to(original_samples.device ) lowerCamelCase_ =timesteps.to(original_samples.device ) lowerCamelCase_ =[self.index_for_timestep(lowerCAmelCase, lowerCAmelCase ) for t in timesteps] lowerCamelCase_ =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase_ =sigma.unsqueeze(-1 ) lowerCamelCase_ =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
import os import numpy import onnx def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =a.name lowerCamelCase_ =b.name lowerCamelCase_ ='''''' lowerCamelCase_ ='''''' lowerCamelCase_ =a == b lowerCamelCase_ =name_a lowerCamelCase_ =name_b return res def a_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__snake_case , __snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __snake_case , __snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , __snake_case , __snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __snake_case , __snake_case ) def a_ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(__snake_case , __snake_case , __snake_case ) def a_ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ =list(model.graph.initializer ) lowerCamelCase_ =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCamelCase_ =inits[i].name lowerCamelCase_ =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __snake_case , __snake_case ) def a_ ( __snake_case : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ =os.path.dirname(__snake_case ) lowerCamelCase_ =os.path.basename(__snake_case ) lowerCamelCase_ =onnx.load(os.path.join(__snake_case , __snake_case ) ) lowerCamelCase_ =list(model.graph.initializer ) lowerCamelCase_ =set() lowerCamelCase_ ={} lowerCamelCase_ =[] lowerCamelCase_ =0 for i in range(len(__snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(__snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__snake_case ) dup_set.add(__snake_case ) lowerCamelCase_ =inits[j].data_type lowerCamelCase_ =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , __snake_case ) total_reduced_size += mem_size lowerCamelCase_ =inits[i].name lowerCamelCase_ =inits[j].name if name_i in dup_map: dup_map[name_i].append(__snake_case ) else: lowerCamelCase_ =[name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) lowerCamelCase_ =sorted(__snake_case ) _remove_dup_initializers_from_model(__snake_case , __snake_case , __snake_case ) lowerCamelCase_ ='''optimized_''' + model_file_name lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) onnx.save(__snake_case , __snake_case ) return new_model
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin a_ : str = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class __UpperCamelCase ( unittest.TestCase , lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_tool('''text-question-answering''' ) self.tool.setup() lowerCamelCase_ =load_tool('''text-question-answering''', remote=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool(lowerCAmelCase, '''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool(lowerCAmelCase, '''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool(text=lowerCAmelCase, question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool(text=lowerCAmelCase, question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' )
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
from math import sqrt def a_ ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __snake_case : int = 1_0001 ) -> int: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =1 while count != nth and number < 3: number += 1 if is_prime(__snake_case ): count += 1 while count != nth: number += 2 if is_prime(__snake_case ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class __UpperCamelCase : lowercase : Optional[str] =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'The column name of the images in the files.'} ) lowercase : Optional[str] =field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the training data.'} ) lowercase : Optional[str] =field(default=lowerCamelCase__ , metadata={'help': 'A folder containing the validation data.'} ) lowercase : Optional[float] =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={} if self.train_dir is not None: lowerCamelCase_ =self.train_dir if self.validation_dir is not None: lowerCamelCase_ =self.validation_dir lowerCamelCase_ =data_files if data_files else None @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase : str =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase : str =field(default=lowerCamelCase__ , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase : float =field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : float =field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def a_ ( __snake_case : List[str] ) -> int: """simple docstring""" lowerCamelCase_ =torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def a_ ( ) -> str: """simple docstring""" lowerCamelCase_ =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ =training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase_ =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase_ =None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: lowerCamelCase_ =ds['''train'''].train_test_split(data_args.train_val_split ) lowerCamelCase_ =split['''train'''] lowerCamelCase_ =split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ ={ '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase_ =ViTMAEConfig.from_pretrained(model_args.config_name , **__snake_case ) elif model_args.model_name_or_path: lowerCamelCase_ =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: lowerCamelCase_ =ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase_ =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__snake_case ) elif model_args.model_name_or_path: lowerCamelCase_ =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__snake_case ) else: lowerCamelCase_ =ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase_ =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowerCamelCase_ =ViTMAEForPreTraining(__snake_case ) if training_args.do_train: lowerCamelCase_ =ds['''train'''].column_names else: lowerCamelCase_ =ds['''validation'''].column_names if data_args.image_column_name is not None: lowerCamelCase_ =data_args.image_column_name elif "image" in column_names: lowerCamelCase_ ='''image''' elif "img" in column_names: lowerCamelCase_ ='''img''' else: lowerCamelCase_ =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase_ =image_processor.size['''shortest_edge'''] else: lowerCamelCase_ =(image_processor.size['''height'''], image_processor.size['''width''']) lowerCamelCase_ =Compose( [ Lambda(lambda __snake_case : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(__snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__snake_case : List[Any] ): lowerCamelCase_ =[transforms(__snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowerCamelCase_ =ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowerCamelCase_ =( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Compute absolute learning rate lowerCamelCase_ =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase_ =training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase_ =Trainer( model=__snake_case , args=__snake_case , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: lowerCamelCase_ =None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ =last_checkpoint lowerCamelCase_ =trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase_ =trainer.evaluate() trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) # Write model card and (optionally) push to hub lowerCamelCase_ ={ '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def a_ ( __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ : Optional[int] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''test-model-flax''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase, repo_id='''test-model-flax''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''valid_org/test-model-flax-org''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase, repo_id='''valid_org/test-model-flax-org''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =True lowerCamelCase_ =flatten_dict(modela.params ) lowerCamelCase_ =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCamelCase_ =False return models_are_equal @require_flax class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ), max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase )
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[int] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple ='xlm-roberta' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase="absolute", lowerCAmelCase=True, lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =position_embedding_type lowerCamelCase_ =use_cache lowerCamelCase_ =classifier_dropout class __UpperCamelCase ( lowerCamelCase__ ): @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : List[str] = logging.get_logger(__name__) a_ : str = {"""tokenizer_file""": """tokenizer.json"""} a_ : Dict = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] =['input_ids', 'attention_mask'] lowercase : List[str] =None def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase="<unk>", lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="<pad>", lowerCAmelCase=False, lowerCAmelCase=False, **lowerCAmelCase, ): """simple docstring""" super().__init__( lowerCAmelCase, lowerCAmelCase, tokenizer_file=lowerCAmelCase, unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, add_prefix_space=lowerCAmelCase, clean_up_tokenization_spaces=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', lowerCAmelCase ) != add_prefix_space: lowerCamelCase_ =getattr(lowerCAmelCase, pre_tok_state.pop('''type''' ) ) lowerCamelCase_ =add_prefix_space lowerCamelCase_ =pre_tok_class(**lowerCAmelCase ) lowerCamelCase_ =add_prefix_space def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =kwargs.get('''is_split_into_words''', lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =kwargs.get('''is_split_into_words''', lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: lowerCamelCase_ =input_ids[-self.model_max_length :] return input_ids
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def lowercase__ ( *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCamelCase ( unittest.TestCase ): lowercase : Dict =MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, image_processor=lowerCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''', threshold=0.0 ) self.assertGreater(len(lowerCAmelCase ), 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase, { '''score''': ANY(lowerCAmelCase ), '''label''': ANY(lowerCAmelCase ), '''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )}, }, ) import datasets lowerCamelCase_ =datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''', '''image''', split='''test''' ) lowerCamelCase_ =[ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] lowerCamelCase_ =object_detector(lowerCAmelCase, threshold=0.0 ) self.assertEqual(len(lowerCAmelCase ), len(lowerCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCAmelCase ), 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase, { '''score''': ANY(lowerCAmelCase ), '''label''': ANY(lowerCAmelCase ), '''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )}, }, ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''hf-internal-testing/tiny-detr-mobilenetsv3''' lowerCamelCase_ =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, feature_extractor=lowerCAmelCase ) lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=0.0 ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ) lowerCamelCase_ =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ], threshold=0.0, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''facebook/detr-resnet-50''' lowerCamelCase_ =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, feature_extractor=lowerCAmelCase ) lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) lowerCamelCase_ =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''facebook/detr-resnet-50''' lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase ) lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) lowerCamelCase_ =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =0.9_9_8_5 lowerCamelCase_ ='''facebook/detr-resnet-50''' lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase ) lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ) @require_torch @require_pytesseract @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''Narsil/layoutlmv3-finetuned-funsd''' lowerCamelCase_ =0.9_9_9_3 lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase, threshold=lowerCAmelCase ) lowerCamelCase_ =object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ], )
