code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def a_ ( __snake_case : bytes ) -> str:
"""simple docstring"""
return "".join([hex(__snake_case )[2:].zfill(2 ).upper() for byte in list(__snake_case )] )
def a_ ( __snake_case : str ) -> bytes:
"""simple docstring"""
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(__snake_case ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(__snake_case ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__snake_case ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
from cmath import sqrt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError('''Coefficient \'a\' must not be zero.''' )
lowerCamelCase_ =b * b - 4 * a * c
lowerCamelCase_ =(-b + sqrt(__snake_case )) / (2 * a)
lowerCamelCase_ =(-b - sqrt(__snake_case )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def a_ ( ) -> Any:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =quadratic_roots(a=5 , b=6 , c=1 )
print(F'''The solutions are: {solutiona} and {solutiona}''' )
if __name__ == "__main__":
main()
| 6 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
a_ : Tuple = TypeVar("""T""")
a_ : Dict = Union[List[T], Tuple[T, ...]]
a_ : int = Union[T, List[T], Dict[str, T]]
a_ : Optional[Any] = Union[str, bytes, os.PathLike]
| 6 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =dataset
lowerCamelCase_ =process
lowerCamelCase_ =params
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.dataset[i]
lowerCamelCase_ =self.process(lowerCAmelCase, **self.params )
return processed
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
lowerCamelCase_ =loader
lowerCamelCase_ =infer
lowerCamelCase_ =params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
lowerCamelCase_ =None
lowerCamelCase_ =loader_batch_size
# Internal bookkeeping
lowerCamelCase_ =None
lowerCamelCase_ =None
def __len__( self ):
"""simple docstring"""
return len(self.loader )
def __iter__( self ):
"""simple docstring"""
lowerCamelCase_ =iter(self.loader )
return self
def lowercase__ ( self ):
"""simple docstring"""
if isinstance(self._loader_batch_data, torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
lowerCamelCase_ =self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
lowerCamelCase_ ={}
for k, element in self._loader_batch_data.items():
if isinstance(lowerCAmelCase, lowerCAmelCase ):
# Convert ModelOutput to tuple first
lowerCamelCase_ =element.to_tuple()
if isinstance(element[0], torch.Tensor ):
lowerCamelCase_ =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
lowerCamelCase_ =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCAmelCase, lowerCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0], torch.Tensor ):
lowerCamelCase_ =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0], np.ndarray ):
lowerCamelCase_ =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
lowerCamelCase_ =None
elif isinstance(element[self._loader_batch_index], torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowerCamelCase_ =element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index], np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
lowerCamelCase_ =np.expand_dims(element[self._loader_batch_index], 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
lowerCamelCase_ =element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
lowerCamelCase_ =self._loader_batch_data.__class__(lowerCAmelCase )
self._loader_batch_index += 1
return result
def lowercase__ ( self ):
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
lowerCamelCase_ =next(self.iterator )
lowerCamelCase_ =self.infer(lowerCAmelCase, **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(lowerCAmelCase, torch.Tensor ):
lowerCamelCase_ =processed
else:
lowerCamelCase_ =list(processed.keys() )[0]
lowerCamelCase_ =processed[key]
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =len(lowerCAmelCase )
else:
lowerCamelCase_ =first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowerCamelCase_ =observed_batch_size
# Setting internal index to unwrap the batch
lowerCamelCase_ =processed
lowerCamelCase_ =0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
super().__init__(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
def __iter__( self ):
"""simple docstring"""
lowerCamelCase_ =iter(self.loader )
lowerCamelCase_ =None
return self
def lowercase__ ( self ):
"""simple docstring"""
if self.subiterator is None:
lowerCamelCase_ =self.infer(next(self.iterator ), **self.params )
try:
# Try to return next item
lowerCamelCase_ =next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
lowerCamelCase_ =self.infer(next(self.iterator ), **self.params )
lowerCamelCase_ =next(self.subiterator )
return processed
class __UpperCamelCase ( lowerCamelCase__ ):
def __iter__( self ):
"""simple docstring"""
lowerCamelCase_ =iter(self.loader )
return self
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =[]
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
lowerCamelCase_ =self.loader_batch_item()
lowerCamelCase_ =item.pop('''is_last''' )
accumulator.append(lowerCAmelCase )
if is_last:
return accumulator
while not is_last:
lowerCamelCase_ =self.infer(next(self.iterator ), **self.params )
if self.loader_batch_size is not None:
if isinstance(lowerCAmelCase, torch.Tensor ):
lowerCamelCase_ =processed
else:
lowerCamelCase_ =list(processed.keys() )[0]
lowerCamelCase_ =processed[key]
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =len(lowerCAmelCase )
else:
lowerCamelCase_ =first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
lowerCamelCase_ =observed_batch_size
lowerCamelCase_ =processed
lowerCamelCase_ =0
while self._loader_batch_index < self.loader_batch_size:
lowerCamelCase_ =self.loader_batch_item()
lowerCamelCase_ =item.pop('''is_last''' )
accumulator.append(lowerCAmelCase )
if is_last:
return accumulator
else:
lowerCamelCase_ =processed
lowerCamelCase_ =item.pop('''is_last''' )
accumulator.append(lowerCAmelCase )
return accumulator
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =dataset
lowerCamelCase_ =key
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
return self.dataset[i][self.key]
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =dataset
lowerCamelCase_ =keya
lowerCamelCase_ =keya
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 6 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any:
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =search_prob
lowerCamelCase_ =start_temperate
lowerCamelCase_ =[]
lowerCamelCase_ =0
lowerCamelCase_ =None
while not search_end:
lowerCamelCase_ =current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ =current_state
scores.append(__snake_case )
iterations += 1
lowerCamelCase_ =None
lowerCamelCase_ =current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor
lowerCamelCase_ =neighbors.pop(__snake_case )
lowerCamelCase_ =picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ =change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ =picked_neighbor
else:
lowerCamelCase_ =(math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ =picked_neighbor
lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ =True
else:
lowerCamelCase_ =next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__snake_case ) , __snake_case )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : List[str] = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =0
lowerCamelCase_ =len(__snake_case )
for i in range(n - 1 ):
for j in range(i + 1 , __snake_case ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def a_ ( __snake_case : Dict ) -> str:
"""simple docstring"""
if len(__snake_case ) <= 1:
return arr, 0
lowerCamelCase_ =len(__snake_case ) // 2
lowerCamelCase_ =arr[0:mid]
lowerCamelCase_ =arr[mid:]
lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case )
lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case )
lowerCamelCase_, lowerCamelCase_ =_count_cross_inversions(__snake_case , __snake_case )
lowerCamelCase_ =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def a_ ( __snake_case : List[Any] , __snake_case : Any ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =lowerCamelCase_ =lowerCamelCase_ =0
while i < len(__snake_case ) and j < len(__snake_case ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__snake_case ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__snake_case ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def a_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowerCamelCase_ =count_inversions_bf(__snake_case )
lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , __snake_case )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowerCamelCase_ =count_inversions_bf(__snake_case )
lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , __snake_case )
# an empty list should also have zero inversions
lowerCamelCase_ =[]
lowerCamelCase_ =count_inversions_bf(__snake_case )
lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , __snake_case )
if __name__ == "__main__":
main()
| 6 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a_ : int = None
a_ : List[Any] = logging.get_logger(__name__)
a_ : str = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a_ : Optional[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
a_ : Union[str, Any] = {
"""facebook/mbart-large-en-ro""": 10_24,
"""facebook/mbart-large-cc25""": 10_24,
}
# fmt: off
a_ : Optional[int] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple =VOCAB_FILES_NAMES
lowercase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : str =PRETRAINED_VOCAB_FILES_MAP
lowercase : int =['input_ids', 'attention_mask']
lowercase : Union[str, Any] =MBartTokenizer
lowercase : List[int] =[]
lowercase : List[int] =[]
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else mask_token
super().__init__(
vocab_file=lowerCAmelCase, tokenizer_file=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, sep_token=lowerCAmelCase, cls_token=lowerCAmelCase, unk_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token=lowerCAmelCase, src_lang=lowerCAmelCase, tgt_lang=lowerCAmelCase, additional_special_tokens=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =vocab_file
lowerCamelCase_ =False if not self.vocab_file else True
lowerCamelCase_ =FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
lowerCamelCase_ ={
lang_code: self.convert_tokens_to_ids(lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCamelCase_ =src_lang if src_lang is not None else '''en_XX'''
lowerCamelCase_ =self.convert_tokens_to_ids(self._src_lang )
lowerCamelCase_ =tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =[self.sep_token_id]
lowerCamelCase_ =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
lowerCamelCase_ =src_lang
lowerCamelCase_ =self(lowerCAmelCase, add_special_tokens=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =self.convert_tokens_to_ids(lowerCAmelCase )
lowerCamelCase_ =tgt_lang_id
return inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = "en_XX", lowerCAmelCase = None, lowerCAmelCase = "ro_RO", **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =src_lang
lowerCamelCase_ =tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def lowercase__ ( self ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.convert_tokens_to_ids(lowerCAmelCase )
lowerCamelCase_ =[]
lowerCamelCase_ =[self.eos_token_id, self.cur_lang_code]
lowerCamelCase_ =self.convert_ids_to_tokens(self.prefix_tokens )
lowerCamelCase_ =self.convert_ids_to_tokens(self.suffix_tokens )
lowerCamelCase_ =processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.convert_tokens_to_ids(lowerCAmelCase )
lowerCamelCase_ =[]
lowerCamelCase_ =[self.eos_token_id, self.cur_lang_code]
lowerCamelCase_ =self.convert_ids_to_tokens(self.prefix_tokens )
lowerCamelCase_ =self.convert_ids_to_tokens(self.suffix_tokens )
lowerCamelCase_ =processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
lowerCamelCase_ =os.path.join(
lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ):
copyfile(self.vocab_file, lowerCAmelCase )
return (out_vocab_file,)
| 6 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =['image_processor', 'tokenizer']
lowercase : int ='LayoutLMv2ImageProcessor'
lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCamelCase_ =features['''words''']
lowerCamelCase_ =self.tokenizer(
text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, )
# add pixel values
lowerCamelCase_ =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] )
lowerCamelCase_ =images
return encoded_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' )
return images_with_overflow
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : str =field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
lowercase : ClassVar[Features] =Features({'text': Value('string' )} )
lowercase : ClassVar[Features] =Features({} )
lowercase : str ="text"
@property
def lowercase__ ( self ):
"""simple docstring"""
return {self.text_column: "text"}
| 6 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =VQModel
lowercase : Union[str, Any] ='sample'
@property
def lowercase__ ( self, lowerCAmelCase=(32, 32) ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
| 6 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def a_ ( __snake_case : int , __snake_case : List[Any] , __snake_case : str ) -> Any:
"""simple docstring"""
# Initialise PyTorch model
lowerCamelCase_ =RemBertConfig.from_json_file(__snake_case )
print('''Building PyTorch model from configuration: {}'''.format(str(__snake_case ) ) )
lowerCamelCase_ =RemBertModel(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(__snake_case ) )
torch.save(model.state_dict() , __snake_case )
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--rembert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained RemBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
a_ : Dict = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 6 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def a_ ( __snake_case : str , __snake_case : str ) -> str | Literal[False]:
"""simple docstring"""
lowerCamelCase_ =list(__snake_case )
lowerCamelCase_ =list(__snake_case )
lowerCamelCase_ =0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count += 1
lowerCamelCase_ ='''_'''
if count > 1:
return False
else:
return "".join(__snake_case )
def a_ ( __snake_case : list[str] ) -> list[str]:
"""simple docstring"""
lowerCamelCase_ =[]
while True:
lowerCamelCase_ =['''$'''] * len(__snake_case )
lowerCamelCase_ =[]
for i in range(len(__snake_case ) ):
for j in range(i + 1 , len(__snake_case ) ):
lowerCamelCase_ =compare_string(binary[i] , binary[j] )
if k is False:
lowerCamelCase_ ='''*'''
lowerCamelCase_ ='''*'''
temp.append('''X''' )
for i in range(len(__snake_case ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__snake_case ) == 0:
return pi
lowerCamelCase_ =list(set(__snake_case ) )
def a_ ( __snake_case : int , __snake_case : Sequence[float] ) -> list[str]:
"""simple docstring"""
lowerCamelCase_ =[]
for minterm in minterms:
lowerCamelCase_ =''''''
for _ in range(__snake_case ):
lowerCamelCase_ =str(minterm % 2 ) + string
minterm //= 2
temp.append(__snake_case )
return temp
def a_ ( __snake_case : str , __snake_case : str , __snake_case : int ) -> bool:
"""simple docstring"""
lowerCamelCase_ =list(__snake_case )
lowerCamelCase_ =list(__snake_case )
lowerCamelCase_ =0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def a_ ( __snake_case : list[list[int]] , __snake_case : list[str] ) -> list[str]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[0] * len(__snake_case )
for i in range(len(chart[0] ) ):
lowerCamelCase_ =0
lowerCamelCase_ =-1
for j in range(len(__snake_case ) ):
if chart[j][i] == 1:
count += 1
lowerCamelCase_ =j
if count == 1:
lowerCamelCase_ =1
for i in range(len(__snake_case ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__snake_case ) ):
lowerCamelCase_ =0
temp.append(prime_implicants[i] )
while True:
lowerCamelCase_ =0
lowerCamelCase_ =-1
lowerCamelCase_ =0
for i in range(len(__snake_case ) ):
lowerCamelCase_ =chart[i].count(1 )
if count_n > max_n:
lowerCamelCase_ =count_n
lowerCamelCase_ =i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__snake_case ) ):
lowerCamelCase_ =0
def a_ ( __snake_case : list[str] , __snake_case : list[str] ) -> list[list[int]]:
"""simple docstring"""
lowerCamelCase_ =[[0 for x in range(len(__snake_case ) )] for x in range(len(__snake_case ) )]
for i in range(len(__snake_case ) ):
lowerCamelCase_ =prime_implicants[i].count('''_''' )
for j in range(len(__snake_case ) ):
if is_for_table(prime_implicants[i] , binary[j] , __snake_case ):
lowerCamelCase_ =1
return chart
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =int(input('''Enter the no. of variables\n''' ) )
lowerCamelCase_ =[
float(__snake_case )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
lowerCamelCase_ =decimal_to_binary(__snake_case , __snake_case )
lowerCamelCase_ =check(__snake_case )
print('''Prime Implicants are:''' )
print(__snake_case )
lowerCamelCase_ =prime_implicant_chart(__snake_case , __snake_case )
lowerCamelCase_ =selection(__snake_case , __snake_case )
print('''Essential Prime Implicants are:''' )
print(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 6 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : int = logging.get_logger(__name__)
a_ : Optional[Any] = {
"""facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] ='wav2vec2'
def __init__( self, lowerCAmelCase=32, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-5, lowerCAmelCase="group", lowerCAmelCase="gelu", lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512), lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2), lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2), lowerCAmelCase=False, lowerCAmelCase=128, lowerCAmelCase=16, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=0.0_5, lowerCAmelCase=10, lowerCAmelCase=2, lowerCAmelCase=0.0, lowerCAmelCase=10, lowerCAmelCase=0, lowerCAmelCase=320, lowerCAmelCase=2, lowerCAmelCase=0.1, lowerCAmelCase=100, lowerCAmelCase=256, lowerCAmelCase=256, lowerCAmelCase=0.1, lowerCAmelCase="sum", lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=256, lowerCAmelCase=(512, 512, 512, 512, 1_500), lowerCAmelCase=(5, 3, 3, 1, 1), lowerCAmelCase=(1, 2, 3, 1, 1), lowerCAmelCase=512, lowerCAmelCase=0, lowerCAmelCase=1, lowerCAmelCase=2, lowerCAmelCase=False, lowerCAmelCase=3, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase, pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase )
lowerCamelCase_ =hidden_size
lowerCamelCase_ =feat_extract_norm
lowerCamelCase_ =feat_extract_activation
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =conv_bias
lowerCamelCase_ =num_conv_pos_embeddings
lowerCamelCase_ =num_conv_pos_embedding_groups
lowerCamelCase_ =len(self.conv_dim )
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =hidden_dropout
lowerCamelCase_ =attention_dropout
lowerCamelCase_ =activation_dropout
lowerCamelCase_ =feat_proj_dropout
lowerCamelCase_ =final_dropout
lowerCamelCase_ =layerdrop
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =initializer_range
lowerCamelCase_ =vocab_size
lowerCamelCase_ =do_stable_layer_norm
lowerCamelCase_ =use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase_ =apply_spec_augment
lowerCamelCase_ =mask_time_prob
lowerCamelCase_ =mask_time_length
lowerCamelCase_ =mask_time_min_masks
lowerCamelCase_ =mask_feature_prob
lowerCamelCase_ =mask_feature_length
lowerCamelCase_ =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase_ =num_codevectors_per_group
lowerCamelCase_ =num_codevector_groups
lowerCamelCase_ =contrastive_logits_temperature
lowerCamelCase_ =feat_quantizer_dropout
lowerCamelCase_ =num_negatives
lowerCamelCase_ =codevector_dim
lowerCamelCase_ =proj_codevector_dim
lowerCamelCase_ =diversity_loss_weight
# ctc loss
lowerCamelCase_ =ctc_loss_reduction
lowerCamelCase_ =ctc_zero_infinity
# adapter
lowerCamelCase_ =add_adapter
lowerCamelCase_ =adapter_kernel_size
lowerCamelCase_ =adapter_stride
lowerCamelCase_ =num_adapter_layers
lowerCamelCase_ =output_hidden_size or hidden_size
lowerCamelCase_ =adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCamelCase_ =classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =list(lowerCAmelCase )
lowerCamelCase_ =xvector_output_dim
@property
def lowercase__ ( self ):
"""simple docstring"""
return functools.reduce(operator.mul, self.conv_stride, 1 )
| 6 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import math
import unittest
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
assert isinstance(__snake_case , __snake_case ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowercase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowerCAmelCase ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ), '''Zero doesn\'t have any positive factors, primes must have exactly two.''', )
self.assertFalse(
is_prime(1 ), '''One only has 1 positive factor, primes must have exactly two.''', )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 6 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ : Any = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
a_ : Union[str, Any] = []
def a_ ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ) -> bool:
"""simple docstring"""
for i in range(len(__snake_case ) ):
if board[row][i] == 1:
return False
for i in range(len(__snake_case ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ):
if board[i][j] == 1:
return False
return True
def a_ ( __snake_case : list[list[int]] , __snake_case : int ) -> bool:
"""simple docstring"""
if row >= len(__snake_case ):
solution.append(__snake_case )
printboard(__snake_case )
print()
return True
for i in range(len(__snake_case ) ):
if is_safe(__snake_case , __snake_case , __snake_case ):
lowerCamelCase_ =1
solve(__snake_case , row + 1 )
lowerCamelCase_ =0
return False
def a_ ( __snake_case : list[list[int]] ) -> None:
"""simple docstring"""
for i in range(len(__snake_case ) ):
for j in range(len(__snake_case ) ):
if board[i][j] == 1:
print('''Q''' , end=''' ''' )
else:
print('''.''' , end=''' ''' )
print()
# n=int(input("The no. of queens"))
a_ : List[str] = 8
a_ : Tuple = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 6 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a_ : str = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Any = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ : Tuple = 16
a_ : Optional[int] = 32
def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str:
"""simple docstring"""
lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__snake_case : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase_ =datasets.map(
__snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__snake_case : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase_ =16
elif accelerator.mixed_precision != "no":
lowerCamelCase_ =8
else:
lowerCamelCase_ =None
return tokenizer.pad(
__snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCamelCase_ =DataLoader(
tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
lowerCamelCase_ =DataLoader(
tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ : Tuple = mocked_dataloaders # noqa: F811
def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1":
lowerCamelCase_ =2
# Initialize accelerator
lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ =config['''lr''']
lowerCamelCase_ =int(config['''num_epochs'''] )
lowerCamelCase_ =int(config['''seed'''] )
lowerCamelCase_ =int(config['''batch_size'''] )
lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__snake_case )
def inner_training_loop(__snake_case : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase_ =model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case )
lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case )
# Instantiate scheduler
lowerCamelCase_ =get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.loss
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits.argmax(dim=-1 )
lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
lowerCamelCase_ =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __snake_case )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def a_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 6 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ : List[Any] = logging.get_logger(__name__)
a_ : Tuple = {
"""google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] ='vit'
def __init__( self, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=224, lowerCAmelCase=16, lowerCAmelCase=3, lowerCAmelCase=True, lowerCAmelCase=16, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
lowerCamelCase_ =hidden_size
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =initializer_range
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =image_size
lowerCamelCase_ =patch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =qkv_bias
lowerCamelCase_ =encoder_stride
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple =version.parse('1.11' )
@property
def lowercase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def lowercase__ ( self ):
"""simple docstring"""
return 1e-4
| 6 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a_ : List[str] = """src/diffusers"""
# Matches is_xxx_available()
a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a_ : Optional[Any] = """
{0} = None
"""
a_ : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a_ : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a_ ( __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =_re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a_ ( ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase_ =0
lowerCamelCase_ ={}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase_ =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
lowerCamelCase_ =[]
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase_ =lines[line_index]
lowerCamelCase_ =_re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase_ =objects
else:
line_index += 1
return backend_specific_objects
def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a_ ( __snake_case : Tuple=None ) -> List[str]:
"""simple docstring"""
if backend_specific_objects is None:
lowerCamelCase_ =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase_ ={}
for backend, objects in backend_specific_objects.items():
lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase_ =dummy_file
return dummy_files
def a_ ( __snake_case : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase_ ={'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
lowerCamelCase_ =os.path.join(__snake_case , '''utils''' )
lowerCamelCase_ ={
backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase_ ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.read()
else:
lowerCamelCase_ =''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a_ : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def a_ ( __snake_case : Sequence[float] , __snake_case : int , __snake_case : int ) -> tuple[int | None, int | None, float]:
"""simple docstring"""