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Optional[int] = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : int = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""CLIPFeatureExtractor"""] a_ : List[str] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' import unittest import numpy as np def a_ ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.shape(__snake_case ) lowerCamelCase_ =np.shape(__snake_case ) lowerCamelCase_ =np.shape(__snake_case ) if shape_a[0] != shape_b[0]: lowerCamelCase_ =( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: lowerCamelCase_ =( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__snake_case ) lowerCamelCase_ =pseudo_inv if a_inv is None: try: lowerCamelCase_ =np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1], [6, 3]] ) lowerCamelCase_ =schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.block([[a, b], [b.T, c]] ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) self.assertAlmostEqual(lowerCAmelCase, det_a * det_s ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase ): schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase ): schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a_ : List[str] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a_ : Optional[int] = TaTokenizerFast a_ : int = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a_ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : jnp.ndarray lowercase : jnp.ndarray class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : Tuple[int] =(16, 32, 96, 2_56) lowercase : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) lowerCamelCase_ =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ =self.block_out_channels[i] lowerCamelCase_ =self.block_out_channels[i + 1] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =blocks lowerCamelCase_ =nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) for block in self.blocks: lowerCamelCase_ =block(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) lowerCamelCase_ =self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class __UpperCamelCase ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =32 lowercase : int =4 lowercase : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase : Union[bool, Tuple[bool]] =False lowercase : Tuple[int] =(3_20, 6_40, 12_80, 12_80) lowercase : int =2 lowercase : Union[int, Tuple[int]] =8 lowercase : Optional[Union[int, Tuple[int]]] =None lowercase : int =12_80 lowercase : float =0.0 lowercase : bool =False lowercase : jnp.dtype =jnp.floataa lowercase : bool =True lowercase : int =0 lowercase : str ="rgb" lowercase : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_ =jnp.ones((1,), dtype=jnp.intaa ) lowerCamelCase_ =jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) lowerCamelCase_ =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_, lowerCamelCase_ =jax.random.split(lowerCAmelCase ) lowerCamelCase_ ={'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )["params"] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.block_out_channels lowerCamelCase_ =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ =nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time lowerCamelCase_ =FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) lowerCamelCase_ =FlaxTimestepEmbedding(lowerCAmelCase, dtype=self.dtype ) lowerCamelCase_ =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) lowerCamelCase_ =self.only_cross_attention if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =block_out_channels[0] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ =output_channel lowerCamelCase_ =block_out_channels[i] lowerCamelCase_ =i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ =FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: lowerCamelCase_ =FlaxDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) lowerCamelCase_ =down_blocks lowerCamelCase_ =controlnet_down_blocks # mid lowerCamelCase_ =block_out_channels[-1] lowerCamelCase_ =FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 1.0, lowerCAmelCase = True, lowerCAmelCase = False, ): """simple docstring""" lowerCamelCase_ =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ =jnp.flip(lowerCAmelCase, axis=1 ) # 1. time if not isinstance(lowerCAmelCase, jnp.ndarray ): lowerCamelCase_ =jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(lowerCAmelCase, jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ =jnp.expand_dims(lowerCAmelCase, 0 ) lowerCamelCase_ =self.time_proj(lowerCAmelCase ) lowerCamelCase_ =self.time_embedding(lowerCAmelCase ) # 2. pre-process lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase_ =(sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) else: lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ =self.mid_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) # 5. contronet blocks lowerCamelCase_ =() for down_block_res_sample, controlnet_block in zip(lowerCAmelCase, self.controlnet_down_blocks ): lowerCamelCase_ =controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ =controlnet_down_block_res_samples lowerCamelCase_ =self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling lowerCamelCase_ =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase, mid_block_res_sample=lowerCAmelCase )
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a_ : List[Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=1 ): """simple docstring""" lowerCamelCase_ =tokenizer lowerCamelCase_ =dataset lowerCamelCase_ =len(lowerCAmelCase ) if n_tasks is None else n_tasks lowerCamelCase_ =n_copies def __iter__( self ): """simple docstring""" lowerCamelCase_ =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCamelCase_ =self.tokenizer(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =start_length lowerCamelCase_ =eof_strings lowerCamelCase_ =tokenizer def __call__( self, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase ) def a_ ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def a_ ( __snake_case : str , __snake_case : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int]=20 , **__snake_case : int ) -> Any: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): lowerCamelCase_ =batch['''ids'''].shape[-1] lowerCamelCase_ =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times lowerCamelCase_ =batch['''task_id'''].repeat(__snake_case ) lowerCamelCase_ =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ =generated_tokens.cpu().numpy() lowerCamelCase_ =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) lowerCamelCase_ =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =HfArgumentParser(__snake_case ) lowerCamelCase_ =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ ='''false''' if args.num_workers is None: lowerCamelCase_ =multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer lowerCamelCase_ =AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ =tokenizer.eos_token lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric lowerCamelCase_ =load_dataset('''openai_humaneval''' ) lowerCamelCase_ =load_metric('''code_eval''' ) lowerCamelCase_ =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowerCamelCase_ =args.n_samples // args.batch_size lowerCamelCase_ =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(__snake_case , __snake_case ) lowerCamelCase_ =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: lowerCamelCase_ =[] for task in tqdm(range(__snake_case ) ): lowerCamelCase_ =human_eval['''test'''][task]['''test'''] lowerCamelCase_ =F'''check({human_eval['test'][task]['entry_point']})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_, lowerCamelCase_ =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0