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
lowerCamelCase_ =(low + high) // 2
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =max_subarray(__snake_case , __snake_case , __snake_case )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =max_subarray(__snake_case , mid + 1 , __snake_case )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =max_cross_sum(__snake_case , __snake_case , __snake_case , __snake_case )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def a_ ( __snake_case : Sequence[float] , __snake_case : int , __snake_case : int , __snake_case : int ) -> tuple[int, int, float]:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =float('''-inf''' ), -1
lowerCamelCase_, lowerCamelCase_ =float('''-inf''' ), -1
lowerCamelCase_ =0
for i in range(__snake_case , low - 1 , -1 ):
summ += arr[i]
if summ > left_sum:
lowerCamelCase_ =summ
lowerCamelCase_ =i
lowerCamelCase_ =0
for i in range(mid + 1 , high + 1 ):
summ += arr[i]
if summ > right_sum:
lowerCamelCase_ =summ
lowerCamelCase_ =i
return max_left, max_right, (left_sum + right_sum)
def a_ ( __snake_case : int ) -> float:
"""simple docstring"""
lowerCamelCase_ =[randint(1 , __snake_case ) for _ in range(__snake_case )]
lowerCamelCase_ =time.time()
max_subarray(__snake_case , 0 , input_size - 1 )
lowerCamelCase_ =time.time()
return end - start
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =[10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000]
lowerCamelCase_ =[time_max_subarray(__snake_case ) for input_size in input_sizes]
print('''No of Inputs\t\tTime Taken''' )
for input_size, runtime in zip(__snake_case , __snake_case ):
print(__snake_case , '''\t\t''' , __snake_case )
plt.plot(__snake_case , __snake_case )
plt.xlabel('''Number of Inputs''' )
plt.ylabel('''Time taken in seconds''' )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 6 |
'''simple docstring'''
a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a_ : list[bool | None] = [None] * 10_00_00_00
a_ : List[Any] = True
a_ : Optional[Any] = False
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase_ =chain(next_number(__snake_case ) )
lowerCamelCase_ =number_chain
while number < 1000_0000:
lowerCamelCase_ =number_chain
number *= 10
return number_chain
def a_ ( __snake_case : int = 1000_0000 ) -> int:
"""simple docstring"""
for i in range(1 , __snake_case ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : str =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : Any =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
| 6 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def a_ ( __snake_case : Tuple ) -> str:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __UpperCamelCase ( lowerCamelCase__ ):
@staticmethod
def lowercase__ ( lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =parser.add_parser('''download''' )
download_parser.add_argument(
'''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' )
download_parser.add_argument(
'''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' )
download_parser.add_argument(
'''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', )
download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' )
download_parser.set_defaults(func=lowerCAmelCase )
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =model
lowerCamelCase_ =cache
lowerCamelCase_ =force
lowerCamelCase_ =trust_remote_code
def lowercase__ ( self ):
"""simple docstring"""
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
| 6 | 1 |
'''simple docstring'''
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a_ : Optional[Any] = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a_ : Optional[int] = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a_ : Union[str, Any] = logging.get_logger(__name__)
a_ : List[str] = """ Hello world! cécé herlolip"""
a_ : int = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def a_ ( __snake_case : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =dct.pop(__snake_case )
lowerCamelCase_ =val
def a_ ( __snake_case : Dict ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' )
lowerCamelCase_ =torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval()
hub_interface.model.load_state_dict(sd['''model'''] )
return hub_interface
def a_ ( __snake_case : Union[str, Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
@torch.no_grad()
def a_ ( __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple=None ) -> List[Any]:
"""simple docstring"""
if not os.path.exists(__snake_case ):
lowerCamelCase_ =torch.hub.load('''pytorch/fairseq''' , __snake_case ).eval()
else:
lowerCamelCase_ =load_xsum_checkpoint(__snake_case )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
lowerCamelCase_ =checkpoint_path.replace('''.''' , '''-''' )
lowerCamelCase_ =BartConfig.from_pretrained(__snake_case )
lowerCamelCase_ =bart.encode(__snake_case ).unsqueeze(0 )
lowerCamelCase_ =BartTokenizer.from_pretrained(__snake_case ).encode(__snake_case , return_tensors='''pt''' ).unsqueeze(0 )
if not torch.eq(__snake_case , __snake_case ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
lowerCamelCase_ =bart.state_dict()
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =state_dict['''model.decoder.embed_tokens.weight''']
for src, dest in mnli_rename_keys:
rename_key(__snake_case , __snake_case , __snake_case )
lowerCamelCase_ =BartForSequenceClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
lowerCamelCase_ =bart.predict('''mnli''' , __snake_case , return_logits=__snake_case )
lowerCamelCase_ =model(__snake_case )[0] # logits
else: # no classification heads to worry about
lowerCamelCase_ =bart.model.state_dict()
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =state_dict['''decoder.embed_tokens.weight''']
lowerCamelCase_ =bart.extract_features(__snake_case )
if hf_checkpoint_name == "facebook/bart-large":
lowerCamelCase_ =BartModel(__snake_case ).eval()
model.load_state_dict(__snake_case )
lowerCamelCase_ =model(__snake_case ).model[0]
else:
lowerCamelCase_ =BartForConditionalGeneration(__snake_case ).eval() # an existing summarization ckpt
model.model.load_state_dict(__snake_case )
if hasattr(__snake_case , '''lm_head''' ):
lowerCamelCase_ =make_linear_from_emb(model.model.shared )
lowerCamelCase_ =model.model(__snake_case )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
model.save_pretrained(__snake_case )
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a_ : List[str] = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 6 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a_ : List[str] = logging.get_logger(__name__)
a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __UpperCamelCase :
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} )
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
lowercase : int =field(
default=1_28 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase : int =field(
default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
lowercase : int =field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
lowercase : int =field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
lowercase : float =field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] ='train'
lowercase : Any ='dev'
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : SquadDataTrainingArguments
lowercase : List[SquadFeatures]
lowercase : Split
lowercase : bool
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ):
"""simple docstring"""
lowerCamelCase_ =args
lowerCamelCase_ =is_language_sensitive
lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowerCAmelCase, lowerCAmelCase ):
try:
lowerCamelCase_ =Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
lowerCamelCase_ =mode
# Load data features from cache or dataset file
lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1'''
lowerCamelCase_ =os.path.join(
cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase_ =cached_features_file + '''.lock'''
with FileLock(lowerCAmelCase ):
if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache:
lowerCamelCase_ =time.time()
lowerCamelCase_ =torch.load(lowerCAmelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase_ =self.old_features['''features''']
lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase )
lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase_ =self.processor.get_train_examples(args.data_dir )
lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, )
lowerCamelCase_ =time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.features[i]
lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float )
lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : list , __snake_case : list , __snake_case : int ) -> list:
"""simple docstring"""
lowerCamelCase_ =len(__snake_case )
lowerCamelCase_ =[[0] * n for i in range(__snake_case )]
for i in range(__snake_case ):
lowerCamelCase_ =y_points[i]
for i in range(2 , __snake_case ):
for j in range(__snake_case , __snake_case ):
lowerCamelCase_ =(
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/"""
a_ : Any = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowerCamelCase_ =key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ={}
import re
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
lowerCamelCase_ =original_key
lowerCamelCase_ =replace_key(__snake_case )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
lowerCamelCase_ =original_key
lowerCamelCase_ =original_key
lowerCamelCase_ =value
return new_dict
@torch.no_grad()
def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]]
lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case )
lowerCamelCase_ =JukeboxModel(__snake_case )
lowerCamelCase_ =[]
lowerCamelCase_ ={}
for i, dict_name in enumerate(__snake_case ):
lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
lowerCamelCase_ ={}
for k in old_dic.keys():
if k.endswith('''.b''' ):
lowerCamelCase_ =old_dic[k]
elif k.endswith('''.w''' ):
lowerCamelCase_ =old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowerCamelCase_ =old_dic[k]
else:
lowerCamelCase_ =old_dic[k]
lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}'''
lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
lowerCamelCase_ =weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
a_ : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =FlaxControlNetModel.from_pretrained(
'''lllyasviel/sd-controlnet-canny''', from_pt=lowerCAmelCase, dtype=jnp.bfloataa )
lowerCamelCase_, lowerCamelCase_ =FlaxStableDiffusionControlNetPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''', controlnet=lowerCAmelCase, from_pt=lowerCAmelCase, dtype=jnp.bfloataa )
lowerCamelCase_ =controlnet_params
lowerCamelCase_ ='''bird'''
lowerCamelCase_ =jax.device_count()
lowerCamelCase_ =pipe.prepare_text_inputs([prompts] * num_samples )
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' )
lowerCamelCase_ =pipe.prepare_image_inputs([canny_image] * num_samples )
lowerCamelCase_ =jax.random.PRNGKey(0 )
lowerCamelCase_ =jax.random.split(lowerCAmelCase, jax.device_count() )
lowerCamelCase_ =replicate(lowerCAmelCase )
lowerCamelCase_ =shard(lowerCAmelCase )
lowerCamelCase_ =shard(lowerCAmelCase )
lowerCamelCase_ =pipe(
prompt_ids=lowerCAmelCase, image=lowerCAmelCase, params=lowerCAmelCase, prng_seed=lowerCAmelCase, num_inference_steps=50, jit=lowerCAmelCase, ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
lowerCamelCase_ =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowerCamelCase_ =images[0, 253:256, 253:256, -1]
lowerCamelCase_ =jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowerCamelCase_ =jnp.array(
[0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =FlaxControlNetModel.from_pretrained(
'''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCAmelCase, dtype=jnp.bfloataa )
lowerCamelCase_, lowerCamelCase_ =FlaxStableDiffusionControlNetPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''', controlnet=lowerCAmelCase, from_pt=lowerCAmelCase, dtype=jnp.bfloataa )
lowerCamelCase_ =controlnet_params
lowerCamelCase_ ='''Chef in the kitchen'''
lowerCamelCase_ =jax.device_count()
lowerCamelCase_ =pipe.prepare_text_inputs([prompts] * num_samples )
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' )
lowerCamelCase_ =pipe.prepare_image_inputs([pose_image] * num_samples )
lowerCamelCase_ =jax.random.PRNGKey(0 )
lowerCamelCase_ =jax.random.split(lowerCAmelCase, jax.device_count() )
lowerCamelCase_ =replicate(lowerCAmelCase )
lowerCamelCase_ =shard(lowerCAmelCase )
lowerCamelCase_ =shard(lowerCAmelCase )
lowerCamelCase_ =pipe(
prompt_ids=lowerCAmelCase, image=lowerCAmelCase, params=lowerCAmelCase, prng_seed=lowerCAmelCase, num_inference_steps=50, jit=lowerCAmelCase, ).images
assert images.shape == (jax.device_count(), 1, 768, 512, 3)
lowerCamelCase_ =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
lowerCamelCase_ =images[0, 253:256, 253:256, -1]
lowerCamelCase_ =jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowerCamelCase_ =jnp.array(
[[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 6 |
'''simple docstring'''
def a_ ( __snake_case : int = 1000 ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =1, 1
lowerCamelCase_ =2
while True:
lowerCamelCase_ =0
lowerCamelCase_ =fa + fa
lowerCamelCase_, lowerCamelCase_ =fa, f
index += 1
for _ in str(__snake_case ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : Tuple = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6 | 1 |
'''simple docstring'''
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
a_ : Tuple = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''bs4'''] )
super().__init__(**lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
lowerCamelCase_ =parent.find_all(child.name, recursive=lowerCAmelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(lowerCAmelCase ) else next(i for i, s in enumerate(lowerCAmelCase, 1 ) if s is child ) )
lowerCamelCase_ =parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =BeautifulSoup(lowerCAmelCase, '''html.parser''' )
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =[]
for element in html_code.descendants:
if type(lowerCAmelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
lowerCamelCase_ =html.unescape(lowerCAmelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =self.xpath_soup(lowerCAmelCase )
stringaxtag_seq.append(lowerCAmelCase )
stringaxsubs_seq.append(lowerCAmelCase )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError('''Number of doc strings and xtags does not correspond''' )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError('''Number of doc strings and xsubs does not correspond''' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =''''''
for tagname, subs in zip(lowerCAmelCase, lowerCAmelCase ):
xpath += f'''/{tagname}'''
if subs != 0:
xpath += f'''[{subs}]'''
return xpath
def __call__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =False
# Check that strings has a valid type
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =True
elif isinstance(lowerCAmelCase, (list, tuple) ):
if len(lowerCAmelCase ) == 0 or isinstance(html_strings[0], lowerCAmelCase ):
lowerCamelCase_ =True
if not valid_strings:
raise ValueError(
'''HTML strings must of type `str`, `List[str]` (batch of examples), '''
f'''but is of type {type(lowerCAmelCase )}.''' )
lowerCamelCase_ =bool(isinstance(lowerCAmelCase, (list, tuple) ) and (isinstance(html_strings[0], lowerCAmelCase )) )
if not is_batched:
lowerCamelCase_ =[html_strings]
# Get nodes + xpaths
lowerCamelCase_ =[]
lowerCamelCase_ =[]
for html_string in html_strings:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =self.get_three_from_single(lowerCAmelCase )
nodes.append(lowerCAmelCase )
lowerCamelCase_ =[]
for node, tag_list, sub_list in zip(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =self.construct_xpath(lowerCAmelCase, lowerCAmelCase )
xpath_strings.append(lowerCAmelCase )
xpaths.append(lowerCAmelCase )
# return as Dict
lowerCamelCase_ ={'''nodes''': nodes, '''xpaths''': xpaths}
lowerCamelCase_ =BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
return encoded_inputs
| 6 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : str =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : Any =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
| 6 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __UpperCamelCase :
@staticmethod
def lowercase__ ( *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
lowercase : Dict =MODEL_FOR_OBJECT_DETECTION_MAPPING
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, image_processor=lowerCAmelCase )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''', threshold=0.0 )
self.assertGreater(len(lowerCAmelCase ), 0 )
for detected_object in outputs:
self.assertEqual(
lowerCAmelCase, {
'''score''': ANY(lowerCAmelCase ),
'''label''': ANY(lowerCAmelCase ),
'''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )},
}, )
import datasets
lowerCamelCase_ =datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''', '''image''', split='''test''' )
lowerCamelCase_ =[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
]
lowerCamelCase_ =object_detector(lowerCAmelCase, threshold=0.0 )
self.assertEqual(len(lowerCAmelCase ), len(lowerCAmelCase ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCAmelCase ), 0 )
for detected_object in outputs:
self.assertEqual(
lowerCAmelCase, {
'''score''': ANY(lowerCAmelCase ),
'''label''': ANY(lowerCAmelCase ),
'''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )},
}, )
@require_tf
@unittest.skip('''Object detection not implemented in TF''' )
def lowercase__ ( self ):
"""simple docstring"""
pass
@require_torch
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''hf-internal-testing/tiny-detr-mobilenetsv3'''
lowerCamelCase_ =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase )
lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(lowerCAmelCase )
lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, feature_extractor=lowerCAmelCase )
lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
], )
lowerCamelCase_ =object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
], threshold=0.0, )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
[
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
],
[
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
{'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}},
],
], )
@require_torch
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''facebook/detr-resnet-50'''
lowerCamelCase_ =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase )
lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(lowerCAmelCase )
lowerCamelCase_ =ObjectDetectionPipeline(model=lowerCAmelCase, feature_extractor=lowerCAmelCase )
lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
], )
lowerCamelCase_ =object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
[
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
[
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
], )
@require_torch
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''facebook/detr-resnet-50'''
lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase )
lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
], )
lowerCamelCase_ =object_detector(
[
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
] )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
[
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
[
{'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}},
{'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}},
{'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}},
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
],
], )
@require_torch
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =0.9_9_8_5
lowerCamelCase_ ='''facebook/detr-resnet-50'''
lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase )
lowerCamelCase_ =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''', threshold=lowerCAmelCase )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
{'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}},
{'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}},
], )
@require_torch
@require_pytesseract
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''Narsil/layoutlmv3-finetuned-funsd'''
lowerCamelCase_ =0.9_9_9_3
lowerCamelCase_ =pipeline('''object-detection''', model=lowerCAmelCase, threshold=lowerCAmelCase )
lowerCamelCase_ =object_detector(
'''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' )
self.assertEqual(
nested_simplify(lowerCAmelCase, decimals=4 ), [
{'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}},
{'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}},
], )
| 6 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] =['image_processor', 'tokenizer']
lowercase : Optional[int] ='AutoImageProcessor'
lowercase : List[str] ='AutoTokenizer'
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase )
if len(lowerCAmelCase ) > 0:
lowerCamelCase_ =args[0]
lowerCamelCase_ =args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase )
if text is not None:
lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCamelCase_ =encodings['''input_ids''']
return inputs
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@contextmanager
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
lowerCamelCase_ =True
lowerCamelCase_ =self.tokenizer
yield
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ):
"""simple docstring"""
if added_vocab is None:
lowerCamelCase_ =self.tokenizer.get_added_vocab()
lowerCamelCase_ ={}
while tokens:
lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE )
if start_token is None:
break
lowerCamelCase_ =start_token.group(1 )
lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE )
lowerCamelCase_ =start_token.group()
if end_token is None:
lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' )
else:
lowerCamelCase_ =end_token.group()
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE )
if content is not None:
lowerCamelCase_ =content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if value:
if len(lowerCAmelCase ) == 1:
lowerCamelCase_ =value[0]
lowerCamelCase_ =value
else: # leaf nodes
lowerCamelCase_ =[]
for leaf in content.split(R'''<sep/>''' ):
lowerCamelCase_ =leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
lowerCamelCase_ =leaf[1:-2] # for categorical special tokens
output[key].append(lowerCAmelCase )
if len(output[key] ) == 1:
lowerCamelCase_ =output[key][0]
lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if len(lowerCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : Optional[Any] = {
"""configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""],
"""processing_git""": ["""GitProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
"""GIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GitForCausalLM""",
"""GitModel""",
"""GitPreTrainedModel""",
"""GitVisionModel""",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =ShapEImgaImgPipeline
lowercase : Dict =['image']
lowercase : str =['image']
lowercase : int =[
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
lowercase : int =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 8
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, )
lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowerCamelCase_ =ShapERenderer(**lowerCAmelCase )
return model
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =self.dummy_renderer
lowerCamelCase_ =HeunDiscreteScheduler(
beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.images[0]
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCamelCase_ =np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =1
lowerCamelCase_ =2
lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
lowerCamelCase_ =batch_size * [inputs[key]]
lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowerCamelCase_ =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 )
lowerCamelCase_ =pipe(
lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
a_ : str = """
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
"""
class __UpperCamelCase ( unittest.TestCase , lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_tool('''text-question-answering''' )
self.tool.setup()
lowerCamelCase_ =load_tool('''text-question-answering''', remote=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.tool(lowerCAmelCase, '''What did Hugging Face do in April 2021?''' )
self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.remote_tool(lowerCAmelCase, '''What did Hugging Face do in April 2021?''' )
self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.tool(text=lowerCAmelCase, question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.remote_tool(text=lowerCAmelCase, question='''What did Hugging Face do in April 2021?''' )
self.assertEqual(lowerCAmelCase, '''launched the BigScience Research Workshop''' )
| 6 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
a_ : Tuple = TypeVar("""T""")
a_ : Dict = Union[List[T], Tuple[T, ...]]
a_ : int = Union[T, List[T], Dict[str, T]]
a_ : Optional[Any] = Union[str, bytes, os.PathLike]
| 6 | 1 |
'''simple docstring'''
from typing import Any
class __UpperCamelCase :
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =data
lowerCamelCase_ =None
def __repr__( self ):
"""simple docstring"""
return f'''Node({self.data})'''
class __UpperCamelCase :
def __init__( self ):
"""simple docstring"""
lowerCamelCase_ =None
def __iter__( self ):
"""simple docstring"""
lowerCamelCase_ =self.head
while node:
yield node.data
lowerCamelCase_ =node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(lowerCAmelCase ) for item in self] )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
lowerCamelCase_ =self.head
for _ in range(lowerCAmelCase ):
lowerCamelCase_ =current.next
lowerCamelCase_ =data
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
self.insert_nth(len(self ), lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
self.insert_nth(0, lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
lowerCamelCase_ =Node(lowerCAmelCase )
if self.head is None:
lowerCamelCase_ =new_node
elif index == 0:
lowerCamelCase_ =self.head # link new_node to head
lowerCamelCase_ =new_node
else:
lowerCamelCase_ =self.head
for _ in range(index - 1 ):
lowerCamelCase_ =temp.next
lowerCamelCase_ =temp.next
lowerCamelCase_ =new_node
def lowercase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def lowercase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def lowercase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def lowercase__ ( self, lowerCAmelCase = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
lowerCamelCase_ =self.head # default first node
if index == 0:
lowerCamelCase_ =self.head.next
else:
lowerCamelCase_ =self.head
for _ in range(index - 1 ):
lowerCamelCase_ =temp.next
lowerCamelCase_ =temp.next
lowerCamelCase_ =temp.next.next
return delete_node.data
def lowercase__ ( self ):
"""simple docstring"""
return self.head is None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =None
lowerCamelCase_ =self.head
while current:
# Store the current node's next node.
lowerCamelCase_ =current.next
# Make the current node's next point backwards
lowerCamelCase_ =prev
# Make the previous node be the current node
lowerCamelCase_ =current
# Make the current node the next node (to progress iteration)
lowerCamelCase_ =next_node
# Return prev in order to put the head at the end
lowerCamelCase_ =prev
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =LinkedList()
assert linked_list.is_empty() is True
assert str(__snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__snake_case ) == i
linked_list.insert_nth(__snake_case , i + 1 )
assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__snake_case ) == 9
assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCamelCase_ =-i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(-8 , 1 ) )
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =[
-9,
100,
Node(7734_5112 ),
'''dlrow olleH''',
7,
5555,
0,
-1_9_2.5_5_5_5_5,
'''Hello, world!''',
7_7.9,
Node(10 ),
None,
None,
1_2.2_0,
]
lowerCamelCase_ =LinkedList()
for i in test_input:
linked_list.insert_tail(__snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCamelCase_ =linked_list.delete_head()
assert result == -9
assert (
str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCamelCase_ =linked_list.delete_tail()
assert result == 1_2.2
assert (
str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCamelCase_ =linked_list.delete_nth(10 )
assert result is None
assert (
str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(__snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__snake_case )
assert (
str(__snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def a_ ( ) -> Tuple:
"""simple docstring"""
from doctest import testmod
testmod()
lowerCamelCase_ =LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(__snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(F'''Element at Position 1: {linked_list[1]}''' )
lowerCamelCase_ =input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(__snake_case )
print(F'''length of linked_list is : {len(__snake_case )}''' )
if __name__ == "__main__":
main()
| 6 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any:
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =search_prob
lowerCamelCase_ =start_temperate
lowerCamelCase_ =[]
lowerCamelCase_ =0
lowerCamelCase_ =None
while not search_end:
lowerCamelCase_ =current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ =current_state
scores.append(__snake_case )
iterations += 1
lowerCamelCase_ =None
lowerCamelCase_ =current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor
lowerCamelCase_ =neighbors.pop(__snake_case )
lowerCamelCase_ =picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ =change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ =picked_neighbor
else:
lowerCamelCase_ =(math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ =picked_neighbor
lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ =True
else:
lowerCamelCase_ =next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__snake_case ) , __snake_case )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : List[str] = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 6 | 1 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/"""
a_ : Any = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowerCamelCase_ =key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ={}
import re
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
lowerCamelCase_ =original_key
lowerCamelCase_ =replace_key(__snake_case )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
lowerCamelCase_ =original_key
lowerCamelCase_ =original_key
lowerCamelCase_ =value
return new_dict
@torch.no_grad()
def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]]
lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case )
lowerCamelCase_ =JukeboxModel(__snake_case )
lowerCamelCase_ =[]
lowerCamelCase_ ={}
for i, dict_name in enumerate(__snake_case ):
lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
lowerCamelCase_ ={}
for k in old_dic.keys():
if k.endswith('''.b''' ):
lowerCamelCase_ =old_dic[k]
elif k.endswith('''.w''' ):
lowerCamelCase_ =old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowerCamelCase_ =old_dic[k]
else:
lowerCamelCase_ =old_dic[k]
lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}'''
lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
lowerCamelCase_ =weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
a_ : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 6 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
from pathlib import Path
import numpy as np
from PIL import Image
def a_ ( __snake_case : np.ndarray ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b
def a_ ( __snake_case : np.ndarray ) -> np.ndarray:
"""simple docstring"""
return (gray > 127) & (gray <= 255)
def a_ ( __snake_case : np.ndarray , __snake_case : np.ndarray ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_ =np.zeros_like(__snake_case )
lowerCamelCase_ =np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
lowerCamelCase_ =image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
lowerCamelCase_ =(
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
lowerCamelCase_ =int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
a_ : int = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
a_ : Optional[int] = np.array(Image.open(lena_path))
# kernel to be applied
a_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
a_ : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
a_ : Optional[Any] = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 6 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =['image_processor', 'tokenizer']
lowercase : int ='LayoutLMv2ImageProcessor'
lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCamelCase_ =features['''words''']
lowerCamelCase_ =self.tokenizer(
text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, )
# add pixel values
lowerCamelCase_ =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] )
lowerCamelCase_ =images
return encoded_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' )
return images_with_overflow
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a_ : Optional[Any] = """\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
a_ : Union[str, Any] = """\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
a_ : str = """\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ),
} ), )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 1, lowerCAmelCase = 4, ):
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase, hypotheses=lowerCAmelCase, min_len=lowerCAmelCase, max_len=lowerCAmelCase )
}
| 6 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =VQModel
lowercase : Union[str, Any] ='sample'
@property
def lowercase__ ( self, lowerCAmelCase=(32, 32) ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
| 6 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCamelCase :
def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=64, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=10, lowerCAmelCase=0.0_2, lowerCAmelCase=[1, 16, 4, 4], lowerCAmelCase=None, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =image_size
lowerCamelCase_ =patch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =is_training
lowerCamelCase_ =use_labels
lowerCamelCase_ =hidden_size
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =type_sequence_label_size
lowerCamelCase_ =initializer_range
lowerCamelCase_ =scope
lowerCamelCase_ =backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCamelCase_ =(self.image_size // 32) ** 2
lowerCamelCase_ =num_patches + 1
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ =None
if self.use_labels:
lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size )
lowerCamelCase_ =self.get_config()
return config, pixel_values, labels
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 16, 32],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=lowerCAmelCase, )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =ViTHybridModel(config=lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowerCamelCase_ =model(lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.type_sequence_label_size
lowerCamelCase_ =ViTHybridForImageClassification(lowerCAmelCase )
model.to(lowerCAmelCase )
model.eval()
lowerCamelCase_ =model(lowerCAmelCase, labels=lowerCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs
lowerCamelCase_ ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Optional[Any] =(ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
lowercase : List[Any] =(
{'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
lowercase : Dict =False
lowercase : Any =False
lowercase : List[str] =False
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ViTHybridModelTester(self )
lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, has_text_modality=lowerCAmelCase, hidden_size=37 )
def lowercase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ =model_class(lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings(), (nn.Module) )
lowerCamelCase_ =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase, nn.Linear ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ =model_class(lowerCAmelCase )
lowerCamelCase_ =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ =[*signature.parameters.keys()]
lowerCamelCase_ =['''pixel_values''']
self.assertListEqual(arg_names[:1], lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ =_config_zero_init(lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase_ =model_class(config=lowerCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCamelCase_ =[f'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'''Parameter {name} of model {model_class} seems not properly initialized''', )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =ViTHybridModel.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
def a_ ( ) -> Any:
"""simple docstring"""
lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def lowercase__ ( self ):
"""simple docstring"""
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
lowerCAmelCase )
lowerCamelCase_ =self.default_image_processor
lowerCamelCase_ =prepare_img()
lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' ).to(lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase_ =model(**lowerCAmelCase )
# verify the logits
lowerCamelCase_ =torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape, lowerCAmelCase )
lowerCamelCase_ =torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCAmelCase, atol=1e-4 ) )
@slow
@require_accelerate
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' )
lowerCamelCase_ =ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' )
lowerCamelCase_ =prepare_img()
lowerCamelCase_ =image_processor(images=lowerCAmelCase, return_tensors='''pt''' )
lowerCamelCase_ =model(**lowerCAmelCase )
lowerCamelCase_ =outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCamelCase_ =logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
| 6 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Optional[Any] = logging.get_logger(__name__)
a_ : List[Any] = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Union[str, Any] ='decision_transformer'
lowercase : Optional[int] =['past_key_values']
lowercase : List[str] ={
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self, lowerCAmelCase=17, lowerCAmelCase=4, lowerCAmelCase=128, lowerCAmelCase=4_096, lowerCAmelCase=True, lowerCAmelCase=1, lowerCAmelCase=1_024, lowerCAmelCase=3, lowerCAmelCase=1, lowerCAmelCase=None, lowerCAmelCase="relu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=1e-5, lowerCAmelCase=0.0_2, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=50_256, lowerCAmelCase=50_256, lowerCAmelCase=False, lowerCAmelCase=False, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =state_dim
lowerCamelCase_ =act_dim
lowerCamelCase_ =hidden_size
lowerCamelCase_ =max_ep_len
lowerCamelCase_ =action_tanh
lowerCamelCase_ =vocab_size
lowerCamelCase_ =n_positions
lowerCamelCase_ =n_layer
lowerCamelCase_ =n_head
lowerCamelCase_ =n_inner
lowerCamelCase_ =activation_function
lowerCamelCase_ =resid_pdrop
lowerCamelCase_ =embd_pdrop
lowerCamelCase_ =attn_pdrop
lowerCamelCase_ =layer_norm_epsilon
lowerCamelCase_ =initializer_range
lowerCamelCase_ =scale_attn_weights
lowerCamelCase_ =use_cache
lowerCamelCase_ =scale_attn_by_inverse_layer_idx
lowerCamelCase_ =reorder_and_upcast_attn
lowerCamelCase_ =bos_token_id
lowerCamelCase_ =eos_token_id
super().__init__(bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase )
| 6 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : List[str] = {
"""configuration_xlm_roberta""": [
"""XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XLMRobertaConfig""",
"""XLMRobertaOnnxConfig""",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = ["""XLMRobertaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Tuple = ["""XLMRobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMRobertaForCausalLM""",
"""XLMRobertaForMaskedLM""",
"""XLMRobertaForMultipleChoice""",
"""XLMRobertaForQuestionAnswering""",
"""XLMRobertaForSequenceClassification""",
"""XLMRobertaForTokenClassification""",
"""XLMRobertaModel""",
"""XLMRobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMRobertaForCausalLM""",
"""TFXLMRobertaForMaskedLM""",
"""TFXLMRobertaForMultipleChoice""",
"""TFXLMRobertaForQuestionAnswering""",
"""TFXLMRobertaForSequenceClassification""",
"""TFXLMRobertaForTokenClassification""",
"""TFXLMRobertaModel""",
"""TFXLMRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[Any] = [
"""FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxXLMRobertaForMaskedLM""",
"""FlaxXLMRobertaForCausalLM""",
"""FlaxXLMRobertaForMultipleChoice""",
"""FlaxXLMRobertaForQuestionAnswering""",
"""FlaxXLMRobertaForSequenceClassification""",
"""FlaxXLMRobertaForTokenClassification""",
"""FlaxXLMRobertaModel""",
"""FlaxXLMRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
a_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : int = 1000 ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =1, 1
lowerCamelCase_ =2
while True:
lowerCamelCase_ =0
lowerCamelCase_ =fa + fa
lowerCamelCase_, lowerCamelCase_ =fa, f
index += 1
for _ in str(__snake_case ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 6 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ : Any = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 | 1 |
'''simple docstring'''
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def a_ ( __snake_case : str , __snake_case : Tuple , __snake_case : Tuple ) -> Union[str, Any]:
"""simple docstring"""
# Initialise PyTorch model
lowerCamelCase_ =TaConfig.from_json_file(__snake_case )
print(F'''Building PyTorch model from configuration: {config}''' )
lowerCamelCase_ =TaForConditionalGeneration(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_ta(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(__snake_case )
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
a_ : Tuple = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 6 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ : Tuple = 16
a_ : Optional[int] = 32
def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str:
"""simple docstring"""
lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__snake_case : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase_ =datasets.map(
__snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__snake_case : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase_ =16
elif accelerator.mixed_precision != "no":
lowerCamelCase_ =8
else:
lowerCamelCase_ =None
return tokenizer.pad(
__snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCamelCase_ =DataLoader(
tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
lowerCamelCase_ =DataLoader(
tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ : Tuple = mocked_dataloaders # noqa: F811
def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1":
lowerCamelCase_ =2
# Initialize accelerator
lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ =config['''lr''']
lowerCamelCase_ =int(config['''num_epochs'''] )
lowerCamelCase_ =int(config['''seed'''] )
lowerCamelCase_ =int(config['''batch_size'''] )
lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__snake_case )
def inner_training_loop(__snake_case : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase_ =model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case )
lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case )
# Instantiate scheduler
lowerCamelCase_ =get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.loss
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits.argmax(dim=-1 )
lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
lowerCamelCase_ =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __snake_case )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def a_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
a_ : Optional[Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=3, lowerCAmelCase=18, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=None, ):
"""simple docstring"""
lowerCamelCase_ =size if size is not None else {'''height''': 20, '''width''': 20}
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =image_size
lowerCamelCase_ =min_resolution
lowerCamelCase_ =max_resolution
lowerCamelCase_ =size
lowerCamelCase_ =do_normalize
lowerCamelCase_ =do_convert_rgb
lowerCamelCase_ =[512, 1_024, 2_048, 4_096]
lowerCamelCase_ =patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def lowercase__ ( self ):
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
lowerCamelCase_ =Image.open(requests.get(lowerCAmelCase, stream=lowerCAmelCase ).raw ).convert('''RGB''' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : List[str] =PixaStructImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =PixaStructImageProcessingTester(self )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processor_tester.prepare_dummy_image()
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
lowerCamelCase_ =2_048
lowerCamelCase_ =image_processor(lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
lowerCamelCase_ =image_processor(
lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
lowerCamelCase_ =True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase ):
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
lowerCamelCase_ ='''Hello'''
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
lowerCamelCase_ =image_processor(
lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase, header_text=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, np.ndarray )
lowerCamelCase_ =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
lowerCamelCase_ =image_processor(
lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
# Test not batched input
lowerCamelCase_ =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
lowerCamelCase_ =image_processor(
lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : int =PixaStructImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =PixaStructImageProcessingTester(self, num_channels=4 )
lowerCamelCase_ =3
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =(
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
lowerCamelCase_ =image_processor(
image_inputs[0], return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
lowerCamelCase_ =image_processor(
lowerCAmelCase, return_tensors='''pt''', max_patches=lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
| 6 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a_ : List[str] = """src/diffusers"""
# Matches is_xxx_available()
a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a_ : Optional[Any] = """
{0} = None
"""
a_ : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a_ : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a_ ( __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =_re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a_ ( ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase_ =0
lowerCamelCase_ ={}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase_ =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
lowerCamelCase_ =[]
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase_ =lines[line_index]
lowerCamelCase_ =_re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase_ =objects
else:
line_index += 1
return backend_specific_objects
def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a_ ( __snake_case : Tuple=None ) -> List[str]:
"""simple docstring"""
if backend_specific_objects is None:
lowerCamelCase_ =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase_ ={}
for backend, objects in backend_specific_objects.items():
lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase_ =dummy_file
return dummy_files
def a_ ( __snake_case : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase_ ={'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
lowerCamelCase_ =os.path.join(__snake_case , '''utils''' )
lowerCamelCase_ ={
backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase_ ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.read()
else:
lowerCamelCase_ =''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a_ : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 6 | 1 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =(CMStochasticIterativeScheduler,)
lowercase : Dict =10
def lowercase__ ( self, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={
'''num_train_timesteps''': 201,
'''sigma_min''': 0.0_0_2,
'''sigma_max''': 8_0.0,
}
config.update(**lowerCAmelCase )
return config
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =10
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =self.scheduler_classes[0](**lowerCAmelCase )
scheduler.set_timesteps(lowerCAmelCase )
lowerCamelCase_ =scheduler.timesteps[0]
lowerCamelCase_ =scheduler.timesteps[1]
lowerCamelCase_ =self.dummy_sample
lowerCamelCase_ =0.1 * sample
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def lowercase__ ( self ):
"""simple docstring"""
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =1
scheduler.set_timesteps(lowerCAmelCase )
lowerCamelCase_ =scheduler.timesteps
lowerCamelCase_ =torch.manual_seed(0 )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(lowerCAmelCase ):
# 1. scale model input
lowerCamelCase_ =scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase )
# 2. predict noise residual
lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase )
# 3. predict previous sample x_t-1
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, generator=lowerCAmelCase ).prev_sample
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) )
lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1e-2
assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[106, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase )
lowerCamelCase_ =scheduler.timesteps
lowerCamelCase_ =torch.manual_seed(0 )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
lowerCamelCase_ =scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase )
# 2. predict noise residual
lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase )
# 3. predict previous sample x_t-1
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, generator=lowerCAmelCase ).prev_sample
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) )
lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1e-2
assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[39, 30, 12, 15, 0]
with self.assertRaises(lowerCAmelCase, msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[39, 30, 12, 1, 0]
lowerCamelCase_ =len(lowerCAmelCase )
with self.assertRaises(lowerCAmelCase, msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase, timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase, msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''', ):
scheduler.set_timesteps(timesteps=lowerCAmelCase )
| 6 |
'''simple docstring'''
a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a_ : list[bool | None] = [None] * 10_00_00_00
a_ : List[Any] = True
a_ : Optional[Any] = False
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase_ =chain(next_number(__snake_case ) )
lowerCamelCase_ =number_chain
while number < 1000_0000:
lowerCamelCase_ =number_chain
number *= 10
return number_chain
def a_ ( __snake_case : int = 1000_0000 ) -> int:
"""simple docstring"""
for i in range(1 , __snake_case ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def a_ ( __snake_case : Tuple ) -> str:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __UpperCamelCase ( lowerCamelCase__ ):
@staticmethod
def lowercase__ ( lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =parser.add_parser('''download''' )
download_parser.add_argument(
'''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' )
download_parser.add_argument(
'''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' )
download_parser.add_argument(
'''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', )
download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' )
download_parser.set_defaults(func=lowerCAmelCase )
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =model
lowerCamelCase_ =cache
lowerCamelCase_ =force
lowerCamelCase_ =trust_remote_code
def lowercase__ ( self ):
"""simple docstring"""
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
| 6 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if tokenize_kwargs is None:
lowerCamelCase_ ={}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
lowerCamelCase_ =truncation
lowerCamelCase_ =tokenize_kwargs
lowerCamelCase_ ={}
if return_tensors is not None:
lowerCamelCase_ =return_tensors
return preprocess_params, {}, postprocess_params
def lowercase__ ( self, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.framework
lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase )
return model_inputs
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.model(**lowerCAmelCase )
return model_outputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False ):
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return super().__call__(*lowerCAmelCase, **lowerCAmelCase )
| 6 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a_ : List[str] = logging.get_logger(__name__)
a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __UpperCamelCase :
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} )
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
lowercase : int =field(
default=1_28 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase : int =field(
default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
lowercase : int =field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
lowercase : int =field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
lowercase : float =field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] ='train'
lowercase : Any ='dev'
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : SquadDataTrainingArguments
lowercase : List[SquadFeatures]
lowercase : Split
lowercase : bool
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ):
"""simple docstring"""
lowerCamelCase_ =args
lowerCamelCase_ =is_language_sensitive
lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowerCAmelCase, lowerCAmelCase ):
try:
lowerCamelCase_ =Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
lowerCamelCase_ =mode
# Load data features from cache or dataset file
lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1'''
lowerCamelCase_ =os.path.join(
cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase_ =cached_features_file + '''.lock'''
with FileLock(lowerCAmelCase ):
if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache:
lowerCamelCase_ =time.time()
lowerCamelCase_ =torch.load(lowerCAmelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase_ =self.old_features['''features''']
lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase )
lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase_ =self.processor.get_train_examples(args.data_dir )
lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, )
lowerCamelCase_ =time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.features[i]
lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float )
lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 6 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a_ : int = logging.get_logger(__name__)
a_ : Any = {"""vocab_file""": """vocab.txt"""}
a_ : str = {
"""vocab_file""": {
"""facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""",
"""facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""",
},
}
a_ : str = {
"""facebook/esm2_t6_8M_UR50D""": 10_24,
"""facebook/esm2_t12_35M_UR50D""": 10_24,
}
def a_ ( __snake_case : str ) -> Any:
"""simple docstring"""
with open(__snake_case , '''r''' ) as f:
lowerCamelCase_ =f.read().splitlines()
return [l.strip() for l in lines]
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : str =VOCAB_FILES_NAMES
lowercase : List[str] =PRETRAINED_VOCAB_FILES_MAP
lowercase : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =['input_ids', 'attention_mask']
def __init__( self, lowerCAmelCase, lowerCAmelCase="<unk>", lowerCAmelCase="<cls>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase="<eos>", **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
lowerCamelCase_ =load_vocab_file(lowerCAmelCase )
lowerCamelCase_ =dict(enumerate(self.all_tokens ) )
lowerCamelCase_ ={tok: ind for ind, tok in enumerate(self.all_tokens )}
lowerCamelCase_ =unk_token
lowerCamelCase_ =cls_token
lowerCamelCase_ =pad_token
lowerCamelCase_ =mask_token
lowerCamelCase_ =eos_token
lowerCamelCase_ =self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase, self.unk_token )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase, self._token_to_id.get(self.unk_token ) )
def lowercase__ ( self, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return text.split()
def lowercase__ ( self, lowerCAmelCase=False ):
"""simple docstring"""
return len(self._id_to_token )
def lowercase__ ( self ):
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens )}
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self._token_to_id.get(lowerCAmelCase, self._token_to_id.get(self.unk_token ) )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return self._id_to_token.get(lowerCAmelCase, self.unk_token )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =[self.cls_token_id]
lowerCamelCase_ =[self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
lowerCamelCase_ =[1] + ([0] * len(lowerCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(lowerCAmelCase ) + [1]
return mask
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =os.path.join(lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(lowerCAmelCase, '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = False ):
"""simple docstring"""
return super()._add_tokens(lowerCAmelCase, special_tokens=lowerCAmelCase )
| 6 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/"""
a_ : Any = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowerCamelCase_ =key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ={}
import re
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
lowerCamelCase_ =original_key
lowerCamelCase_ =replace_key(__snake_case )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
lowerCamelCase_ =original_key
lowerCamelCase_ =original_key
lowerCamelCase_ =value
return new_dict
@torch.no_grad()
def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]]
lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case )
lowerCamelCase_ =JukeboxModel(__snake_case )
lowerCamelCase_ =[]
lowerCamelCase_ ={}
for i, dict_name in enumerate(__snake_case ):
lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
lowerCamelCase_ ={}
for k in old_dic.keys():
if k.endswith('''.b''' ):
lowerCamelCase_ =old_dic[k]
elif k.endswith('''.w''' ):
lowerCamelCase_ =old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowerCamelCase_ =old_dic[k]
else:
lowerCamelCase_ =old_dic[k]
lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}'''
lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
lowerCamelCase_ =weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
a_ : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
a_ : int = 2_56
# Modulus to hash a string
a_ : Union[str, Any] = 1_00_00_03
def a_ ( __snake_case : str , __snake_case : str ) -> bool:
"""simple docstring"""
lowerCamelCase_ =len(__snake_case )
lowerCamelCase_ =len(__snake_case )
if p_len > t_len:
return False
lowerCamelCase_ =0
lowerCamelCase_ =0
lowerCamelCase_ =1
# Calculating the hash of pattern and substring of text
for i in range(__snake_case ):
lowerCamelCase_ =(ord(pattern[i] ) + p_hash * alphabet_size) % modulus
lowerCamelCase_ =(ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
lowerCamelCase_ =(modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
lowerCamelCase_ =(
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ ='''abc1abc12'''
lowerCamelCase_ ='''alskfjaldsabc1abc1abc12k23adsfabcabc'''
lowerCamelCase_ ='''alskfjaldsk23adsfabcabc'''
assert rabin_karp(__snake_case , __snake_case ) and not rabin_karp(__snake_case , __snake_case )
# Test 2)
lowerCamelCase_ ='''ABABX'''
lowerCamelCase_ ='''ABABZABABYABABX'''
assert rabin_karp(__snake_case , __snake_case )
# Test 3)
lowerCamelCase_ ='''AAAB'''
lowerCamelCase_ ='''ABAAAAAB'''
assert rabin_karp(__snake_case , __snake_case )
# Test 4)
lowerCamelCase_ ='''abcdabcy'''
lowerCamelCase_ ='''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(__snake_case , __snake_case )
# Test 5)
lowerCamelCase_ ='''Lü'''
lowerCamelCase_ ='''Lüsai'''
assert rabin_karp(__snake_case , __snake_case )
lowerCamelCase_ ='''Lue'''
assert not rabin_karp(__snake_case , __snake_case )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 6 |
'''simple docstring'''
def a_ ( __snake_case : int = 1000 ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =1, 1
lowerCamelCase_ =2
while True:
lowerCamelCase_ =0
lowerCamelCase_ =fa + fa
lowerCamelCase_, lowerCamelCase_ =fa, f
index += 1
for _ in str(__snake_case ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : int =KandinskyVaaPriorPipeline
lowercase : Tuple =['prompt']
lowercase : int =['prompt', 'negative_prompt']
lowercase : Optional[Any] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
lowercase : Optional[Any] =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 100
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, )
return CLIPTextModelWithProjection(lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowerCamelCase_ =nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, )
lowerCamelCase_ =CLIPVisionModelWithProjection(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_text_encoder
lowerCamelCase_ =self.dummy_tokenizer
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =UnCLIPScheduler(
variance_type='''fixed_small_log''', prediction_type='''sample''', num_train_timesteps=1_000, clip_sample=lowerCAmelCase, clip_sample_range=1_0.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.image_embeds
lowerCamelCase_ =pipe(
**self.get_dummy_inputs(lowerCAmelCase ), return_dict=lowerCAmelCase, )[0]
lowerCamelCase_ =image[0, -10:]
lowerCamelCase_ =image_from_tuple[0, -10:]
assert image.shape == (1, 32)
lowerCamelCase_ =np.array(
[-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
lowerCamelCase_ =False
self._test_inference_batch_single_identical(
test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, )
@skip_mps
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =False
self._test_attention_slicing_forward_pass(
test_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, )
| 6 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6 | 1 |
'''simple docstring'''
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
a_ : List[Any] = {
"""return_dict""": False,
"""output_hidden_states""": True,
"""output_attentions""": True,
"""torchscript""": True,
"""torch_dtype""": """float16""",
"""use_bfloat16""": True,
"""tf_legacy_loss""": True,
"""pruned_heads""": {"""a""": 1},
"""tie_word_embeddings""": False,
"""is_decoder""": True,
"""cross_attention_hidden_size""": 1_28,
"""add_cross_attention""": True,
"""tie_encoder_decoder""": True,
"""max_length""": 50,
"""min_length""": 3,
"""do_sample""": True,
"""early_stopping""": True,
"""num_beams""": 3,
"""num_beam_groups""": 3,
"""diversity_penalty""": 0.5,
"""temperature""": 2.0,
"""top_k""": 10,
"""top_p""": 0.7,
"""typical_p""": 0.2,
"""repetition_penalty""": 0.8,
"""length_penalty""": 0.8,
"""no_repeat_ngram_size""": 5,
"""encoder_no_repeat_ngram_size""": 5,
"""bad_words_ids""": [1, 2, 3],
"""num_return_sequences""": 3,
"""chunk_size_feed_forward""": 5,
"""output_scores""": True,
"""return_dict_in_generate""": True,
"""forced_bos_token_id""": 2,
"""forced_eos_token_id""": 3,
"""remove_invalid_values""": True,
"""architectures""": ["""BertModel"""],
"""finetuning_task""": """translation""",
"""id2label""": {0: """label"""},
"""label2id""": {"""label""": """0"""},
"""tokenizer_class""": """BertTokenizerFast""",
"""prefix""": """prefix""",
"""bos_token_id""": 6,
"""pad_token_id""": 7,
"""eos_token_id""": 8,
"""sep_token_id""": 9,
"""decoder_start_token_id""": 10,
"""exponential_decay_length_penalty""": (5, 1.01),
"""suppress_tokens""": [0, 1],
"""begin_suppress_tokens""": 2,
"""task_specific_params""": {"""translation""": """some_params"""},
"""problem_type""": """regression""",
}
@is_staging_test
class __UpperCamelCase ( unittest.TestCase ):
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
lowerCamelCase_ =TOKEN
HfFolder.save_token(lowerCAmelCase )
@classmethod
def lowercase__ ( cls ):
"""simple docstring"""
try:
delete_repo(token=cls._token, repo_id='''test-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='''valid_org/test-config-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='''test-dynamic-config''' )
except HTTPError:
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 )
config.push_to_hub('''test-config''', use_auth_token=self._token )
lowerCamelCase_ =BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) )
# Reset repo
delete_repo(token=self._token, repo_id='''test-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase, repo_id='''test-config''', push_to_hub=lowerCAmelCase, use_auth_token=self._token )
lowerCamelCase_ =BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 )
config.push_to_hub('''valid_org/test-config-org''', use_auth_token=self._token )
lowerCamelCase_ =BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) )
# Reset repo
delete_repo(token=self._token, repo_id='''valid_org/test-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase, repo_id='''valid_org/test-config-org''', push_to_hub=lowerCAmelCase, use_auth_token=self._token )
lowerCamelCase_ =BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase, getattr(lowerCAmelCase, lowerCAmelCase ) )
def lowercase__ ( self ):
"""simple docstring"""
CustomConfig.register_for_auto_class()
lowerCamelCase_ =CustomConfig(attribute=42 )
config.push_to_hub('''test-dynamic-config''', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map, {'''AutoConfig''': '''custom_configuration.CustomConfig'''} )
lowerCamelCase_ =AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCAmelCase )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__, '''CustomConfig''' )
self.assertEqual(new_config.attribute, 42 )
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
lowerCamelCase_ =c.n_embd + 1 # int
lowerCamelCase_ =c.resid_pdrop + 1.0 # float
lowerCamelCase_ =not c.scale_attn_weights # bool
lowerCamelCase_ =c.summary_type + '''foo''' # str
c.update_from_string(
f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(lowerCAmelCase, c.n_embd, '''mismatch for key: n_embd''' )
self.assertEqual(lowerCAmelCase, c.resid_pdrop, '''mismatch for key: resid_pdrop''' )
self.assertEqual(lowerCAmelCase, c.scale_attn_weights, '''mismatch for key: scale_attn_weights''' )
self.assertEqual(lowerCAmelCase, c.summary_type, '''mismatch for key: summary_type''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =PretrainedConfig()
lowerCamelCase_ =[key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
lowerCAmelCase, ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] )
lowerCamelCase_ =[key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase, lowerCAmelCase )]
if len(lowerCAmelCase ) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
f''' {', '.join(lowerCAmelCase )}.''' )
def lowercase__ ( self ):
"""simple docstring"""
with self.assertRaises(lowerCAmelCase ):
# config is in subfolder, the following should not work without specifying the subfolder
lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' )
lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''', subfolder='''bert''' )
self.assertIsNotNone(lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =mock.Mock()
lowerCamelCase_ =500
lowerCamelCase_ ={}
lowerCamelCase_ =HTTPError
lowerCamelCase_ ={}
# Download this model to make sure it's in the cache.
lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''', return_value=lowerCAmelCase ) as mock_head:
lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =AutoConfig.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(lowerCAmelCase )
lowerCamelCase_ =2
json.dump(configuration.to_dict(), open(os.path.join(lowerCAmelCase, '''config.4.0.0.json''' ), '''w''' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertEqual(new_configuration.hidden_size, 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
lowerCamelCase_ =['''config.42.0.0.json''']
lowerCamelCase_ =768
configuration.save_pretrained(lowerCAmelCase )
shutil.move(os.path.join(lowerCAmelCase, '''config.4.0.0.json''' ), os.path.join(lowerCAmelCase, '''config.42.0.0.json''' ) )
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertEqual(new_configuration.hidden_size, 768 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
lowerCamelCase_ ='''v4.0.0'''
lowerCamelCase_, lowerCamelCase_ =new_transformers.models.auto.AutoConfig.from_pretrained(
lowerCAmelCase, return_unused_kwargs=lowerCAmelCase )
self.assertEqual(new_configuration.hidden_size, 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(lowerCAmelCase, {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
lowerCamelCase_ ='''v3.0.0'''
lowerCamelCase_ =old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase )
self.assertEqual(old_configuration.hidden_size, 768 )
| 6 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : str =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : Any =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
| 6 | 1 |
'''simple docstring'''
import sys
a_ : Optional[int] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def a_ ( __snake_case : str ) -> int:
"""simple docstring"""
lowerCamelCase_ =1
for digit in s:
product *= int(__snake_case )
return product
def a_ ( __snake_case : str = N ) -> int:
"""simple docstring"""
lowerCamelCase_ =-sys.maxsize - 1
lowerCamelCase_ =n[:13]
lowerCamelCase_ =13
while cur_index < len(__snake_case ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
lowerCamelCase_ =substr[1:] + n[cur_index]
cur_index += 1
else:
lowerCamelCase_ =max(__snake_case , str_eval(__snake_case ) )
lowerCamelCase_ =n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] =['image_processor', 'tokenizer']
lowercase : Optional[int] ='AutoImageProcessor'
lowercase : List[str] ='AutoTokenizer'
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase )
if len(lowerCAmelCase ) > 0:
lowerCamelCase_ =args[0]
lowerCamelCase_ =args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase )
if text is not None:
lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCamelCase_ =encodings['''input_ids''']
return inputs
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@contextmanager
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
lowerCamelCase_ =True
lowerCamelCase_ =self.tokenizer
yield
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ):
"""simple docstring"""
if added_vocab is None:
lowerCamelCase_ =self.tokenizer.get_added_vocab()
lowerCamelCase_ ={}
while tokens:
lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE )
if start_token is None:
break
lowerCamelCase_ =start_token.group(1 )
lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE )
lowerCamelCase_ =start_token.group()
if end_token is None:
lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' )
else:
lowerCamelCase_ =end_token.group()
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE )
if content is not None:
lowerCamelCase_ =content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if value:
if len(lowerCAmelCase ) == 1:
lowerCamelCase_ =value[0]
lowerCamelCase_ =value
else: # leaf nodes
lowerCamelCase_ =[]
for leaf in content.split(R'''<sep/>''' ):
lowerCamelCase_ =leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
lowerCamelCase_ =leaf[1:-2] # for categorical special tokens
output[key].append(lowerCAmelCase )
if len(output[key] ) == 1:
lowerCamelCase_ =output[key][0]
lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if len(lowerCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a_ : Any = logging.get_logger(__name__)
a_ : Optional[Any] = {
"""SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : str ='deformable_detr'
lowercase : Union[str, Any] ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=3, lowerCAmelCase=300, lowerCAmelCase=1_024, lowerCAmelCase=6, lowerCAmelCase=1_024, lowerCAmelCase=8, lowerCAmelCase=6, lowerCAmelCase=1_024, lowerCAmelCase=8, lowerCAmelCase=0.0, lowerCAmelCase=True, lowerCAmelCase="relu", lowerCAmelCase=256, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=1.0, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase="sine", lowerCAmelCase="resnet50", lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=4, lowerCAmelCase=4, lowerCAmelCase=4, lowerCAmelCase=False, lowerCAmelCase=300, lowerCAmelCase=False, lowerCAmelCase=1, lowerCAmelCase=5, lowerCAmelCase=2, lowerCAmelCase=1, lowerCAmelCase=1, lowerCAmelCase=5, lowerCAmelCase=2, lowerCAmelCase=0.1, lowerCAmelCase=0.2_5, lowerCAmelCase=False, **lowerCAmelCase, ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowerCamelCase_ =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =backbone_config.get('''model_type''' )
lowerCamelCase_ =CONFIG_MAPPING[backbone_model_type]
lowerCamelCase_ =config_class.from_dict(lowerCAmelCase )
lowerCamelCase_ =use_timm_backbone
lowerCamelCase_ =backbone_config
lowerCamelCase_ =num_channels
lowerCamelCase_ =num_queries
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =d_model
lowerCamelCase_ =encoder_ffn_dim
lowerCamelCase_ =encoder_layers
lowerCamelCase_ =encoder_attention_heads
lowerCamelCase_ =decoder_ffn_dim
lowerCamelCase_ =decoder_layers
lowerCamelCase_ =decoder_attention_heads
lowerCamelCase_ =dropout
lowerCamelCase_ =attention_dropout
lowerCamelCase_ =activation_dropout
lowerCamelCase_ =activation_function
lowerCamelCase_ =init_std
lowerCamelCase_ =init_xavier_std
lowerCamelCase_ =encoder_layerdrop
lowerCamelCase_ =auxiliary_loss
lowerCamelCase_ =position_embedding_type
lowerCamelCase_ =backbone
lowerCamelCase_ =use_pretrained_backbone
lowerCamelCase_ =dilation
# deformable attributes
lowerCamelCase_ =num_feature_levels
lowerCamelCase_ =encoder_n_points
lowerCamelCase_ =decoder_n_points
lowerCamelCase_ =two_stage
lowerCamelCase_ =two_stage_num_proposals
lowerCamelCase_ =with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
lowerCamelCase_ =class_cost
lowerCamelCase_ =bbox_cost
lowerCamelCase_ =giou_cost
# Loss coefficients
lowerCamelCase_ =mask_loss_coefficient
lowerCamelCase_ =dice_loss_coefficient
lowerCamelCase_ =bbox_loss_coefficient
lowerCamelCase_ =giou_loss_coefficient
lowerCamelCase_ =eos_coefficient
lowerCamelCase_ =focal_alpha
lowerCamelCase_ =disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.d_model
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCamelCase_ =self.backbone_config.to_dict()
lowerCamelCase_ =self.__class__.model_type
return output
| 6 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =ShapEImgaImgPipeline
lowercase : Dict =['image']
lowercase : str =['image']
lowercase : int =[
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
lowercase : int =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 8
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, )
lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowerCamelCase_ =ShapERenderer(**lowerCAmelCase )
return model
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =self.dummy_renderer
lowerCamelCase_ =HeunDiscreteScheduler(
beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.images[0]
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCamelCase_ =np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =1
lowerCamelCase_ =2
lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
lowerCamelCase_ =batch_size * [inputs[key]]
lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowerCamelCase_ =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 )
lowerCamelCase_ =pipe(
lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : str ) -> bool:
"""simple docstring"""
return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') )
def a_ ( __snake_case : str ) -> bool:
"""simple docstring"""
lowerCamelCase_ =credit_card_number
lowerCamelCase_ =0
lowerCamelCase_ =len(__snake_case ) - 2
for i in range(__snake_case , -1 , -2 ):
# double the value of every second digit
lowerCamelCase_ =int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
lowerCamelCase_ =cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__snake_case ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def a_ ( __snake_case : str ) -> bool:
"""simple docstring"""
lowerCamelCase_ =F'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(F'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(__snake_case ) <= 16:
print(F'''{error_message} of its length.''' )
return False
if not validate_initial_digits(__snake_case ):
print(F'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(__snake_case ):
print(F'''{error_message} it fails the Luhn check.''' )
return False
print(F'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 6 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=4, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =seq_length
lowerCamelCase_ =is_training
lowerCamelCase_ =use_attention_mask
lowerCamelCase_ =use_token_type_ids
lowerCamelCase_ =use_labels
lowerCamelCase_ =vocab_size
lowerCamelCase_ =hidden_size
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =type_vocab_size
lowerCamelCase_ =type_sequence_label_size
lowerCamelCase_ =initializer_range
lowerCamelCase_ =num_choices
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowerCamelCase_ =None
if self.use_attention_mask:
lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ =None
if self.use_token_type_ids:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowerCamelCase_ =BertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs
lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs
lowerCamelCase_ =True
lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Tuple =True
lowercase : int =(
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =FlaxBertModelTester(self )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =FlaxBertModel.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase )
| 6 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
a_ : Tuple = TypeVar("""T""")
a_ : Dict = Union[List[T], Tuple[T, ...]]
a_ : int = Union[T, List[T], Dict[str, T]]
a_ : Optional[Any] = Union[str, bytes, os.PathLike]
| 6 | 1 |
'''simple docstring'''
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = OrderedDict(
[
# Base model mapping
("""albert""", """FlaxAlbertModel"""),
("""bart""", """FlaxBartModel"""),
("""beit""", """FlaxBeitModel"""),
("""bert""", """FlaxBertModel"""),
("""big_bird""", """FlaxBigBirdModel"""),
("""blenderbot""", """FlaxBlenderbotModel"""),
("""blenderbot-small""", """FlaxBlenderbotSmallModel"""),
("""clip""", """FlaxCLIPModel"""),
("""distilbert""", """FlaxDistilBertModel"""),
("""electra""", """FlaxElectraModel"""),
("""gpt-sw3""", """FlaxGPT2Model"""),
("""gpt2""", """FlaxGPT2Model"""),
("""gpt_neo""", """FlaxGPTNeoModel"""),
("""gptj""", """FlaxGPTJModel"""),
("""longt5""", """FlaxLongT5Model"""),
("""marian""", """FlaxMarianModel"""),
("""mbart""", """FlaxMBartModel"""),
("""mt5""", """FlaxMT5Model"""),
("""opt""", """FlaxOPTModel"""),
("""pegasus""", """FlaxPegasusModel"""),
("""regnet""", """FlaxRegNetModel"""),
("""resnet""", """FlaxResNetModel"""),
("""roberta""", """FlaxRobertaModel"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""),
("""roformer""", """FlaxRoFormerModel"""),
("""t5""", """FlaxT5Model"""),
("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""),
("""vit""", """FlaxViTModel"""),
("""wav2vec2""", """FlaxWav2Vec2Model"""),
("""whisper""", """FlaxWhisperModel"""),
("""xglm""", """FlaxXGLMModel"""),
("""xlm-roberta""", """FlaxXLMRobertaModel"""),
]
)
a_ : Optional[Any] = OrderedDict(
[
# Model for pre-training mapping
("""albert""", """FlaxAlbertForPreTraining"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForPreTraining"""),
("""big_bird""", """FlaxBigBirdForPreTraining"""),
("""electra""", """FlaxElectraForPreTraining"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
a_ : str = OrderedDict(
[
# Model for Masked LM mapping
("""albert""", """FlaxAlbertForMaskedLM"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForMaskedLM"""),
("""big_bird""", """FlaxBigBirdForMaskedLM"""),
("""distilbert""", """FlaxDistilBertForMaskedLM"""),
("""electra""", """FlaxElectraForMaskedLM"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
a_ : str = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("""bart""", """FlaxBartForConditionalGeneration"""),
("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""),
("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""),
("""encoder-decoder""", """FlaxEncoderDecoderModel"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""marian""", """FlaxMarianMTModel"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""pegasus""", """FlaxPegasusForConditionalGeneration"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
]
)
a_ : int = OrderedDict(
[
# Model for Image-classsification
("""beit""", """FlaxBeitForImageClassification"""),
("""regnet""", """FlaxRegNetForImageClassification"""),
("""resnet""", """FlaxResNetForImageClassification"""),
("""vit""", """FlaxViTForImageClassification"""),
]
)
a_ : Union[str, Any] = OrderedDict(
[
("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""),
]
)
a_ : Optional[int] = OrderedDict(
[
# Model for Causal LM mapping
("""bart""", """FlaxBartForCausalLM"""),
("""bert""", """FlaxBertForCausalLM"""),
("""big_bird""", """FlaxBigBirdForCausalLM"""),
("""electra""", """FlaxElectraForCausalLM"""),
("""gpt-sw3""", """FlaxGPT2LMHeadModel"""),
("""gpt2""", """FlaxGPT2LMHeadModel"""),
("""gpt_neo""", """FlaxGPTNeoForCausalLM"""),
("""gptj""", """FlaxGPTJForCausalLM"""),
("""opt""", """FlaxOPTForCausalLM"""),
("""roberta""", """FlaxRobertaForCausalLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""),
("""xglm""", """FlaxXGLMForCausalLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""),
]
)
a_ : Tuple = OrderedDict(
[
# Model for Sequence Classification mapping
("""albert""", """FlaxAlbertForSequenceClassification"""),
("""bart""", """FlaxBartForSequenceClassification"""),
("""bert""", """FlaxBertForSequenceClassification"""),
("""big_bird""", """FlaxBigBirdForSequenceClassification"""),
("""distilbert""", """FlaxDistilBertForSequenceClassification"""),
("""electra""", """FlaxElectraForSequenceClassification"""),
("""mbart""", """FlaxMBartForSequenceClassification"""),
("""roberta""", """FlaxRobertaForSequenceClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""),
("""roformer""", """FlaxRoFormerForSequenceClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""),
]
)
a_ : Optional[int] = OrderedDict(
[
# Model for Question Answering mapping
("""albert""", """FlaxAlbertForQuestionAnswering"""),
("""bart""", """FlaxBartForQuestionAnswering"""),
("""bert""", """FlaxBertForQuestionAnswering"""),
("""big_bird""", """FlaxBigBirdForQuestionAnswering"""),
("""distilbert""", """FlaxDistilBertForQuestionAnswering"""),
("""electra""", """FlaxElectraForQuestionAnswering"""),
("""mbart""", """FlaxMBartForQuestionAnswering"""),
("""roberta""", """FlaxRobertaForQuestionAnswering"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""),
("""roformer""", """FlaxRoFormerForQuestionAnswering"""),
("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""),
]
)
a_ : List[Any] = OrderedDict(
[
# Model for Token Classification mapping
("""albert""", """FlaxAlbertForTokenClassification"""),
("""bert""", """FlaxBertForTokenClassification"""),
("""big_bird""", """FlaxBigBirdForTokenClassification"""),
("""distilbert""", """FlaxDistilBertForTokenClassification"""),
("""electra""", """FlaxElectraForTokenClassification"""),
("""roberta""", """FlaxRobertaForTokenClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""),
("""roformer""", """FlaxRoFormerForTokenClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""),
]
)
a_ : Optional[int] = OrderedDict(
[
# Model for Multiple Choice mapping
("""albert""", """FlaxAlbertForMultipleChoice"""),
("""bert""", """FlaxBertForMultipleChoice"""),
("""big_bird""", """FlaxBigBirdForMultipleChoice"""),
("""distilbert""", """FlaxDistilBertForMultipleChoice"""),
("""electra""", """FlaxElectraForMultipleChoice"""),
("""roberta""", """FlaxRobertaForMultipleChoice"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""),
("""roformer""", """FlaxRoFormerForMultipleChoice"""),
("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""),
]
)
a_ : Union[str, Any] = OrderedDict(
[
("""bert""", """FlaxBertForNextSentencePrediction"""),
]
)
a_ : List[str] = OrderedDict(
[
("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
]
)
a_ : Dict = OrderedDict(
[
("""whisper""", """FlaxWhisperForAudioClassification"""),
]
)
a_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
a_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
a_ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
a_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
a_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
a_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
a_ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
a_ : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
a_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
a_ : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
a_ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
a_ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
a_ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
a_ : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Union[str, Any] =FLAX_MODEL_MAPPING
a_ : List[Any] = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Tuple =FLAX_MODEL_FOR_PRETRAINING_MAPPING
a_ : int = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Optional[int] =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
a_ : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : str =FLAX_MODEL_FOR_MASKED_LM_MAPPING
a_ : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Union[str, Any] =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a_ : int = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : str =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a_ : Union[str, Any] = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="""sequence classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : List[str] =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
a_ : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Optional[Any] =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
a_ : Dict = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="""token classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : int =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
a_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : str =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
a_ : List[Any] = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Optional[int] =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
a_ : str = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="""image classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Dict =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
a_ : Union[str, Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
lowercase : Optional[Any] =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
a_ : Tuple = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling"""
)
| 6 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any:
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =search_prob
lowerCamelCase_ =start_temperate
lowerCamelCase_ =[]
lowerCamelCase_ =0
lowerCamelCase_ =None
while not search_end:
lowerCamelCase_ =current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ =current_state
scores.append(__snake_case )
iterations += 1
lowerCamelCase_ =None
lowerCamelCase_ =current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor
lowerCamelCase_ =neighbors.pop(__snake_case )
lowerCamelCase_ =picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ =change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ =picked_neighbor
else:
lowerCamelCase_ =(math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ =picked_neighbor
lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ =True
else:
lowerCamelCase_ =next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__snake_case ) , __snake_case )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : List[str] = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 6 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Any = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Dict ='encoder-decoder'
lowercase : int =True
def __init__( self, **lowerCAmelCase ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
lowerCamelCase_ =kwargs.pop('''encoder''' )
lowerCamelCase_ =encoder_config.pop('''model_type''' )
lowerCamelCase_ =kwargs.pop('''decoder''' )
lowerCamelCase_ =decoder_config.pop('''model_type''' )
from ..auto.configuration_auto import AutoConfig
lowerCamelCase_ =AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =AutoConfig.for_model(lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =True
@classmethod
def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
lowerCamelCase_ =True
lowerCamelCase_ =True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =copy.deepcopy(self.__dict__ )
lowerCamelCase_ =self.encoder.to_dict()
lowerCamelCase_ =self.decoder.to_dict()
lowerCamelCase_ =self.__class__.model_type
return output
| 6 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : BigBirdConfig
lowercase : jnp.dtype =jnp.floataa
lowercase : bool =True
def lowercase__ ( self ):
"""simple docstring"""
super().setup()
lowerCamelCase_ =nn.Dense(5, dtype=self.dtype )
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =super().__call__(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =FlaxBigBirdForNaturalQuestionsModule
def a_ ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[Any] ) -> int:
"""simple docstring"""
def cross_entropy(__snake_case : Optional[Any] , __snake_case : Any , __snake_case : Union[str, Any]=None ):
lowerCamelCase_ =logits.shape[-1]
lowerCamelCase_ =(labels[..., None] == jnp.arange(__snake_case )[None]).astype('''f4''' )
lowerCamelCase_ =jax.nn.log_softmax(__snake_case , axis=-1 )
lowerCamelCase_ =-jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowerCamelCase_ =reduction(__snake_case )
return loss
lowerCamelCase_ =partial(__snake_case , reduction=jnp.mean )
lowerCamelCase_ =cross_entropy(__snake_case , __snake_case )
lowerCamelCase_ =cross_entropy(__snake_case , __snake_case )
lowerCamelCase_ =cross_entropy(__snake_case , __snake_case )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class __UpperCamelCase :
lowercase : str ="google/bigbird-roberta-base"
lowercase : int =30_00
lowercase : int =1_05_00
lowercase : int =1_28
lowercase : int =3
lowercase : int =1
lowercase : int =5
# tx_args
lowercase : float =3E-5
lowercase : float =0.0
lowercase : int =2_00_00
lowercase : float =0.00_95
lowercase : str ="bigbird-roberta-natural-questions"
lowercase : str ="training-expt"
lowercase : str ="data/nq-training.jsonl"
lowercase : str ="data/nq-validation.jsonl"
def lowercase__ ( self ):
"""simple docstring"""
os.makedirs(self.base_dir, exist_ok=lowerCAmelCase )
lowerCamelCase_ =os.path.join(self.base_dir, self.save_dir )
lowerCamelCase_ =self.batch_size_per_device * jax.device_count()
@dataclass
class __UpperCamelCase :
lowercase : int
lowercase : int =40_96 # no dynamic padding on TPUs
def __call__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.collate_fn(lowerCAmelCase )
lowerCamelCase_ =jax.tree_util.tree_map(lowerCAmelCase, lowerCAmelCase )
return batch
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.fetch_inputs(features['''input_ids'''] )
lowerCamelCase_ ={
'''input_ids''': jnp.array(lowerCAmelCase, dtype=jnp.intaa ),
'''attention_mask''': jnp.array(lowerCAmelCase, dtype=jnp.intaa ),
'''start_labels''': jnp.array(features['''start_token'''], dtype=jnp.intaa ),
'''end_labels''': jnp.array(features['''end_token'''], dtype=jnp.intaa ),
'''pooled_labels''': jnp.array(features['''category'''], dtype=jnp.intaa ),
}
return batch
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[self._fetch_inputs(lowerCAmelCase ) for ids in input_ids]
return zip(*lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[1 for _ in range(len(lowerCAmelCase ) )]
while len(lowerCAmelCase ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def a_ ( __snake_case : List[Any] , __snake_case : int , __snake_case : Any=None ) -> Tuple:
"""simple docstring"""
if seed is not None:
lowerCamelCase_ =dataset.shuffle(seed=__snake_case )
for i in range(len(__snake_case ) // batch_size ):
lowerCamelCase_ =dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__snake_case )
@partial(jax.pmap , axis_name='''batch''' )
def a_ ( __snake_case : Any , __snake_case : Dict , **__snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
def loss_fn(__snake_case : Any ):
lowerCamelCase_ =model_inputs.pop('''start_labels''' )
lowerCamelCase_ =model_inputs.pop('''end_labels''' )
lowerCamelCase_ =model_inputs.pop('''pooled_labels''' )
lowerCamelCase_ =state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =outputs
return state.loss_fn(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , )
lowerCamelCase_, lowerCamelCase_ =jax.random.split(__snake_case )
lowerCamelCase_ =jax.value_and_grad(__snake_case )
lowerCamelCase_, lowerCamelCase_ =grad_fn(state.params )
lowerCamelCase_ =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' )
lowerCamelCase_ =jax.lax.pmean(__snake_case , '''batch''' )
lowerCamelCase_ =state.apply_gradients(grads=__snake_case )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name='''batch''' )
def a_ ( __snake_case : Union[str, Any] , **__snake_case : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =model_inputs.pop('''start_labels''' )
lowerCamelCase_ =model_inputs.pop('''end_labels''' )
lowerCamelCase_ =model_inputs.pop('''pooled_labels''' )
lowerCamelCase_ =state.apply_fn(**__snake_case , params=state.params , train=__snake_case )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =outputs
lowerCamelCase_ =state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
lowerCamelCase_ =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' )
return metrics
class __UpperCamelCase ( train_state.TrainState ):
lowercase : Callable =struct.field(pytree_node=lowerCamelCase__ )
@dataclass
class __UpperCamelCase :
lowercase : Args
lowercase : Callable
lowercase : Callable
lowercase : Callable
lowercase : Callable
lowercase : wandb
lowercase : Callable =None
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
lowerCamelCase_ =model.params
lowerCamelCase_ =TrainState.create(
apply_fn=model.__call__, params=lowerCAmelCase, tx=lowerCAmelCase, loss_fn=lowerCAmelCase, )
if ckpt_dir is not None:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =restore_checkpoint(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ ={
'''lr''': args.lr,
'''init_lr''': args.init_lr,
'''warmup_steps''': args.warmup_steps,
'''num_train_steps''': num_train_steps,
'''weight_decay''': args.weight_decay,
}
lowerCamelCase_, lowerCamelCase_ =build_tx(**lowerCAmelCase )
lowerCamelCase_ =train_state.TrainState(
step=lowerCAmelCase, apply_fn=model.__call__, params=lowerCAmelCase, tx=lowerCAmelCase, opt_state=lowerCAmelCase, )
lowerCamelCase_ =args
lowerCamelCase_ =data_collator
lowerCamelCase_ =lr
lowerCamelCase_ =params
lowerCamelCase_ =jax_utils.replicate(lowerCAmelCase )
return state
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.args
lowerCamelCase_ =len(lowerCAmelCase ) // args.batch_size
lowerCamelCase_ =jax.random.PRNGKey(0 )
lowerCamelCase_ =jax.random.split(lowerCAmelCase, jax.device_count() )
for epoch in range(args.max_epochs ):
lowerCamelCase_ =jnp.array(0, dtype=jnp.floataa )
lowerCamelCase_ =get_batched_dataset(lowerCAmelCase, args.batch_size, seed=lowerCAmelCase )
lowerCamelCase_ =0
for batch in tqdm(lowerCAmelCase, total=lowerCAmelCase, desc=f'''Running EPOCH-{epoch}''' ):
lowerCamelCase_ =self.data_collator(lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =self.train_step_fn(lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase )
running_loss += jax_utils.unreplicate(metrics['''loss'''] )
i += 1
if i % args.logging_steps == 0:
lowerCamelCase_ =jax_utils.unreplicate(state.step )
lowerCamelCase_ =running_loss.item() / i
lowerCamelCase_ =self.scheduler_fn(state_step - 1 )
lowerCamelCase_ =self.evaluate(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ ={
'''step''': state_step.item(),
'''eval_loss''': eval_loss.item(),
'''tr_loss''': tr_loss,
'''lr''': lr.item(),
}
tqdm.write(str(lowerCAmelCase ) )
self.logger.log(lowerCAmelCase, commit=lowerCAmelCase )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''', state=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =get_batched_dataset(lowerCAmelCase, self.args.batch_size )
lowerCamelCase_ =len(lowerCAmelCase ) // self.args.batch_size
lowerCamelCase_ =jnp.array(0, dtype=jnp.floataa )
lowerCamelCase_ =0
for batch in tqdm(lowerCAmelCase, total=lowerCAmelCase, desc='''Evaluating ... ''' ):
lowerCamelCase_ =self.data_collator(lowerCAmelCase )
lowerCamelCase_ =self.val_step_fn(lowerCAmelCase, **lowerCAmelCase )
running_loss += jax_utils.unreplicate(metrics['''loss'''] )
i += 1
return running_loss / i
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =jax_utils.unreplicate(lowerCAmelCase )
print(f'''SAVING CHECKPOINT IN {save_dir}''', end=''' ... ''' )
self.model_save_fn(lowerCAmelCase, params=state.params )
with open(os.path.join(lowerCAmelCase, '''opt_state.msgpack''' ), '''wb''' ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args, os.path.join(lowerCAmelCase, '''args.joblib''' ) )
joblib.dump(self.data_collator, os.path.join(lowerCAmelCase, '''data_collator.joblib''' ) )
with open(os.path.join(lowerCAmelCase, '''training_state.json''' ), '''w''' ) as f:
json.dump({'''step''': state.step.item()}, lowerCAmelCase )
print('''DONE''' )
def a_ ( __snake_case : Tuple , __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' )
with open(os.path.join(__snake_case , '''flax_model.msgpack''' ) , '''rb''' ) as f:
lowerCamelCase_ =from_bytes(state.params , f.read() )
with open(os.path.join(__snake_case , '''opt_state.msgpack''' ) , '''rb''' ) as f:
lowerCamelCase_ =from_bytes(state.opt_state , f.read() )
lowerCamelCase_ =joblib.load(os.path.join(__snake_case , '''args.joblib''' ) )
lowerCamelCase_ =joblib.load(os.path.join(__snake_case , '''data_collator.joblib''' ) )
with open(os.path.join(__snake_case , '''training_state.json''' ) , '''r''' ) as f:
lowerCamelCase_ =json.load(__snake_case )
lowerCamelCase_ =training_state['''step''']
print('''DONE''' )
return params, opt_state, step, args, data_collator
def a_ ( __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =num_train_steps - warmup_steps
lowerCamelCase_ =optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case )
lowerCamelCase_ =optax.linear_schedule(init_value=__snake_case , end_value=1e-7 , transition_steps=__snake_case )
lowerCamelCase_ =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def a_ ( __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str ) -> Dict:
"""simple docstring"""
def weight_decay_mask(__snake_case : Optional[int] ):
lowerCamelCase_ =traverse_util.flatten_dict(__snake_case )
lowerCamelCase_ ={k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()}
return traverse_util.unflatten_dict(__snake_case )
lowerCamelCase_ =scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case )
lowerCamelCase_ =optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case )
return tx, lr
| 6 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =['image_processor', 'tokenizer']
lowercase : int ='LayoutLMv2ImageProcessor'
lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCamelCase_ =features['''words''']
lowerCamelCase_ =self.tokenizer(
text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, )
# add pixel values
lowerCamelCase_ =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] )
lowerCamelCase_ =images
return encoded_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' )
return images_with_overflow
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def a_ ( __snake_case : Optional[int] ) -> int:
"""simple docstring"""
return 1 / (1 + np.exp(-z ))
def a_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Dict:
"""simple docstring"""
return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean()
def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : str ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =np.dot(__snake_case , __snake_case )
return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) )
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict=7_0000 ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =np.zeros(x.shape[1] )
for iterations in range(__snake_case ):
lowerCamelCase_ =np.dot(__snake_case , __snake_case )
lowerCamelCase_ =sigmoid_function(__snake_case )
lowerCamelCase_ =np.dot(x.T , h - y ) / y.size
lowerCamelCase_ =theta - alpha * gradient # updating the weights
lowerCamelCase_ =np.dot(__snake_case , __snake_case )
lowerCamelCase_ =sigmoid_function(__snake_case )
lowerCamelCase_ =cost_function(__snake_case , __snake_case )
if iterations % 100 == 0:
print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
a_ : List[str] = datasets.load_iris()
a_ : int = iris.data[:, :2]
a_ : Tuple = (iris.target != 0) * 1
a_ : Union[str, Any] = 0.1
a_ : Dict = logistic_reg(alpha, x, y, max_iterations=7_00_00)
print("""theta: """, theta) # printing the theta i.e our weights vector
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
return sigmoid_function(
np.dot(__snake_case , __snake_case ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""")
((a_) , (a_)) : Dict = (x[:, 0].min(), x[:, 0].max())
((a_) , (a_)) : List[str] = (x[:, 1].min(), x[:, 1].max())
((a_) , (a_)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
a_ : int = np.c_[xxa.ravel(), xxa.ravel()]
a_ : Optional[Any] = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""")
plt.legend()
plt.show()
| 6 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =VQModel
lowercase : Union[str, Any] ='sample'
@property
def lowercase__ ( self, lowerCAmelCase=(32, 32) ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
| 6 | 1 |
'''simple docstring'''
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
a_ : Union[str, Any] = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
a_ : Tuple = """sshleifer/student_marian_en_ro_6_1"""
a_ : Dict = """sshleifer/tiny-mbart"""
@require_torch
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self, lowerCAmelCase=False, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, ):
"""simple docstring"""
lowerCamelCase_ =self.run_trainer(
eval_steps=1, max_len=12, model_name=lowerCAmelCase, num_train_epochs=1, distributed=lowerCAmelCase, extra_args_str=lowerCAmelCase, predict_with_generate=lowerCAmelCase, do_train=lowerCAmelCase, do_eval=lowerCAmelCase, do_predict=lowerCAmelCase, )
lowerCamelCase_ =TrainerState.load_from_json(os.path.join(lowerCAmelCase, '''trainer_state.json''' ) ).log_history
if not do_eval:
return
lowerCamelCase_ =[log for log in logs if '''eval_loss''' in log.keys()]
lowerCamelCase_ =eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
lowerCamelCase_ =eval_metrics[-1]
assert isinstance(last_step_stats['''eval_bleu'''], lowerCAmelCase )
assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick()
@require_torch_multi_gpu
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase )
@require_torch_multi_gpu
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase, extra_args_str='''--sharded_ddp simple''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase, extra_args_str='''--sharded_ddp simple --fp16''' )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase, extra_args_str='''--sharded_ddp zero_dp_2''', predict_with_generate=lowerCAmelCase )
@unittest.skip('''Requires an update of the env running those tests''' )
@require_torch_multi_gpu
@require_fairscale
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(
distributed=lowerCAmelCase, extra_args_str='''--sharded_ddp zero_dp_2 --fp16''', predict_with_generate=lowerCAmelCase )
@require_apex
@require_torch_gpu
def lowercase__ ( self ):
"""simple docstring"""
self.run_seqaseq_quick(distributed=lowerCAmelCase, extra_args_str='''--fp16 --fp16_backend=apex''' )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=lowerCAmelCase, extra_args_str='''--fp16 --fp16_backend=apex''' )
@parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] )
@require_torch_multi_gpu
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={
# test with the default log_level - should be info and thus log info once
'''base''': {'''extra_args_str''': '''''', '''n_matches''': 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
'''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
'''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1},
# test with high log_level and log_level_replica - should be quiet on all processes
'''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0},
}
lowerCamelCase_ =experiments[experiment_id]
lowerCamelCase_ ={'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False}
lowerCamelCase_ ='''Running training'''
with CaptureStderr() as cl:
self.run_seqaseq_quick(**lowerCAmelCase, extra_args_str=data['''extra_args_str'''] )
lowerCamelCase_ =len(re.findall(lowerCAmelCase, cl.err ) )
self.assertEqual(lowerCAmelCase, data['''n_matches'''] )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.run_trainer(
eval_steps=2, max_len=128, model_name=lowerCAmelCase, learning_rate=3e-4, num_train_epochs=10, distributed=lowerCAmelCase, )
# Check metrics
lowerCamelCase_ =TrainerState.load_from_json(os.path.join(lowerCAmelCase, '''trainer_state.json''' ) ).log_history
lowerCamelCase_ =[log for log in logs if '''eval_loss''' in log.keys()]
lowerCamelCase_ =eval_metrics[0]
lowerCamelCase_ =eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats['''eval_bleu'''], lowerCAmelCase )
# test if do_predict saves generations and metrics
lowerCamelCase_ =os.listdir(lowerCAmelCase )
lowerCamelCase_ ={os.path.basename(lowerCAmelCase ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def lowercase__ ( self ):
"""simple docstring"""
from transformers.training_args import OptimizerNames
def train_and_return_metrics(lowerCAmelCase ) -> Tuple[int, float]:
lowerCamelCase_ ='''--skip_memory_metrics 0'''
lowerCamelCase_ =self.run_trainer(
max_len=128, model_name=lowerCAmelCase, learning_rate=3e-4, num_train_epochs=1, optim=lowerCAmelCase, distributed=lowerCAmelCase, extra_args_str=lowerCAmelCase, do_eval=lowerCAmelCase, do_predict=lowerCAmelCase, n_gpus_to_use=1, )
# Check metrics
lowerCamelCase_ =TrainerState.load_from_json(Path(lowerCAmelCase, '''trainer_state.json''' ) ).log_history
lowerCamelCase_ =int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 )
lowerCamelCase_ =int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 )
lowerCamelCase_ =logs[0]['''train_loss''']
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
lowerCamelCase_ =gpu_alloc_mem_orig - gpu_alloc_mem_bnb
lowerCamelCase_ =gpu_peak_mem_orig + gpu_alloc_mem_orig
lowerCamelCase_ =gpu_peak_mem_bnb + gpu_alloc_mem_bnb
lowerCamelCase_ =gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
lowerCamelCase_ =120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
lowerCAmelCase, lowerCAmelCase, '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got'''
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''', )
self.assertGreater(
lowerCAmelCase, lowerCAmelCase, '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got'''
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''', )
self.assertEqual(
lowerCAmelCase, lowerCAmelCase, f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 3e-3, lowerCAmelCase = "adafactor", lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = None, ):
"""simple docstring"""
lowerCamelCase_ =self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro'''
lowerCamelCase_ =self.get_auto_remove_tmp_dir()
lowerCamelCase_ =f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(lowerCAmelCase )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(lowerCAmelCase )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
lowerCamelCase_ =f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(lowerCAmelCase )}
'''.split()
lowerCamelCase_ ='''
--do_predict
'''.split()
lowerCamelCase_ =[]
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
lowerCamelCase_ =get_gpu_count()
lowerCamelCase_ =get_torch_dist_unique_port()
lowerCamelCase_ =f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
lowerCamelCase_ =[sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowerCAmelCase, env=self.get_env() )
else:
lowerCamelCase_ =['''run_translation.py'''] + args
with patch.object(lowerCAmelCase, '''argv''', lowerCAmelCase ):
main()
return output_dir
| 6 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 | 1 |
'''simple docstring'''
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def a_ ( __snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =int(__snake_case )
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =t // 3600, (t // 60) % 60, t % 60
return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}'''
def a_ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any]=300 ) -> Optional[int]:
"""simple docstring"""
# docstyle-ignore
return F'''
<div>
{prefix}
<progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>
{label}
</div>
'''
def a_ ( __snake_case : str ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ ='''<table border="1" class="dataframe">\n'''
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F''' <th>{i}</th>\n'''
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
lowerCamelCase_ =F'''{elt:.6f}''' if isinstance(__snake_case , __snake_case ) else str(__snake_case )
html_code += F''' <td>{elt}</td>\n'''
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __UpperCamelCase :
lowercase : Tuple =5
lowercase : str =0.2
def __init__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = 300, ):
"""simple docstring"""
lowerCamelCase_ =total
lowerCamelCase_ ='''''' if prefix is None else prefix
lowerCamelCase_ =leave
lowerCamelCase_ =parent
lowerCamelCase_ =width
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =None
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = False, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =value
if comment is not None:
lowerCamelCase_ =comment
if self.last_value is None:
lowerCamelCase_ =lowerCamelCase_ =time.time()
lowerCamelCase_ =lowerCamelCase_ =value
lowerCamelCase_ =lowerCamelCase_ =None
lowerCamelCase_ =self.warmup
lowerCamelCase_ =1
self.update_bar(lowerCAmelCase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total ):
if self.first_calls > 0:
self.first_calls -= 1
lowerCamelCase_ =time.time()
lowerCamelCase_ =current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
lowerCamelCase_ =self.elapsed_time / (value - self.start_value)
else:
lowerCamelCase_ =None
if value >= self.total:
lowerCamelCase_ =self.total
lowerCamelCase_ =None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
lowerCamelCase_ =self.average_time_per_item * (self.total - value)
self.update_bar(lowerCAmelCase )
lowerCamelCase_ =value
lowerCamelCase_ =current_time
if self.average_time_per_item is None:
lowerCamelCase_ =1
else:
lowerCamelCase_ =max(int(self.update_every / self.average_time_per_item ), 1 )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
lowerCamelCase_ =''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase ) )) + str(lowerCAmelCase )
if self.elapsed_time is None:
lowerCamelCase_ =f'''[{spaced_value}/{self.total} : < :'''
elif self.predicted_remaining is None:
lowerCamelCase_ =f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'''
else:
lowerCamelCase_ =(
f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'''
f''' {format_time(self.predicted_remaining )}'''
)
self.label += f''', {1/self.average_time_per_item:.2f} it/s'''
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]'''
self.display()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =html_progress_bar(self.value, self.total, self.prefix, self.label, self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
lowerCamelCase_ =disp.display(disp.HTML(self.html_code ), display_id=lowerCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowercase__ ( self ):
"""simple docstring"""
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('''''' ) )
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
super().__init__(lowerCAmelCase )
lowerCamelCase_ =None if column_names is None else [column_names]
lowerCamelCase_ =None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =html_progress_bar(self.value, self.total, self.prefix, self.label, self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
lowerCamelCase_ =disp.display(disp.HTML(self.html_code ), display_id=lowerCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
if self.inner_table is None:
lowerCamelCase_ =[list(values.keys() ), list(values.values() )]
else:
lowerCamelCase_ =self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(lowerCAmelCase )
lowerCamelCase_ =columns
self.inner_table.append([values[c] for c in columns] )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=300 ):
"""simple docstring"""
lowerCamelCase_ =NotebookProgressBar(lowerCAmelCase, prefix=lowerCAmelCase, parent=self, width=lowerCAmelCase )
return self.child_bar
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =None
self.display()
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self ):
"""simple docstring"""
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ='''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step'''
lowerCamelCase_ =0
lowerCamelCase_ =0
lowerCamelCase_ =[self.first_column] + ['''Training Loss''']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('''Validation Loss''' )
lowerCamelCase_ =NotebookTrainingTracker(state.max_steps, lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}'''
self.training_tracker.update(
state.global_step + 1, comment=f'''Epoch {epoch}/{state.num_train_epochs}''', force_update=self._force_next_update, )
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if not has_length(lowerCAmelCase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
lowerCamelCase_ =self.training_tracker.add_child(len(lowerCAmelCase ) )
else:
lowerCamelCase_ =NotebookProgressBar(len(lowerCAmelCase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if self.prediction_bar is not None:
self.prediction_bar.close()
lowerCamelCase_ =None
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
lowerCamelCase_ ={'''Training Loss''': logs['''loss''']}
# First column is necessarily Step sine we're not in epoch eval strategy
lowerCamelCase_ =state.global_step
self.training_tracker.write_line(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if self.training_tracker is not None:
lowerCamelCase_ ={'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''}
for log in reversed(state.log_history ):
if "loss" in log:
lowerCamelCase_ =log['''loss''']
break
if self.first_column == "Epoch":
lowerCamelCase_ =int(state.epoch )
else:
lowerCamelCase_ =state.global_step
lowerCamelCase_ ='''eval'''
for k in metrics:
if k.endswith('''_loss''' ):
lowerCamelCase_ =re.sub(R'''\_loss$''', '''''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop('''total_flos''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop('''epoch''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop(f'''{metric_key_prefix}_runtime''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop(f'''{metric_key_prefix}_samples_per_second''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop(f'''{metric_key_prefix}_steps_per_second''', lowerCAmelCase )
lowerCamelCase_ =metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''', lowerCAmelCase )
for k, v in metrics.items():
if k == f'''{metric_key_prefix}_loss''':
lowerCamelCase_ =v
else:
lowerCamelCase_ =k.split('''_''' )
lowerCamelCase_ =''' '''.join([part.capitalize() for part in splits[1:]] )
lowerCamelCase_ =v
self.training_tracker.write_line(lowerCAmelCase )
self.training_tracker.remove_child()
lowerCamelCase_ =None
# Evaluation takes a long time so we should force the next update.
lowerCamelCase_ =True
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
self.training_tracker.update(
state.global_step, comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''', force_update=lowerCAmelCase )
lowerCamelCase_ =None
| 6 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCamelCase_ =DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowerCAmelCase, scheduler=lowerCAmelCase )
@torch.no_grad()
def __call__( self, lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = 0.0, lowerCAmelCase = 50, lowerCAmelCase = None, lowerCAmelCase = "pil", lowerCAmelCase = True, ):
"""simple docstring"""
if isinstance(self.unet.config.sample_size, lowerCAmelCase ):
lowerCamelCase_ =(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCamelCase_ =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCamelCase_ =randn_tensor(lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCamelCase_ =self.scheduler.step(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, eta=lowerCAmelCase, use_clipped_model_output=lowerCAmelCase, generator=lowerCAmelCase ).prev_sample
lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 )
lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
lowerCamelCase_ =self.numpy_to_pil(lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase )
| 6 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
a_ : Dict = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''', lowerCAmelCase, )
super().__init__(*lowerCAmelCase, **lowerCAmelCase )
| 6 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ : Any = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 | 1 |
'''simple docstring'''
class __UpperCamelCase :
def __init__( self, lowerCAmelCase = "", lowerCAmelCase = False ):
"""simple docstring"""
lowerCamelCase_ ={}
# A node will be a leaf if the tree contains its word
lowerCamelCase_ =is_leaf
lowerCamelCase_ =prefix
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =0
for q, w in zip(self.prefix, lowerCAmelCase ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
for word in words:
self.insert(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
if self.prefix == word:
lowerCamelCase_ =True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowerCamelCase_ =RadixNode(prefix=lowerCAmelCase, is_leaf=lowerCAmelCase )
else:
lowerCamelCase_ =self.nodes[word[0]]
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =incoming_node.match(
lowerCAmelCase )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCAmelCase )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowerCamelCase_ =remaining_prefix
lowerCamelCase_ =self.nodes[matching_string[0]]
lowerCamelCase_ =RadixNode(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =aux_node
if remaining_word == "":
lowerCamelCase_ =True
else:
self.nodes[matching_string[0]].insert(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.nodes.get(word[0], lowerCAmelCase )
if not incoming_node:
return False
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =incoming_node.match(
lowerCAmelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.nodes.get(word[0], lowerCAmelCase )
if not incoming_node:
return False
else:
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =incoming_node.match(
lowerCAmelCase )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCAmelCase )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowerCamelCase_ =list(self.nodes.values() )[0]
lowerCamelCase_ =merging_node.is_leaf
self.prefix += merging_node.prefix
lowerCamelCase_ =merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowerCamelCase_ =False
# If there is 1 edge, we merge it with its child
else:
lowerCamelCase_ =list(incoming_node.nodes.values() )[0]
lowerCamelCase_ =merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowerCamelCase_ =merging_node.nodes
return True
def lowercase__ ( self, lowerCAmelCase = 0 ):
"""simple docstring"""
if self.prefix != "":
print('''-''' * height, self.prefix, ''' (leaf)''' if self.is_leaf else '''''' )
for value in self.nodes.values():
value.print_tree(height + 1 )
def a_ ( ) -> bool:
"""simple docstring"""
lowerCamelCase_ ='''banana bananas bandana band apple all beast'''.split()
lowerCamelCase_ =RadixNode()
root.insert_many(__snake_case )
assert all(root.find(__snake_case ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def a_ ( ) -> None:
"""simple docstring"""
assert test_trie()
def a_ ( ) -> None:
"""simple docstring"""
lowerCamelCase_ =RadixNode()
lowerCamelCase_ ='''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(__snake_case )
print('''Words:''' , __snake_case )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 6 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def a_ ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : int , __snake_case : int ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_ =cva.getAffineTransform(__snake_case , __snake_case )
return cva.warpAffine(__snake_case , __snake_case , (rows, cols) )
if __name__ == "__main__":
# read original image
a_ : List[str] = cva.imread(
str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""")
)
# turn image in gray scale value
a_ : Dict = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
a_ , a_ : str = gray_img.shape
# set different points to rotate image
a_ : Tuple = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa)
a_ : Optional[Any] = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa)
a_ : Optional[int] = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa)
a_ : List[Any] = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa)
# add all rotated images in a list
a_ : List[Any] = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
a_ : List[Any] = plt.figure(1)
a_ : List[Any] = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""")
plt.title(titles[i])
plt.axis("""off""")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 6 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ : Tuple = 16
a_ : Optional[int] = 32
def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str:
"""simple docstring"""
lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__snake_case : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase_ =datasets.map(
__snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__snake_case : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase_ =16
elif accelerator.mixed_precision != "no":
lowerCamelCase_ =8
else:
lowerCamelCase_ =None
return tokenizer.pad(
__snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCamelCase_ =DataLoader(
tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
lowerCamelCase_ =DataLoader(
tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ : Tuple = mocked_dataloaders # noqa: F811
def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1":
lowerCamelCase_ =2
# Initialize accelerator
lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ =config['''lr''']
lowerCamelCase_ =int(config['''num_epochs'''] )
lowerCamelCase_ =int(config['''seed'''] )
lowerCamelCase_ =int(config['''batch_size'''] )
lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__snake_case )
def inner_training_loop(__snake_case : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase_ =model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case )
lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case )
# Instantiate scheduler
lowerCamelCase_ =get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.loss
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits.argmax(dim=-1 )
lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
lowerCamelCase_ =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __snake_case )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def a_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 6 | 1 |
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
self.assertEqual(len(lowerCAmelCase ), len(lowerCAmelCase ) )
for a, b in zip(lowerCAmelCase, lowerCAmelCase ):
self.assertAlmostEqual(lowerCAmelCase, lowerCAmelCase, delta=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(lowerCAmelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step, 3 )
self.assertEqual(len(accumulator.gradients ), 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =None
ops.enable_eager_execution_internal()
lowerCamelCase_ =tf.config.list_physical_devices('''CPU''' )
if len(lowerCAmelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowerCamelCase_ =tf.config.list_logical_devices(device_type='''CPU''' )
lowerCamelCase_ =tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowerCamelCase_ =GradientAccumulator()
lowerCamelCase_ =tf.Variable([4.0, 3.0] )
lowerCamelCase_, lowerCamelCase_ =create_optimizer(5e-5, 10, 5 )
lowerCamelCase_ =tf.Variable([0.0, 0.0], trainable=lowerCAmelCase )
def accumulate_on_replica(lowerCAmelCase ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) )
@tf.function
def accumulate(lowerCAmelCase, lowerCAmelCase ):
with strategy.scope():
lowerCamelCase_ =strategy.experimental_local_results(lowerCAmelCase )
local_variables[0].assign(lowerCAmelCase )
local_variables[1].assign(lowerCAmelCase )
strategy.run(lowerCAmelCase, args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(lowerCAmelCase )
def _check_local_values(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value(), lowerCAmelCase, tol=1e-2 )
self.assertListAlmostEqual(values[1].value(), lowerCAmelCase, tol=1e-2 )
accumulate([1.0, 2.0], [-1.0, 1.0] )
accumulate([3.0, -1.0], [-1.0, -1.0] )
accumulate([-2.0, 2.0], [3.0, -2.0] )
self.assertEqual(accumulator.step, 3 )
_check_local_values([2.0, 3.0], [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step, 0 )
_check_local_values([0.0, 0.0], [0.0, 0.0] )
| 6 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a_ : List[str] = """src/diffusers"""
# Matches is_xxx_available()
a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a_ : Optional[Any] = """
{0} = None
"""
a_ : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a_ : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a_ ( __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =_re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a_ ( ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase_ =0
lowerCamelCase_ ={}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase_ =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
lowerCamelCase_ =[]
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase_ =lines[line_index]
lowerCamelCase_ =_re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase_ =objects
else:
line_index += 1
return backend_specific_objects
def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a_ ( __snake_case : Tuple=None ) -> List[str]:
"""simple docstring"""
if backend_specific_objects is None:
lowerCamelCase_ =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase_ ={}
for backend, objects in backend_specific_objects.items():
lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase_ =dummy_file
return dummy_files
def a_ ( __snake_case : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase_ ={'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
lowerCamelCase_ =os.path.join(__snake_case , '''utils''' )
lowerCamelCase_ ={
backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase_ ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.read()
else:
lowerCamelCase_ =''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a_ : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 6 | 1 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6 |
'''simple docstring'''
a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a_ : list[bool | None] = [None] * 10_00_00_00
a_ : List[Any] = True
a_ : Optional[Any] = False
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase_ =chain(next_number(__snake_case ) )
lowerCamelCase_ =number_chain
while number < 1000_0000:
lowerCamelCase_ =number_chain
number *= 10
return number_chain
def a_ ( __snake_case : int = 1000_0000 ) -> int:
"""simple docstring"""
for i in range(1 , __snake_case ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import math
import sys
import cva
import numpy as np
def a_ ( __snake_case : np.ndarray , __snake_case : float ) -> np.ndarray:
"""simple docstring"""
# For applying gaussian function for each element in matrix.
lowerCamelCase_ =math.sqrt(__snake_case )
lowerCamelCase_ =1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int , __snake_case : int ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_ =kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def a_ ( __snake_case : int , __snake_case : float ) -> np.ndarray:
"""simple docstring"""
# Creates a gaussian kernel of given dimension.
lowerCamelCase_ =np.zeros((kernel_size, kernel_size) )
for i in range(0 , __snake_case ):
for j in range(0 , __snake_case ):
lowerCamelCase_ =math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(__snake_case , __snake_case )
def a_ ( __snake_case : np.ndarray , __snake_case : float , __snake_case : float , __snake_case : int , ) -> np.ndarray:
"""simple docstring"""
lowerCamelCase_ =np.zeros(img.shape )
lowerCamelCase_ =get_gauss_kernel(__snake_case , __snake_case )
lowerCamelCase_, lowerCamelCase_ =img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
lowerCamelCase_ =get_slice(__snake_case , __snake_case , __snake_case , __snake_case )
lowerCamelCase_ =img_s - img_s[kernel_size // 2, kernel_size // 2]
lowerCamelCase_ =vec_gaussian(__snake_case , __snake_case )
lowerCamelCase_ =np.multiply(__snake_case , __snake_case )
lowerCamelCase_ =np.multiply(__snake_case , __snake_case )
lowerCamelCase_ =np.sum(__snake_case ) / np.sum(__snake_case )
lowerCamelCase_ =val
return imga
def a_ ( __snake_case : list ) -> tuple:
"""simple docstring"""
lowerCamelCase_ =args[1] if args[1:] else '''../image_data/lena.jpg'''
lowerCamelCase_ =float(args[2] ) if args[2:] else 1.0
lowerCamelCase_ =float(args[3] ) if args[3:] else 1.0
if args[4:]:
lowerCamelCase_ =int(args[4] )
lowerCamelCase_ =kernel_size + abs(kernel_size % 2 - 1 )
else:
lowerCamelCase_ =5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a_ , a_ , a_ , a_ : Union[str, Any] = parse_args(sys.argv)
a_ : Dict = cva.imread(filename, 0)
cva.imshow("""input image""", img)
a_ : Tuple = img / 2_55
a_ : Optional[Any] = out.astype("""float32""")
a_ : List[str] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a_ : Union[str, Any] = out * 2_55
a_ : Union[str, Any] = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 6 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def a_ ( __snake_case : Tuple ) -> str:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __UpperCamelCase ( lowerCamelCase__ ):
@staticmethod
def lowercase__ ( lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =parser.add_parser('''download''' )
download_parser.add_argument(
'''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' )
download_parser.add_argument(
'''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' )
download_parser.add_argument(
'''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', )
download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' )
download_parser.set_defaults(func=lowerCAmelCase )
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =model
lowerCamelCase_ =cache
lowerCamelCase_ =force
lowerCamelCase_ =trust_remote_code
def lowercase__ ( self ):
"""simple docstring"""
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
| 6 | 1 |
'''simple docstring'''
import heapq as hq
import math
from collections.abc import Iterator
class __UpperCamelCase :
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =str(id_ )
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =[]
lowerCamelCase_ ={} # {vertex:distance}
def __lt__( self, lowerCAmelCase ):
"""simple docstring"""
return self.key < other.key
def __repr__( self ):
"""simple docstring"""
return self.id
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
self.neighbors.append(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =weight
def a_ ( __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> str:
"""simple docstring"""
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , __snake_case )
graph[b - 1].add_edge(graph[a - 1] , __snake_case )
def a_ ( __snake_case : list , __snake_case : Vertex ) -> list:
"""simple docstring"""
lowerCamelCase_ =[]
for u in graph:
lowerCamelCase_ =math.inf
lowerCamelCase_ =None
lowerCamelCase_ =0
lowerCamelCase_ =graph[:]
while q:
lowerCamelCase_ =min(__snake_case )
q.remove(__snake_case )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
lowerCamelCase_ =u
lowerCamelCase_ =u.edges[v.id]
for i in range(1 , len(__snake_case ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def a_ ( __snake_case : list , __snake_case : Vertex ) -> Iterator[tuple]:
"""simple docstring"""
for u in graph:
lowerCamelCase_ =math.inf
lowerCamelCase_ =None
lowerCamelCase_ =0
lowerCamelCase_ =list(__snake_case )
hq.heapify(__snake_case )
while h:
lowerCamelCase_ =hq.heappop(__snake_case )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
lowerCamelCase_ =u
lowerCamelCase_ =u.edges[v.id]
hq.heapify(__snake_case )
for i in range(1 , len(__snake_case ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def a_ ( ) -> None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a_ : List[str] = logging.get_logger(__name__)
a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __UpperCamelCase :
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} )
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
lowercase : int =field(
default=1_28 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase : int =field(
default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
lowercase : int =field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
lowercase : int =field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
lowercase : float =field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] ='train'
lowercase : Any ='dev'
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : SquadDataTrainingArguments
lowercase : List[SquadFeatures]
lowercase : Split
lowercase : bool
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ):
"""simple docstring"""
lowerCamelCase_ =args
lowerCamelCase_ =is_language_sensitive
lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowerCAmelCase, lowerCAmelCase ):
try:
lowerCamelCase_ =Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
lowerCamelCase_ =mode
# Load data features from cache or dataset file
lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1'''
lowerCamelCase_ =os.path.join(
cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase_ =cached_features_file + '''.lock'''
with FileLock(lowerCAmelCase ):
if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache:
lowerCamelCase_ =time.time()
lowerCamelCase_ =torch.load(lowerCAmelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase_ =self.old_features['''features''']
lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase )
lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase_ =self.processor.get_train_examples(args.data_dir )
lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, )
lowerCamelCase_ =time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.features[i]
lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float )
lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 6 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
a_ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : List[str] = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
a_ : List[Any] = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
a_ : str = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : int =PRETRAINED_VOCAB_FILES_MAP
lowercase : int =PRETRAINED_INIT_CONFIGURATION
lowercase : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : int =LxmertTokenizer
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase="[UNK]", lowerCAmelCase="[SEP]", lowerCAmelCase="[PAD]", lowerCAmelCase="[CLS]", lowerCAmelCase="[MASK]", lowerCAmelCase=True, lowerCAmelCase=None, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(
lowerCAmelCase, tokenizer_file=lowerCAmelCase, do_lower_case=lowerCAmelCase, unk_token=lowerCAmelCase, sep_token=lowerCAmelCase, pad_token=lowerCAmelCase, cls_token=lowerCAmelCase, mask_token=lowerCAmelCase, tokenize_chinese_chars=lowerCAmelCase, strip_accents=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''', lowerCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''', lowerCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''', lowerCAmelCase ) != tokenize_chinese_chars
):
lowerCamelCase_ =getattr(lowerCAmelCase, normalizer_state.pop('''type''' ) )
lowerCamelCase_ =do_lower_case
lowerCamelCase_ =strip_accents
lowerCamelCase_ =tokenize_chinese_chars
lowerCamelCase_ =normalizer_class(**lowerCAmelCase )
lowerCamelCase_ =do_lower_case
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
lowerCamelCase_ =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =[self.sep_token_id]
lowerCamelCase_ =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase )
return tuple(lowerCAmelCase )
| 6 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/"""
a_ : Any = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowerCamelCase_ =key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ={}
import re
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
lowerCamelCase_ =original_key
lowerCamelCase_ =replace_key(__snake_case )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
lowerCamelCase_ =original_key
lowerCamelCase_ =original_key
lowerCamelCase_ =value
return new_dict
@torch.no_grad()
def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]]
lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case )
lowerCamelCase_ =JukeboxModel(__snake_case )
lowerCamelCase_ =[]
lowerCamelCase_ ={}
for i, dict_name in enumerate(__snake_case ):
lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
lowerCamelCase_ ={}
for k in old_dic.keys():
if k.endswith('''.b''' ):
lowerCamelCase_ =old_dic[k]
elif k.endswith('''.w''' ):
lowerCamelCase_ =old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowerCamelCase_ =old_dic[k]
else:
lowerCamelCase_ =old_dic[k]
lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}'''
lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
lowerCamelCase_ =weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
a_ : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a_ : Union[str, Any] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
def a_ ( __snake_case : int = 1000 ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =1, 1
lowerCamelCase_ =2
while True:
lowerCamelCase_ =0
lowerCamelCase_ =fa + fa
lowerCamelCase_, lowerCamelCase_ =fa, f
index += 1
for _ in str(__snake_case ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
lowerCamelCase_ =len(__snake_case )
lowerCamelCase_ =max(__snake_case )
lowerCamelCase_ =min(__snake_case )
# create the counting array
lowerCamelCase_ =coll_max + 1 - coll_min
lowerCamelCase_ =[0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , __snake_case ):
lowerCamelCase_ =counting_arr[i] + counting_arr[i - 1]
# create the output collection
lowerCamelCase_ =[0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , __snake_case ) ):
lowerCamelCase_ =collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return "".join([chr(__snake_case ) for i in counting_sort([ord(__snake_case ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
a_ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip()
a_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted))
| 6 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6 | 1 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
a_ : Union[str, Any] = Mapping[str, np.ndarray]
a_ : Optional[Any] = Mapping[str, Any] # Is a nested dict.
a_ : Dict = 0.01
@dataclasses.dataclass(frozen=lowerCamelCase__ )
class __UpperCamelCase :
lowercase : np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
lowercase : np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
lowercase : np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
lowercase : np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
lowercase : np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
lowercase : Optional[np.ndarray] =None
# Optional remark about the protein. Included as a comment in output PDB
# files
lowercase : Optional[str] =None
# Templates used to generate this protein (prediction-only)
lowercase : Optional[Sequence[str]] =None
# Chain corresponding to each parent
lowercase : Optional[Sequence[int]] =None
def a_ ( __snake_case : str ) -> Protein:
"""simple docstring"""
lowerCamelCase_ =r'''(\[[A-Z]+\]\n)'''
lowerCamelCase_ =[tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0]
lowerCamelCase_ =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] )
lowerCamelCase_ =["N", "CA", "C"]
lowerCamelCase_ =None
lowerCamelCase_ =None
lowerCamelCase_ =None
for g in groups:
if "[PRIMARY]" == g[0]:
lowerCamelCase_ =g[1][0].strip()
for i in range(len(__snake_case ) ):
if seq[i] not in residue_constants.restypes:
lowerCamelCase_ ='''X''' # FIXME: strings are immutable
lowerCamelCase_ =np.array(
[residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
lowerCamelCase_ =[]
for axis in range(3 ):
tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) )
lowerCamelCase_ =np.array(__snake_case )
lowerCamelCase_ =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(__snake_case ):
lowerCamelCase_ =np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
lowerCamelCase_ =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) )
lowerCamelCase_ =np.zeros(
(
len(__snake_case ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(__snake_case ):
lowerCamelCase_ =1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , )
def a_ ( __snake_case : Protein , __snake_case : int = 0 ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =prot.remark
if remark is not None:
pdb_headers.append(F'''REMARK {remark}''' )
lowerCamelCase_ =prot.parents
lowerCamelCase_ =prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
lowerCamelCase_ =[p for i, p in zip(__snake_case , __snake_case ) if i == chain_id]
if parents is None or len(__snake_case ) == 0:
lowerCamelCase_ =['''N/A''']
pdb_headers.append(F'''PARENT {' '.join(__snake_case )}''' )
return pdb_headers
def a_ ( __snake_case : Protein , __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =pdb_str.split('''\n''' )
lowerCamelCase_ =prot.remark
if remark is not None:
out_pdb_lines.append(F'''REMARK {remark}''' )
lowerCamelCase_ =42
if prot.parents is not None and len(prot.parents ) > 0:
lowerCamelCase_ =[]
if prot.parents_chain_index is not None:
lowerCamelCase_ ={}
for p, i in zip(prot.parents , prot.parents_chain_index ):
parent_dict.setdefault(str(__snake_case ) , [] )
parent_dict[str(__snake_case )].append(__snake_case )
lowerCamelCase_ =max([int(__snake_case ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
lowerCamelCase_ =parent_dict.get(str(__snake_case ) , ['''N/A'''] )
parents_per_chain.append(__snake_case )
else:
parents_per_chain.append(list(prot.parents ) )
else:
lowerCamelCase_ =[['''N/A''']]
def make_parent_line(__snake_case : Sequence[str] ) -> str:
return F'''PARENT {' '.join(__snake_case )}'''
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
lowerCamelCase_ =0
for i, l in enumerate(__snake_case ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(__snake_case )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(__snake_case ):
lowerCamelCase_ =parents_per_chain[chain_counter]
else:
lowerCamelCase_ =['''N/A''']
out_pdb_lines.append(make_parent_line(__snake_case ) )
return "\n".join(__snake_case )
def a_ ( __snake_case : Protein ) -> str:
"""simple docstring"""
lowerCamelCase_ =residue_constants.restypes + ['''X''']
def res_atoa(__snake_case : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' )
lowerCamelCase_ =residue_constants.atom_types
lowerCamelCase_ =[]
lowerCamelCase_ =prot.atom_mask
lowerCamelCase_ =prot.aatype
lowerCamelCase_ =prot.atom_positions
lowerCamelCase_ =prot.residue_index.astype(np.intaa )
lowerCamelCase_ =prot.b_factors
lowerCamelCase_ =prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError('''Invalid aatypes.''' )
lowerCamelCase_ =get_pdb_headers(__snake_case )
if len(__snake_case ) > 0:
pdb_lines.extend(__snake_case )
lowerCamelCase_ =aatype.shape[0]
lowerCamelCase_ =1
lowerCamelCase_ =0
lowerCamelCase_ =string.ascii_uppercase
lowerCamelCase_ =None
# Add all atom sites.
for i in range(__snake_case ):
lowerCamelCase_ =res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ):
if mask < 0.5:
continue
lowerCamelCase_ ='''ATOM'''
lowerCamelCase_ =atom_name if len(__snake_case ) == 4 else F''' {atom_name}'''
lowerCamelCase_ =''''''
lowerCamelCase_ =''''''
lowerCamelCase_ =1.0_0
lowerCamelCase_ =atom_name[0] # Protein supports only C, N, O, S, this works.
lowerCamelCase_ =''''''
lowerCamelCase_ ='''A'''
if chain_index is not None:
lowerCamelCase_ =chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
lowerCamelCase_ =(
F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'''
F'''{res_name_a:>3} {chain_tag:>1}'''
F'''{residue_index[i]:>4}{insertion_code:>1} '''
F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'''
F'''{occupancy:>6.2f}{b_factor:>6.2f} '''
F'''{element:>2}{charge:>2}'''
)
pdb_lines.append(__snake_case )
atom_index += 1
lowerCamelCase_ =i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
lowerCamelCase_ =True
lowerCamelCase_ =chain_index[i + 1]
if should_terminate:
# Close the chain.
lowerCamelCase_ ='''TER'''
lowerCamelCase_ =(
F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}'''
)
pdb_lines.append(__snake_case )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) )
pdb_lines.append('''END''' )
pdb_lines.append('''''' )
return "\n".join(__snake_case )
def a_ ( __snake_case : Protein ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def a_ ( __snake_case : FeatureDict , __snake_case : ModelOutput , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[str] = None , __snake_case : Optional[Sequence[str]] = None , __snake_case : Optional[Sequence[int]] = None , ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
| 6 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : str =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : Any =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=3, lowerCAmelCase=18, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], lowerCAmelCase=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], lowerCAmelCase=True, ):
"""simple docstring"""
lowerCamelCase_ =size if size is not None else {'''height''': 224, '''width''': 224}
lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =image_size
lowerCamelCase_ =min_resolution
lowerCamelCase_ =max_resolution
lowerCamelCase_ =do_resize
lowerCamelCase_ =size
lowerCamelCase_ =do_center_crop
lowerCamelCase_ =crop_size
lowerCamelCase_ =do_normalize
lowerCamelCase_ =image_mean
lowerCamelCase_ =image_std
lowerCamelCase_ =do_convert_rgb
def lowercase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def lowercase__ ( self, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False ):
"""simple docstring"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
lowerCamelCase_ =[]
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) )
else:
lowerCamelCase_ =[]
for i in range(self.batch_size ):
lowerCamelCase_, lowerCamelCase_ =np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 )
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
lowerCamelCase_ =[Image.fromarray(np.moveaxis(lowerCAmelCase, 0, -1 ) ) for x in image_inputs]
if torchify:
lowerCamelCase_ =[torch.from_numpy(lowerCAmelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Tuple =ChineseCLIPImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ChineseCLIPImageProcessingTester(self, do_center_crop=lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''height''': 224, '''width''': 224} )
self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} )
lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} )
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, np.ndarray )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
@require_torch
@require_vision
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Tuple =ChineseCLIPImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=lowerCAmelCase )
lowerCamelCase_ =3
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_convert_rgb''' ) )
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =self.image_processor_tester.prepare_inputs(equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
), )
| 6 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] =['image_processor', 'tokenizer']
lowercase : Optional[int] ='AutoImageProcessor'
lowercase : List[str] ='AutoTokenizer'
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase )
if len(lowerCAmelCase ) > 0:
lowerCamelCase_ =args[0]
lowerCamelCase_ =args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase )
if text is not None:
lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCamelCase_ =encodings['''input_ids''']
return inputs
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@contextmanager
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
lowerCamelCase_ =True
lowerCamelCase_ =self.tokenizer
yield
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ):
"""simple docstring"""
if added_vocab is None:
lowerCamelCase_ =self.tokenizer.get_added_vocab()
lowerCamelCase_ ={}
while tokens:
lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE )
if start_token is None:
break
lowerCamelCase_ =start_token.group(1 )
lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE )
lowerCamelCase_ =start_token.group()
if end_token is None:
lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' )
else:
lowerCamelCase_ =end_token.group()
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE )
if content is not None:
lowerCamelCase_ =content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if value:
if len(lowerCAmelCase ) == 1:
lowerCamelCase_ =value[0]
lowerCamelCase_ =value
else: # leaf nodes
lowerCamelCase_ =[]
for leaf in content.split(R'''<sep/>''' ):
lowerCamelCase_ =leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
lowerCamelCase_ =leaf[1:-2] # for categorical special tokens
output[key].append(lowerCAmelCase )
if len(output[key] ) == 1:
lowerCamelCase_ =output[key][0]
lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if len(lowerCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
a_ : List[str] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
a_ : Optional[int] = TaTokenizerFast
a_ : int = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Tuple = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
a_ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 6 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =ShapEImgaImgPipeline
lowercase : Dict =['image']
lowercase : str =['image']
lowercase : int =[
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
lowercase : int =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 8
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, )
lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowerCamelCase_ =ShapERenderer(**lowerCAmelCase )
return model
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =self.dummy_renderer
lowerCamelCase_ =HeunDiscreteScheduler(
beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.images[0]
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCamelCase_ =np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =1
lowerCamelCase_ =2
lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
lowerCamelCase_ =batch_size * [inputs[key]]
lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowerCamelCase_ =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 )
lowerCamelCase_ =pipe(
lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=5, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=4, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =batch_size
lowerCamelCase_ =seq_length
lowerCamelCase_ =is_training
lowerCamelCase_ =use_attention_mask
lowerCamelCase_ =use_token_type_ids
lowerCamelCase_ =use_labels
lowerCamelCase_ =vocab_size
lowerCamelCase_ =hidden_size
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =type_vocab_size
lowerCamelCase_ =type_sequence_label_size
lowerCamelCase_ =initializer_range
lowerCamelCase_ =num_choices
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowerCamelCase_ =None
if self.use_attention_mask:
lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ =None
if self.use_token_type_ids:
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowerCamelCase_ =RobertaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCAmelCase, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs
lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs
lowerCamelCase_ =True
lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Tuple =True
lowercase : List[Any] =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =FlaxRobertaModelTester(self )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowerCamelCase_ =model_class_name.from_pretrained('''roberta-base''', from_pt=lowerCAmelCase )
lowerCamelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase )
| 6 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
def a_ ( __snake_case : list[int] , __snake_case : str ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =int(__snake_case )
# Initialize Result
lowerCamelCase_ =[]
# Traverse through all denomination
for denomination in reversed(__snake_case ):
# Find denominations
while int(__snake_case ) >= int(__snake_case ):
total_value -= int(__snake_case )
answer.append(__snake_case ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
a_ : Optional[Any] = []
a_ : List[str] = """0"""
if (
input("""Do you want to enter your denominations ? (yY/n): """).strip().lower()
== "y"
):
a_ : int = int(input("""Enter the number of denominations you want to add: """).strip())
for i in range(0, n):
denominations.append(int(input(F"""Denomination {i}: """).strip()))
a_ : Dict = input("""Enter the change you want to make in Indian Currency: """).strip()
else:
# All denominations of Indian Currency if user does not enter
a_ : int = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00]
a_ : List[Any] = input("""Enter the change you want to make: """).strip()
if int(value) == 0 or int(value) < 0:
print("""The total value cannot be zero or negative.""")
else:
print(F"""Following is minimal change for {value}: """)
a_ : str = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=""" """)
| 6 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
a_ : Tuple = TypeVar("""T""")
a_ : Dict = Union[List[T], Tuple[T, ...]]
a_ : int = Union[T, List[T], Dict[str, T]]
a_ : Optional[Any] = Union[str, bytes, os.PathLike]
| 6 | 1 |
'''simple docstring'''
import random
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
lowerCamelCase_ =num - 1
lowerCamelCase_ =0
while s % 2 == 0:
lowerCamelCase_ =s // 2
t += 1
for _ in range(5 ):
lowerCamelCase_ =random.randrange(2 , num - 1 )
lowerCamelCase_ =pow(__snake_case , __snake_case , __snake_case )
if v != 1:
lowerCamelCase_ =0
while v != (num - 1):
if i == t - 1:
return False
else:
lowerCamelCase_ =i + 1
lowerCamelCase_ =(v**2) % num
return True
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if num < 2:
return False
lowerCamelCase_ =[
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__snake_case )
def a_ ( __snake_case : int = 1024 ) -> int:
"""simple docstring"""
while True:
lowerCamelCase_ =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__snake_case ):
return num
if __name__ == "__main__":
a_ : Optional[int] = generate_large_prime()
print(("""Prime number:""", num))
print(("""is_prime_low_num:""", is_prime_low_num(num)))
| 6 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any:
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =search_prob
lowerCamelCase_ =start_temperate
lowerCamelCase_ =[]
lowerCamelCase_ =0
lowerCamelCase_ =None
while not search_end:
lowerCamelCase_ =current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ =current_state
scores.append(__snake_case )
iterations += 1
lowerCamelCase_ =None
lowerCamelCase_ =current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor
lowerCamelCase_ =neighbors.pop(__snake_case )
lowerCamelCase_ =picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ =change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ =picked_neighbor
else:
lowerCamelCase_ =(math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ =picked_neighbor
lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ =True
else:
lowerCamelCase_ =next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__snake_case ) , __snake_case )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : List[str] = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 6 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Tuple = logging.get_logger(__name__)
def a_ ( __snake_case : List[str] ) -> str:
"""simple docstring"""
lowerCamelCase_ =MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
lowerCamelCase_ =[144, 192, 240]
lowerCamelCase_ =[16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
lowerCamelCase_ =[96, 120, 144]
lowerCamelCase_ =[16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
lowerCamelCase_ =[64, 80, 96]
lowerCamelCase_ =[16, 16, 24, 48, 64, 80, 320]
lowerCamelCase_ =0.0_5
lowerCamelCase_ =2.0
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ =512
lowerCamelCase_ =16
lowerCamelCase_ =21
lowerCamelCase_ ='''pascal-voc-id2label.json'''
else:
lowerCamelCase_ =1000
lowerCamelCase_ ='''imagenet-1k-id2label.json'''
lowerCamelCase_ ='''huggingface/label-files'''
lowerCamelCase_ =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) )
lowerCamelCase_ ={int(__snake_case ): v for k, v in idalabel.items()}
lowerCamelCase_ =idalabel
lowerCamelCase_ ={v: k for k, v in idalabel.items()}
return config
def a_ ( __snake_case : Dict , __snake_case : Dict=False ) -> Tuple:
"""simple docstring"""
for i in range(1 , 6 ):
if F'''layer_{i}.''' in name:
lowerCamelCase_ =name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
lowerCamelCase_ =name.replace('''conv_1.''' , '''conv_stem.''' )
if ".block." in name:
lowerCamelCase_ =name.replace('''.block.''' , '''.''' )
if "exp_1x1" in name:
lowerCamelCase_ =name.replace('''exp_1x1''' , '''expand_1x1''' )
if "red_1x1" in name:
lowerCamelCase_ =name.replace('''red_1x1''' , '''reduce_1x1''' )
if ".local_rep.conv_3x3." in name:
lowerCamelCase_ =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' )
if ".local_rep.conv_1x1." in name:
lowerCamelCase_ =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' )
if ".norm." in name:
lowerCamelCase_ =name.replace('''.norm.''' , '''.normalization.''' )
if ".conv." in name:
lowerCamelCase_ =name.replace('''.conv.''' , '''.convolution.''' )
if ".conv_proj." in name:
lowerCamelCase_ =name.replace('''.conv_proj.''' , '''.conv_projection.''' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
lowerCamelCase_ =name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
lowerCamelCase_ =name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' )
if "expand_1x1" in name:
lowerCamelCase_ =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' )
if "conv_3x3" in name:
lowerCamelCase_ =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' )
if "reduce_1x1" in name:
lowerCamelCase_ =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' )
for i in range(2 , 5 ):
if F'''.global_rep.{i}.weight''' in name:
lowerCamelCase_ =name.replace(F'''.global_rep.{i}.weight''' , '''.layernorm.weight''' )
if F'''.global_rep.{i}.bias''' in name:
lowerCamelCase_ =name.replace(F'''.global_rep.{i}.bias''' , '''.layernorm.bias''' )
if ".global_rep." in name:
lowerCamelCase_ =name.replace('''.global_rep.''' , '''.transformer.''' )
if ".pre_norm_mha.0." in name:
lowerCamelCase_ =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' )
if ".pre_norm_mha.1.out_proj." in name:
lowerCamelCase_ =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' )
if ".pre_norm_ffn.0." in name:
lowerCamelCase_ =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' )
if ".pre_norm_ffn.1." in name:
lowerCamelCase_ =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' )
if ".pre_norm_ffn.4." in name:
lowerCamelCase_ =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' )
if ".transformer." in name:
lowerCamelCase_ =name.replace('''.transformer.''' , '''.transformer.layer.''' )
if ".aspp_layer." in name:
lowerCamelCase_ =name.replace('''.aspp_layer.''' , '''.''' )
if ".aspp_pool." in name:
lowerCamelCase_ =name.replace('''.aspp_pool.''' , '''.''' )
if "seg_head." in name:
lowerCamelCase_ =name.replace('''seg_head.''' , '''segmentation_head.''' )
if "segmentation_head.classifier.classifier." in name:
lowerCamelCase_ =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' )
if "classifier.fc." in name:
lowerCamelCase_ =name.replace('''classifier.fc.''' , '''classifier.''' )
elif (not base_model) and ("segmentation_head." not in name):
lowerCamelCase_ ='''mobilevit.''' + name
return name
def a_ ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any]=False ) -> Union[str, Any]:
"""simple docstring"""
if base_model:
lowerCamelCase_ =''''''
else:
lowerCamelCase_ ='''mobilevit.'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ =orig_state_dict.pop(__snake_case )
if key[:8] == "encoder.":
lowerCamelCase_ =key[8:]
if "qkv" in key:
lowerCamelCase_ =key.split('''.''' )
lowerCamelCase_ =int(key_split[0][6:] ) - 1
lowerCamelCase_ =int(key_split[3] )
lowerCamelCase_ =model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' )
lowerCamelCase_ =layer.transformer.layer[transformer_num].attention.attention.all_head_size
lowerCamelCase_ =(
F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
lowerCamelCase_ =val[:dim, :]
lowerCamelCase_ =val[dim : dim * 2, :]
lowerCamelCase_ =val[-dim:, :]
else:
lowerCamelCase_ =val[:dim]
lowerCamelCase_ =val[dim : dim * 2]
lowerCamelCase_ =val[-dim:]
else:
lowerCamelCase_ =val
return orig_state_dict
def a_ ( ) -> int:
"""simple docstring"""
lowerCamelCase_ ='''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw )
return im
@torch.no_grad()
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : int=False ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_mobilevit_config(__snake_case )
# load original state_dict
lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' )
# load 🤗 model
if mobilevit_name.startswith('''deeplabv3_''' ):
lowerCamelCase_ =MobileViTForSemanticSegmentation(__snake_case ).eval()
else:
lowerCamelCase_ =MobileViTForImageClassification(__snake_case ).eval()
lowerCamelCase_ =convert_state_dict(__snake_case , __snake_case )
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCamelCase_ =image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits
if mobilevit_name.startswith('''deeplabv3_''' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
lowerCamelCase_ =torch.tensor(
[
[[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]],
[[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]],
[[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
lowerCamelCase_ =torch.tensor(
[
[[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]],
[[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]],
[[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
lowerCamelCase_ =torch.tensor(
[
[[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]],
[[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]],
[[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]],
] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
lowerCamelCase_ =torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] )
elif mobilevit_name == "mobilevit_xs":
lowerCamelCase_ =torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] )
elif mobilevit_name == "mobilevit_xxs":
lowerCamelCase_ =torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__snake_case )
if push_to_hub:
lowerCamelCase_ ={
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('''Pushing to the hub...''' )
lowerCamelCase_ =model_mapping[mobilevit_name]
image_processor.push_to_hub(__snake_case , organization='''apple''' )
model.push_to_hub(__snake_case , organization='''apple''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--mobilevit_name""",
default="""mobilevit_s""",
type=str,
help=(
"""Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"""
""" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."""
),
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
a_ : str = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 6 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a_ : list[bool | None] = [None] * 10_00_00_00
a_ : List[Any] = True
a_ : Optional[Any] = False
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase_ =chain(next_number(__snake_case ) )
lowerCamelCase_ =number_chain
while number < 1000_0000:
lowerCamelCase_ =number_chain
number *= 10
return number_chain
def a_ ( __snake_case : int = 1000_0000 ) -> int:
"""simple docstring"""
for i in range(1 , __snake_case ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 6 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =['image_processor', 'tokenizer']
lowercase : int ='LayoutLMv2ImageProcessor'
lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCamelCase_ =features['''words''']
lowerCamelCase_ =self.tokenizer(
text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, )
# add pixel values
lowerCamelCase_ =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] )
lowerCamelCase_ =images
return encoded_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' )
return images_with_overflow
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
a_ : List[str] = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
a_ : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def a_ ( __snake_case : list[list[int]] ) -> list[list[int]]:
"""simple docstring"""
lowerCamelCase_ =[]
for i in range(len(__snake_case ) ):
lowerCamelCase_ =[]
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
lowerCamelCase_ =0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(__snake_case ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(__snake_case ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(__snake_case ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
lowerCamelCase_ =cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(__snake_case )
return next_generation
def a_ ( __snake_case : list[list[int]] , __snake_case : int ) -> list[Image.Image]:
"""simple docstring"""
lowerCamelCase_ =[]
for _ in range(__snake_case ):
# Create output image
lowerCamelCase_ =Image.new('''RGB''' , (len(cells[0] ), len(__snake_case )) )
lowerCamelCase_ =img.load()
# Save cells to image
for x in range(len(__snake_case ) ):
for y in range(len(cells[0] ) ):
lowerCamelCase_ =255 - cells[y][x] * 255
lowerCamelCase_ =(colour, colour, colour)
# Save image
images.append(__snake_case )
lowerCamelCase_ =new_generation(__snake_case )
return images
if __name__ == "__main__":
a_ : Union[str, Any] = generate_images(GLIDER, 16)
images[0].save("""out.gif""", save_all=True, append_images=images[1:])
| 6 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =VQModel
lowercase : Union[str, Any] ='sample'
@property
def lowercase__ ( self, lowerCAmelCase=(32, 32) ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
| 6 | 1 |
'''simple docstring'''
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def a_ ( __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, oder?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
lowerCamelCase_ ={
'''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''],
'''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''],
'''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''],
'''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''],
}
lowerCamelCase_ =F'''{src_lang}-{tgt_lang}'''
lowerCamelCase_ =F'''
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "facebook/wmt19-{src_lang}-{tgt_lang}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "{texts[src_lang]}"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
{pair} | {scores[pair][0]} | {scores[pair][1]}
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{{...,
year={{2020}},
title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
booktitle={{Proc. of WMT}},
}}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
'''
os.makedirs(__snake_case , exist_ok=__snake_case )
lowerCamelCase_ =os.path.join(__snake_case , '''README.md''' )
print(F'''Generating {path}''' )
with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(__snake_case )
# make sure we are under the root of the project
a_ : Union[str, Any] = Path(__file__).resolve().parent.parent.parent
a_ : Optional[int] = repo_dir / """model_cards"""
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a_ , a_ , a_ : str = model_name.split("""-""")
a_ : Tuple = model_cards_dir / """facebook""" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 6 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 | 1 |
'''simple docstring'''
import re
import string
import numpy as np
import datasets
a_ : Dict = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
a_ : Optional[Any] = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
a_ : int = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': datasets.Value('''string''', id='''sequence''' ),
'''references''': datasets.Value('''string''', id='''sequence''' ),
} ), reference_urls=[], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, ):
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
lowerCamelCase_ =np.array([re.sub(lowerCAmelCase, '''''', lowerCAmelCase ) for x in predictions] )
lowerCamelCase_ =np.array([re.sub(lowerCAmelCase, '''''', lowerCAmelCase ) for x in references] )
else:
lowerCamelCase_ =np.asarray(lowerCAmelCase )
lowerCamelCase_ =np.asarray(lowerCAmelCase )
if ignore_case:
lowerCamelCase_ =np.char.lower(lowerCAmelCase )
lowerCamelCase_ =np.char.lower(lowerCAmelCase )
if ignore_punctuation:
lowerCamelCase_ =string.punctuation.maketrans('''''', '''''', string.punctuation )
lowerCamelCase_ =np.char.translate(lowerCAmelCase, table=lowerCAmelCase )
lowerCamelCase_ =np.char.translate(lowerCAmelCase, table=lowerCAmelCase )
if ignore_numbers:
lowerCamelCase_ =string.digits.maketrans('''''', '''''', string.digits )
lowerCamelCase_ =np.char.translate(lowerCAmelCase, table=lowerCAmelCase )
lowerCamelCase_ =np.char.translate(lowerCAmelCase, table=lowerCAmelCase )
lowerCamelCase_ =predictions == references
return {"exact_match": np.mean(lowerCAmelCase ) * 100}
| 6 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 | 1 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =tempfile.mkdtemp()
# fmt: off
lowerCamelCase_ =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCamelCase_ ={
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
lowerCamelCase_ =os.path.join(self.tmpdirname, lowerCAmelCase )
with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp:
json.dump(lowerCAmelCase, lowerCAmelCase )
def lowercase__ ( self, **lowerCAmelCase ):
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase )
def lowercase__ ( self, **lowerCAmelCase ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )]
lowerCamelCase_ =[Image.fromarray(np.moveaxis(lowerCAmelCase, 0, -1 ) ) for x in image_inputs]
return image_inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ =self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' )
lowerCamelCase_ =self.get_image_processor(do_normalize=lowerCAmelCase, padding_value=1.0 )
lowerCamelCase_ =VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowerCAmelCase, padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor, lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
lowerCamelCase_ =self.prepare_image_inputs()
lowerCamelCase_ =image_processor(lowerCAmelCase, return_tensors='''np''' )
lowerCamelCase_ =processor(images=lowerCAmelCase, return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
lowerCamelCase_ ='''lower newer'''
lowerCamelCase_ =processor(text=lowerCAmelCase )
lowerCamelCase_ =tokenizer(lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
lowerCamelCase_ ='''lower newer'''
lowerCamelCase_ =self.prepare_image_inputs()
lowerCamelCase_ =processor(text=lowerCAmelCase, images=lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(lowerCAmelCase ):
processor()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
lowerCamelCase_ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ =processor.batch_decode(lowerCAmelCase )
lowerCamelCase_ =tokenizer.batch_decode(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase, lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_image_processor()
lowerCamelCase_ =self.get_tokenizer()
lowerCamelCase_ =VisionTextDualEncoderProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase )
lowerCamelCase_ ='''lower newer'''
lowerCamelCase_ =self.prepare_image_inputs()
lowerCamelCase_ =processor(text=lowerCAmelCase, images=lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
| 6 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ : Any = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple ='facebook/bart-large-mnli'
lowercase : Tuple =(
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
lowercase : Any ='text_classifier'
lowercase : Any =AutoTokenizer
lowercase : Dict =AutoModelForSequenceClassification
lowercase : Any =['text', ['text']]
lowercase : int =['text']
def lowercase__ ( self ):
"""simple docstring"""
super().setup()
lowerCamelCase_ =self.model.config
lowerCamelCase_ =-1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
lowerCamelCase_ =int(lowerCAmelCase )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =labels
return self.pre_processor(
[text] * len(lowerCAmelCase ), [f'''This example is {label}''' for label in labels], return_tensors='''pt''', padding='''max_length''', )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =outputs.logits
lowerCamelCase_ =torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 6 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
a_ : Dict = logging.get_logger(__name__)
a_ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Optional[Any] = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
a_ : Dict = {
"""junnyu/roformer_chinese_small""": 15_36,
"""junnyu/roformer_chinese_base""": 15_36,
"""junnyu/roformer_chinese_char_small""": 5_12,
"""junnyu/roformer_chinese_char_base""": 5_12,
"""junnyu/roformer_small_discriminator""": 1_28,
"""junnyu/roformer_small_generator""": 1_28,
}
a_ : List[Any] = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] =VOCAB_FILES_NAMES
lowercase : int =PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =PRETRAINED_INIT_CONFIGURATION
lowercase : str =RoFormerTokenizer
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase="[UNK]", lowerCAmelCase="[SEP]", lowerCAmelCase="[PAD]", lowerCAmelCase="[CLS]", lowerCAmelCase="[MASK]", lowerCAmelCase=True, lowerCAmelCase=None, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(
lowerCAmelCase, tokenizer_file=lowerCAmelCase, do_lower_case=lowerCAmelCase, unk_token=lowerCAmelCase, sep_token=lowerCAmelCase, pad_token=lowerCAmelCase, cls_token=lowerCAmelCase, mask_token=lowerCAmelCase, tokenize_chinese_chars=lowerCAmelCase, strip_accents=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''', lowerCAmelCase ) != do_lower_case
or pre_tok_state.get('''strip_accents''', lowerCAmelCase ) != strip_accents
):
lowerCamelCase_ =getattr(lowerCAmelCase, pre_tok_state.pop('''type''' ) )
lowerCamelCase_ =do_lower_case
lowerCamelCase_ =strip_accents
lowerCamelCase_ =pre_tok_class(**lowerCAmelCase )
lowerCamelCase_ =do_lower_case
def __getstate__( self ):
"""simple docstring"""
lowerCamelCase_ =self.__dict__.copy()
lowerCamelCase_ =BertPreTokenizer()
return state
def __setstate__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =d
lowerCamelCase_ =self.__dict__['''_tokenizer'''].get_vocab()
lowerCamelCase_ =PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase ) )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
lowerCamelCase_ =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =[self.sep_token_id]
lowerCamelCase_ =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ):
"""simple docstring"""
lowerCamelCase_ =self._tokenizer.model.save(lowerCAmelCase, name=lowerCAmelCase )
return tuple(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=False, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =BertPreTokenizer()
return super().save_pretrained(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase )
| 6 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ : Tuple = 16
a_ : Optional[int] = 32
def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str:
"""simple docstring"""
lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__snake_case : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase_ =datasets.map(
__snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__snake_case : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase_ =16
elif accelerator.mixed_precision != "no":
lowerCamelCase_ =8
else:
lowerCamelCase_ =None
return tokenizer.pad(
__snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCamelCase_ =DataLoader(
tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
lowerCamelCase_ =DataLoader(
tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ : Tuple = mocked_dataloaders # noqa: F811
def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1":
lowerCamelCase_ =2
# Initialize accelerator
lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ =config['''lr''']
lowerCamelCase_ =int(config['''num_epochs'''] )
lowerCamelCase_ =int(config['''seed'''] )
lowerCamelCase_ =int(config['''batch_size'''] )
lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__snake_case )
def inner_training_loop(__snake_case : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase_ =model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case )
lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case )
# Instantiate scheduler
lowerCamelCase_ =get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.loss
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits.argmax(dim=-1 )
lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
lowerCamelCase_ =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __snake_case )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def a_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 6 | 1 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a_ : List[str] = """src/diffusers"""
# Matches is_xxx_available()
a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a_ : Optional[Any] = """
{0} = None
"""
a_ : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a_ : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a_ ( __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =_re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a_ ( ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase_ =0
lowerCamelCase_ ={}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase_ =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
lowerCamelCase_ =[]
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase_ =lines[line_index]
lowerCamelCase_ =_re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase_ =objects
else:
line_index += 1
return backend_specific_objects
def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a_ ( __snake_case : Tuple=None ) -> List[str]:
"""simple docstring"""
if backend_specific_objects is None:
lowerCamelCase_ =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase_ ={}
for backend, objects in backend_specific_objects.items():
lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase_ =dummy_file
return dummy_files
def a_ ( __snake_case : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase_ ={'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
lowerCamelCase_ =os.path.join(__snake_case , '''utils''' )
lowerCamelCase_ ={
backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase_ ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.read()
else:
lowerCamelCase_ =''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a_ : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 6 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a_ : Tuple = {
"""configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""],
"""tokenization_xlm""": ["""XLMTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
"""XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMForMultipleChoice""",
"""XLMForQuestionAnswering""",
"""XLMForQuestionAnsweringSimple""",
"""XLMForSequenceClassification""",
"""XLMForTokenClassification""",
"""XLMModel""",
"""XLMPreTrainedModel""",
"""XLMWithLMHeadModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
"""TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMForMultipleChoice""",
"""TFXLMForQuestionAnsweringSimple""",
"""TFXLMForSequenceClassification""",
"""TFXLMForTokenClassification""",
"""TFXLMMainLayer""",
"""TFXLMModel""",
"""TFXLMPreTrainedModel""",
"""TFXLMWithLMHeadModel""",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 |
'''simple docstring'''
a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
lowerCamelCase_ =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
a_ : list[bool | None] = [None] * 10_00_00_00
a_ : List[Any] = True
a_ : Optional[Any] = False
def a_ ( __snake_case : int ) -> bool:
"""simple docstring"""
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase_ =chain(next_number(__snake_case ) )
lowerCamelCase_ =number_chain
while number < 1000_0000:
lowerCamelCase_ =number_chain
number *= 10
return number_chain
def a_ ( __snake_case : int = 1000_0000 ) -> int:
"""simple docstring"""
for i in range(1 , __snake_case ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple =(DDPMScheduler,)
def lowercase__ ( self, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase )
return config
def lowercase__ ( self ):
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1], [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase, beta_end=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase, prediction_type=lowerCAmelCase, sample_max_value=lowerCAmelCase, )
def lowercase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter
lowerCamelCase_ =torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, generator=lowerCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) )
lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self.dummy_model()
lowerCamelCase_ =self.dummy_sample_deter
lowerCamelCase_ =torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase ) ):
# 1. predict noise residual
lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase )
# 2. predict previous mean of sample x_t-1
lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, generator=lowerCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCamelCase_ =pred_prev_sample
lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) )
lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase )
lowerCamelCase_ =scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase ):
if i == len(lowerCAmelCase ) - 1:
lowerCamelCase_ =-1
else:
lowerCamelCase_ =timesteps[i + 1]
lowerCamelCase_ =scheduler.previous_timestep(lowerCAmelCase )
lowerCamelCase_ =prev_t.item()
self.assertEqual(lowerCAmelCase, lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[100, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase, msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[100, 87, 50, 1, 0]
lowerCamelCase_ =len(lowerCAmelCase )
with self.assertRaises(lowerCAmelCase, msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase, timesteps=lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.scheduler_classes[0]
lowerCamelCase_ =self.get_scheduler_config()
lowerCamelCase_ =scheduler_class(**lowerCAmelCase )
lowerCamelCase_ =[scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase, msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''', ):
scheduler.set_timesteps(timesteps=lowerCAmelCase )
| 6 |
'''simple docstring'''
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def a_ ( __snake_case : Tuple ) -> str:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class __UpperCamelCase ( lowerCamelCase__ ):
@staticmethod
def lowercase__ ( lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =parser.add_parser('''download''' )
download_parser.add_argument(
'''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' )
download_parser.add_argument(
'''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' )
download_parser.add_argument(
'''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', )
download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' )
download_parser.set_defaults(func=lowerCAmelCase )
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =model
lowerCamelCase_ =cache
lowerCamelCase_ =force
lowerCamelCase_ =trust_remote_code
def lowercase__ ( self ):
"""simple docstring"""
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
| 6 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
@property
def lowercase__ ( self ):
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =ort.SessionOptions()
lowerCamelCase_ =False
return options
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
lowerCamelCase_ =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''', revision='''onnx''', safety_checker=lowerCAmelCase, feature_extractor=lowerCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ ='''A red cat sitting on a park bench'''
lowerCamelCase_ =np.random.RandomState(0 )
lowerCamelCase_ =pipe(
prompt=lowerCAmelCase, image=lowerCAmelCase, mask_image=lowerCAmelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase, output_type='''np''', )
lowerCamelCase_ =output.images
lowerCamelCase_ =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
lowerCamelCase_ =np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
lowerCamelCase_ =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''', subfolder='''scheduler''', revision='''onnx''' )
lowerCamelCase_ =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''', revision='''onnx''', scheduler=lowerCAmelCase, safety_checker=lowerCAmelCase, feature_extractor=lowerCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ ='''A red cat sitting on a park bench'''
lowerCamelCase_ =np.random.RandomState(0 )
lowerCamelCase_ =pipe(
prompt=lowerCAmelCase, image=lowerCAmelCase, mask_image=lowerCAmelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase, output_type='''np''', )
lowerCamelCase_ =output.images
lowerCamelCase_ =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
lowerCamelCase_ =np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 6 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a_ : List[str] = logging.get_logger(__name__)
a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __UpperCamelCase :
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} )
lowercase : str =field(
default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
lowercase : int =field(
default=1_28 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase : int =field(
default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
lowercase : int =field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
lowercase : int =field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowercase : bool =field(
default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
lowercase : float =field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowercase : int =field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] ='train'
lowercase : Any ='dev'
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : SquadDataTrainingArguments
lowercase : List[SquadFeatures]
lowercase : Split
lowercase : bool
def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ):
"""simple docstring"""
lowerCamelCase_ =args
lowerCamelCase_ =is_language_sensitive
lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowerCAmelCase, lowerCAmelCase ):
try:
lowerCamelCase_ =Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
lowerCamelCase_ =mode
# Load data features from cache or dataset file
lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1'''
lowerCamelCase_ =os.path.join(
cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase_ =cached_features_file + '''.lock'''
with FileLock(lowerCAmelCase ):
if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache:
lowerCamelCase_ =time.time()
lowerCamelCase_ =torch.load(lowerCAmelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase_ =self.old_features['''features''']
lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase )
lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase_ =self.processor.get_train_examples(args.data_dir )
lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, )
lowerCamelCase_ =time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.features[i]
lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float )
lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float )
lowerCamelCase_ ={
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long )
lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 6 | 1 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =(1 - _cos) / 2
lowerCamelCase_ =1 - _cos
lowerCamelCase_ =1 + alpha
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 - alpha
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =(1 + _cos) / 2
lowerCamelCase_ =-1 - _cos
lowerCamelCase_ =1 + alpha
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 - alpha
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =_sin / 2
lowerCamelCase_ =0
lowerCamelCase_ =-ba
lowerCamelCase_ =1 + alpha
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 - alpha
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =1 - alpha
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 + alpha
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =10 ** (gain_db / 40)
lowerCamelCase_ =1 + alpha * big_a
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 - alpha * big_a
lowerCamelCase_ =1 + alpha / big_a
lowerCamelCase_ =-2 * _cos
lowerCamelCase_ =1 - alpha / big_a
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =10 ** (gain_db / 40)
lowerCamelCase_ =(big_a + 1) - (big_a - 1) * _cos
lowerCamelCase_ =(big_a + 1) + (big_a - 1) * _cos
lowerCamelCase_ =(big_a - 1) - (big_a + 1) * _cos
lowerCamelCase_ =(big_a - 1) + (big_a + 1) * _cos
lowerCamelCase_ =2 * sqrt(__snake_case ) * alpha
lowerCamelCase_ =big_a * (pmc + aaa)
lowerCamelCase_ =2 * big_a * mpc
lowerCamelCase_ =big_a * (pmc - aaa)
lowerCamelCase_ =ppmc + aaa
lowerCamelCase_ =-2 * pmpc
lowerCamelCase_ =ppmc - aaa
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def a_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
lowerCamelCase_ =tau * frequency / samplerate
lowerCamelCase_ =sin(__snake_case )
lowerCamelCase_ =cos(__snake_case )
lowerCamelCase_ =_sin / (2 * q_factor)
lowerCamelCase_ =10 ** (gain_db / 40)
lowerCamelCase_ =(big_a + 1) - (big_a - 1) * _cos
lowerCamelCase_ =(big_a + 1) + (big_a - 1) * _cos
lowerCamelCase_ =(big_a - 1) - (big_a + 1) * _cos
lowerCamelCase_ =(big_a - 1) + (big_a + 1) * _cos
lowerCamelCase_ =2 * sqrt(__snake_case ) * alpha
lowerCamelCase_ =big_a * (ppmc + aaa)
lowerCamelCase_ =-2 * big_a * pmpc
lowerCamelCase_ =big_a * (ppmc - aaa)
lowerCamelCase_ =pmc + aaa
lowerCamelCase_ =2 * mpc
lowerCamelCase_ =pmc - aaa
lowerCamelCase_ =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 6 |
'''simple docstring'''
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/"""
a_ : Any = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def a_ ( __snake_case : int ) -> Any:
"""simple docstring"""
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
lowerCamelCase_ =key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ ={}
import re
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
lowerCamelCase_ =re.compile(
r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case )
elif re_encoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] )
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case )
elif re_encoder_block_proj_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case )
elif re_decoder_block_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case )
elif re_decoder_block_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case )
elif re_prior_cond_resnet.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2
lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]]
lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
lowerCamelCase_ =prefix + resnet_block
lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case )
elif re_prior_cond_proj_in.fullmatch(__snake_case ):
lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case )
lowerCamelCase_ =regex_match.groups()
lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case )
# keep original key
else:
lowerCamelCase_ =original_key
lowerCamelCase_ =replace_key(__snake_case )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
lowerCamelCase_ =original_key
lowerCamelCase_ =original_key
lowerCamelCase_ =value
return new_dict
@torch.no_grad()
def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ):
lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case )
open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content )
lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]]
lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case )
lowerCamelCase_ =JukeboxModel(__snake_case )
lowerCamelCase_ =[]
lowerCamelCase_ ={}
for i, dict_name in enumerate(__snake_case ):
lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model''']
lowerCamelCase_ ={}
for k in old_dic.keys():
if k.endswith('''.b''' ):
lowerCamelCase_ =old_dic[k]
elif k.endswith('''.w''' ):
lowerCamelCase_ =old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
lowerCamelCase_ =old_dic[k]
else:
lowerCamelCase_ =old_dic[k]
lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}'''
lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case )
weight_dict.append(__snake_case )
lowerCamelCase_ =weight_dict.pop(0 )
model.vqvae.load_state_dict(__snake_case )
for i in range(len(__snake_case ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(__snake_case , __snake_case )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__snake_case )
return weight_dict
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
a_ : Optional[int] = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
a_ : int = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
a_ : Tuple = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
a_ : Optional[int] = """zero2"""
a_ : str = """zero3"""
a_ : Tuple = [ZEROa, ZEROa]
def a_ ( __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
lowerCamelCase_ =parameterized.to_safe_name('''_'''.join(str(__snake_case ) for x in param.args ) )
return F'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
a_ : str = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __UpperCamelCase ( lowerCamelCase__ ):
@parameterized.expand(lowerCAmelCase, name_func=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=lowerCAmelCase, model=lowerCAmelCase, distributed=lowerCAmelCase, fpaa=lowerCAmelCase, )
@require_torch_multi_gpu
@parameterized.expand(lowerCAmelCase, name_func=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=lowerCAmelCase, model=lowerCAmelCase, distributed=lowerCAmelCase, fpaa=lowerCAmelCase, )
@parameterized.expand(lowerCAmelCase, name_func=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=lowerCAmelCase, model=lowerCAmelCase, distributed=lowerCAmelCase, fpaa=lowerCAmelCase, )
@require_torch_multi_gpu
@parameterized.expand(lowerCAmelCase, name_func=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
self.run_and_check(
stage=lowerCAmelCase, model=lowerCAmelCase, distributed=lowerCAmelCase, fpaa=lowerCAmelCase, )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
pass
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 10, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = True, ):
"""simple docstring"""
lowerCamelCase_ =models[model]
lowerCamelCase_ =self.run_trainer(
stage=lowerCAmelCase, model_name=lowerCAmelCase, eval_steps=lowerCAmelCase, num_train_epochs=1, distributed=lowerCAmelCase, fpaa=lowerCAmelCase, )
self.do_checks(lowerCAmelCase )
return output_dir
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 10, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, ):
"""simple docstring"""
lowerCamelCase_ =self.get_auto_remove_tmp_dir('''./xxx''', after=lowerCAmelCase )
lowerCamelCase_ =f'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowerCAmelCase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['''--fp16'''] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
lowerCamelCase_ =f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
lowerCamelCase_ =[f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
lowerCamelCase_ =self.get_launcher(lowerCAmelCase )
lowerCamelCase_ =launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowerCAmelCase, env=self.get_env() )
return output_dir
def lowercase__ ( self, lowerCAmelCase=False ):
"""simple docstring"""
lowerCamelCase_ =min(2, get_gpu_count() ) if distributed else 1
return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
| 6 |
'''simple docstring'''
def a_ ( __snake_case : int = 1000 ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =1, 1
lowerCamelCase_ =2
while True:
lowerCamelCase_ =0
lowerCamelCase_ =fa + fa
lowerCamelCase_, lowerCamelCase_ =fa, f
index += 1
for _ in str(__snake_case ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 6 | 1 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
a_ : List[str] = """src/diffusers"""
# Matches is_xxx_available()
a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
a_ : Optional[Any] = """
{0} = None
"""
a_ : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
a_ : Optional[Any] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def a_ ( __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =_re_backend.findall(__snake_case )
if len(__snake_case ) == 0:
return None
return "_and_".join(__snake_case )
def a_ ( ) -> Optional[int]:
"""simple docstring"""
with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase_ =0
lowerCamelCase_ ={}
# Go through the end of the file
while line_index < len(__snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase_ =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
lowerCamelCase_ =[]
# Until we unindent, add backend objects to the list
while line_index < len(__snake_case ) and len(lines[line_index] ) > 1:
lowerCamelCase_ =lines[line_index]
lowerCamelCase_ =_re_single_line_import.search(__snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__snake_case ) > 0:
lowerCamelCase_ =objects
else:
line_index += 1
return backend_specific_objects
def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(__snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(__snake_case , __snake_case )
else:
return DUMMY_CLASS.format(__snake_case , __snake_case )
def a_ ( __snake_case : Tuple=None ) -> List[str]:
"""simple docstring"""
if backend_specific_objects is None:
lowerCamelCase_ =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase_ ={}
for backend, objects in backend_specific_objects.items():
lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] )
lowerCamelCase_ =dummy_file
return dummy_files
def a_ ( __snake_case : Dict=False ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase_ ={'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
lowerCamelCase_ =os.path.join(__snake_case , '''utils''' )
lowerCamelCase_ ={
backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase_ ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__snake_case ):
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCamelCase_ =f.read()
else:
lowerCamelCase_ =''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a_ : Tuple = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 6 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def a_ ( __snake_case : int ) -> list[int]:
"""simple docstring"""
if num <= 0:
lowerCamelCase_ =F'''{num}: Invalid input, please enter a positive integer.'''
raise ValueError(__snake_case )
lowerCamelCase_ =[True] * (num + 1)
lowerCamelCase_ =[]
lowerCamelCase_ =2
lowerCamelCase_ =int(math.sqrt(__snake_case ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(__snake_case )
# Set multiples of start be False
for i in range(start * start , num + 1 , __snake_case ):
if sieve[i] is True:
lowerCamelCase_ =False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(__snake_case )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
| 6 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : str =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
class __UpperCamelCase ( metaclass=lowerCamelCase__ ):
lowercase : Any =['speech']
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
requires_backends(self, ['''speech'''] )
| 6 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ : Any = logging.get_logger(__name__)
a_ : Tuple = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Any ='mobilenet_v2'
def __init__( self, lowerCAmelCase=3, lowerCAmelCase=224, lowerCAmelCase=1.0, lowerCAmelCase=8, lowerCAmelCase=8, lowerCAmelCase=6, lowerCAmelCase=32, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase="relu6", lowerCAmelCase=True, lowerCAmelCase=0.8, lowerCAmelCase=0.0_2, lowerCAmelCase=0.0_0_1, lowerCAmelCase=255, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
lowerCamelCase_ =num_channels
lowerCamelCase_ =image_size
lowerCamelCase_ =depth_multiplier
lowerCamelCase_ =depth_divisible_by
lowerCamelCase_ =min_depth
lowerCamelCase_ =expand_ratio
lowerCamelCase_ =output_stride
lowerCamelCase_ =first_layer_is_expansion
lowerCamelCase_ =finegrained_output
lowerCamelCase_ =hidden_act
lowerCamelCase_ =tf_padding
lowerCamelCase_ =classifier_dropout_prob
lowerCamelCase_ =initializer_range
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =semantic_loss_ignore_index
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Tuple =version.parse('1.11' )
@property
def lowercase__ ( self ):
"""simple docstring"""
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def lowercase__ ( self ):
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def lowercase__ ( self ):
"""simple docstring"""
return 1e-4
| 6 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] =['image_processor', 'tokenizer']
lowercase : Optional[int] ='AutoImageProcessor'
lowercase : List[str] ='AutoTokenizer'
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def __call__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase )
lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase )
if len(lowerCAmelCase ) > 0:
lowerCamelCase_ =args[0]
lowerCamelCase_ =args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase )
if text is not None:
lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCamelCase_ =encodings['''input_ids''']
return inputs
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@contextmanager
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
lowerCamelCase_ =True
lowerCamelCase_ =self.tokenizer
yield
lowerCamelCase_ =self.image_processor
lowerCamelCase_ =False
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ):
"""simple docstring"""
if added_vocab is None:
lowerCamelCase_ =self.tokenizer.get_added_vocab()
lowerCamelCase_ ={}
while tokens:
lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE )
if start_token is None:
break
lowerCamelCase_ =start_token.group(1 )
lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE )
lowerCamelCase_ =start_token.group()
if end_token is None:
lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' )
else:
lowerCamelCase_ =end_token.group()
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.escape(lowerCAmelCase )
lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE )
if content is not None:
lowerCamelCase_ =content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if value:
if len(lowerCAmelCase ) == 1:
lowerCamelCase_ =value[0]
lowerCamelCase_ =value
else: # leaf nodes
lowerCamelCase_ =[]
for leaf in content.split(R'''<sep/>''' ):
lowerCamelCase_ =leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
lowerCamelCase_ =leaf[1:-2] # for categorical special tokens
output[key].append(lowerCAmelCase )
if len(output[key] ) == 1:
lowerCamelCase_ =output[key][0]
lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase )
if len(lowerCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
a_ : str = logging.get_logger(__name__)
a_ : Optional[Any] = {
"""Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""",
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] ='marian'
lowercase : Union[str, Any] =['past_key_values']
lowercase : Union[str, Any] ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self, lowerCAmelCase=58_101, lowerCAmelCase=None, lowerCAmelCase=1_024, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase="gelu", lowerCAmelCase=1_024, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=58_100, lowerCAmelCase=False, lowerCAmelCase=58_100, lowerCAmelCase=0, lowerCAmelCase=0, lowerCAmelCase=True, **lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =vocab_size
lowerCamelCase_ =decoder_vocab_size or vocab_size
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =d_model
lowerCamelCase_ =encoder_ffn_dim
lowerCamelCase_ =encoder_layers
lowerCamelCase_ =encoder_attention_heads
lowerCamelCase_ =decoder_ffn_dim
lowerCamelCase_ =decoder_layers
lowerCamelCase_ =decoder_attention_heads
lowerCamelCase_ =dropout
lowerCamelCase_ =attention_dropout
lowerCamelCase_ =activation_dropout
lowerCamelCase_ =activation_function
lowerCamelCase_ =init_std
lowerCamelCase_ =encoder_layerdrop
lowerCamelCase_ =decoder_layerdrop
lowerCamelCase_ =use_cache
lowerCamelCase_ =encoder_layers
lowerCamelCase_ =scale_embedding # scale factor will be sqrt(d_model) if True
lowerCamelCase_ =share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, is_encoder_decoder=lowerCAmelCase, decoder_start_token_id=lowerCAmelCase, forced_eos_token_id=lowerCAmelCase, **lowerCAmelCase, )
class __UpperCamelCase ( lowerCamelCase__ ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def lowercase__ ( self ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase_ =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
lowerCamelCase_ ={0: '''batch'''}
lowerCamelCase_ ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
lowerCamelCase_ ={0: '''batch''', 1: '''decoder_sequence'''}
lowerCamelCase_ ={0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase, direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase_ =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
lowerCamelCase_, lowerCamelCase_ =self.num_layers
for i in range(lowerCAmelCase ):
lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''}
lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''}
else:
lowerCamelCase_ =OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def lowercase__ ( self ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase_ =super().outputs
else:
lowerCamelCase_ =super(lowerCAmelCase, self ).outputs
if self.use_past:
lowerCamelCase_, lowerCamelCase_ =self.num_layers
for i in range(lowerCAmelCase ):
lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''}
lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ):
"""simple docstring"""
lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
# Generate decoder inputs
lowerCamelCase_ =seq_length if not self.use_past else 1
lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ ={f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase_ =dict(**lowerCAmelCase, **lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
lowerCamelCase_, lowerCamelCase_ =common_inputs['''input_ids'''].shape
lowerCamelCase_ =common_inputs['''decoder_input_ids'''].shape[1]
lowerCamelCase_, lowerCamelCase_ =self.num_attention_heads
lowerCamelCase_ =(
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase_ =decoder_seq_length + 3
lowerCamelCase_ =(
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase_ =torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowerCAmelCase, lowerCAmelCase )], dim=1 )
lowerCamelCase_ =[]
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase_, lowerCamelCase_ =self.num_layers
lowerCamelCase_ =min(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =max(lowerCAmelCase, lowerCAmelCase ) - min_num_layers
lowerCamelCase_ ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
) )
# TODO: test this.
lowerCamelCase_ =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowerCAmelCase, lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) )
return common_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ):
"""simple docstring"""
lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
lowerCamelCase_, lowerCamelCase_ =common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
lowerCamelCase_ =seqlen + 2
lowerCamelCase_, lowerCamelCase_ =self.num_layers
lowerCamelCase_, lowerCamelCase_ =self.num_attention_heads
lowerCamelCase_ =(
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase_ =common_inputs['''attention_mask'''].dtype
lowerCamelCase_ =torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 )
lowerCamelCase_ =[
(torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase )
]
return common_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ):
"""simple docstring"""
lowerCamelCase_ =compute_effective_axis_dimension(
lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase_ =tokenizer.num_special_tokens_to_add(lowerCAmelCase )
lowerCamelCase_ =compute_effective_axis_dimension(
lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase_ =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase_ =dict(tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase ) )
return common_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase_ =self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase )
else:
lowerCamelCase_ =self._generate_dummy_inputs_for_causal_lm(
lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase )
return common_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase_ =super()._flatten_past_key_values_(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
else:
lowerCamelCase_ =super(lowerCAmelCase, self )._flatten_past_key_values_(
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return 1e-4
| 6 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =ShapEImgaImgPipeline
lowercase : Dict =['image']
lowercase : str =['image']
lowercase : int =[
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
lowercase : int =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 8
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, )
lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
lowerCamelCase_ =ShapERenderer(**lowerCAmelCase )
return model
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =self.dummy_renderer
lowerCamelCase_ =HeunDiscreteScheduler(
beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.images[0]
lowerCamelCase_ =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCamelCase_ =np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self ):
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =1
lowerCamelCase_ =2
lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
lowerCamelCase_ =batch_size * [inputs[key]]
lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
lowerCamelCase_ =load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 )
lowerCamelCase_ =pipe(
lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
a_ : List[Any] = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''', lowerCAmelCase, )
super().__init__(*lowerCAmelCase, **lowerCAmelCase )
| 6 |
'''simple docstring'''
from itertools import product
def a_ ( __snake_case : int , __snake_case : int ) -> list[int]:
"""simple docstring"""
lowerCamelCase_ =sides_number
lowerCamelCase_ =max_face_number * dice_number
lowerCamelCase_ =[0] * (max_total + 1)
lowerCamelCase_ =1
lowerCamelCase_ =range(__snake_case , max_face_number + 1 )
for dice_numbers in product(__snake_case , repeat=__snake_case ):
lowerCamelCase_ =sum(__snake_case )
totals_frequencies[total] += 1
return totals_frequencies
def a_ ( ) -> float:
"""simple docstring"""
lowerCamelCase_ =total_frequency_distribution(
sides_number=4 , dice_number=9 )
lowerCamelCase_ =total_frequency_distribution(
sides_number=6 , dice_number=6 )
lowerCamelCase_ =0
lowerCamelCase_ =9
lowerCamelCase_ =4 * 9
lowerCamelCase_ =6
for peter_total in range(__snake_case , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
lowerCamelCase_ =(4**9) * (6**6)
lowerCamelCase_ =peter_wins_count / total_games_number
lowerCamelCase_ =round(__snake_case , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a_ : str = """sshleifer/mar_enro_6_3_student"""
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
super().setUp()
lowerCamelCase_ =cached_path(
'''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''', extract_compressed_file=lowerCAmelCase, )
lowerCamelCase_ =f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'''
@slow
@require_torch_gpu
def lowercase__ ( self ):
"""simple docstring"""
MarianMTModel.from_pretrained(lowerCAmelCase )
@slow
@require_torch_gpu
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''$MAX_LEN''': 64,
'''$BS''': 64,
'''$GAS''': 1,
'''$ENRO_DIR''': self.data_dir,
'''facebook/mbart-large-cc25''': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'''--learning_rate=3e-5''': '''--learning_rate 3e-4''',
'''--num_train_epochs 6''': '''--num_train_epochs 1''',
}
# Clean up bash script
lowerCamelCase_ =(self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip()
lowerCamelCase_ =bash_script.replace('''\\\n''', '''''' ).strip().replace('''"$@"''', '''''' )
for k, v in env_vars_to_replace.items():
lowerCamelCase_ =bash_script.replace(lowerCAmelCase, str(lowerCAmelCase ) )
lowerCamelCase_ =self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
lowerCamelCase_ =f'''
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
'''.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
lowerCamelCase_ =['''finetune.py'''] + bash_script.split() + args
with patch.object(lowerCAmelCase, '''argv''', lowerCAmelCase ):
lowerCamelCase_ =argparse.ArgumentParser()
lowerCamelCase_ =pl.Trainer.add_argparse_args(lowerCAmelCase )
lowerCamelCase_ =SummarizationModule.add_model_specific_args(lowerCAmelCase, os.getcwd() )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ =main(lowerCAmelCase )
# Check metrics
lowerCamelCase_ =load_json(model.metrics_save_path )
lowerCamelCase_ =metrics['''val'''][0]
lowerCamelCase_ =metrics['''val'''][-1]
self.assertEqual(len(metrics['''val'''] ), (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''], lowerCAmelCase )
self.assertGreater(last_step_stats['''val_avg_gen_time'''], 0.0_1 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['''val_avg_gen_time'''], 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''], 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['''val_avg_bleu'''], 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ), 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
lowerCamelCase_ =os.listdir(lowerCAmelCase )
lowerCamelCase_ =[x for x in contents if x.endswith('''.ckpt''' )][0]
lowerCamelCase_ =os.path.join(args.output_dir, lowerCAmelCase )
lowerCamelCase_ =torch.load(lowerCAmelCase, map_location='''cpu''' )
lowerCamelCase_ ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
lowerCamelCase_ ={os.path.basename(lowerCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
class __UpperCamelCase ( lowerCamelCase__ ):
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =f'''{self.test_file_dir_str}/test_data/wmt_en_ro'''
lowerCamelCase_ ={
'''--fp16_opt_level=O1''': '''''',
'''$MAX_LEN''': 128,
'''$BS''': 16,
'''$GAS''': 1,
'''$ENRO_DIR''': data_dir,
'''$m''': '''sshleifer/student_marian_en_ro_6_1''',
'''val_check_interval=0.25''': '''val_check_interval=1.0''',
}
# Clean up bash script
lowerCamelCase_ =(
(self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip()
)
lowerCamelCase_ =bash_script.replace('''\\\n''', '''''' ).strip().replace('''"$@"''', '''''' )
lowerCamelCase_ =bash_script.replace('''--fp16 ''', ''' ''' )
for k, v in env_vars_to_replace.items():
lowerCamelCase_ =bash_script.replace(lowerCAmelCase, str(lowerCAmelCase ) )
lowerCamelCase_ =self.get_auto_remove_tmp_dir()
lowerCamelCase_ =bash_script.replace('''--fp16''', '''''' )
lowerCamelCase_ =6
lowerCamelCase_ =(
['''distillation.py''']
+ bash_script.split()
+ [
f'''--output_dir={output_dir}''',
'''--gpus=1''',
'''--learning_rate=1e-3''',
f'''--num_train_epochs={epochs}''',
'''--warmup_steps=10''',
'''--val_check_interval=1.0''',
'''--do_predict''',
]
)
with patch.object(lowerCAmelCase, '''argv''', lowerCAmelCase ):
lowerCamelCase_ =argparse.ArgumentParser()
lowerCamelCase_ =pl.Trainer.add_argparse_args(lowerCAmelCase )
lowerCamelCase_ =SummarizationDistiller.add_model_specific_args(lowerCAmelCase, os.getcwd() )
lowerCamelCase_ =parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
lowerCamelCase_ =distill_main(lowerCAmelCase )
# Check metrics
lowerCamelCase_ =load_json(model.metrics_save_path )
lowerCamelCase_ =metrics['''val'''][0]
lowerCamelCase_ =metrics['''val'''][-1]
assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.0_1
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''], lowerCAmelCase )
# check lightning ckpt can be loaded and has a reasonable statedict
lowerCamelCase_ =os.listdir(lowerCAmelCase )
lowerCamelCase_ =[x for x in contents if x.endswith('''.ckpt''' )][0]
lowerCamelCase_ =os.path.join(args.output_dir, lowerCAmelCase )
lowerCamelCase_ =torch.load(lowerCAmelCase, map_location='''cpu''' )
lowerCamelCase_ ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight'''
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
lowerCamelCase_ ={os.path.basename(lowerCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['''test'''] ) == 1
| 6 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
a_ : Tuple = TypeVar("""T""")
a_ : Dict = Union[List[T], Tuple[T, ...]]
a_ : int = Union[T, List[T], Dict[str, T]]
a_ : Optional[Any] = Union[str, bytes, os.PathLike]
| 6 | 1 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : List[str] =AutoencoderKL
lowercase : Optional[int] ='sample'
lowercase : Dict =1E-2
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =(32, 32)
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
@unittest.skipIf(torch_device == '''mps''', '''Gradient checkpointing skipped on MPS''' )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =self.prepare_init_args_and_inputs_for_common()
lowerCamelCase_ =self.model_class(**lowerCAmelCase )
model.to(lowerCAmelCase )
assert not model.is_gradient_checkpointing and model.training
lowerCamelCase_ =model(**lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
lowerCamelCase_ =torch.randn_like(lowerCAmelCase )
lowerCamelCase_ =(out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
lowerCamelCase_ =self.model_class(**lowerCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(lowerCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
lowerCamelCase_ =model_a(**lowerCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
lowerCamelCase_ =(out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
lowerCamelCase_ =dict(model.named_parameters() )
lowerCamelCase_ =dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data, named_params_a[name].grad.data, atol=5e-5 ) )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' )
lowerCamelCase_ =model.to(lowerCAmelCase )
model.eval()
if torch_device == "mps":
lowerCamelCase_ =torch.manual_seed(0 )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 )
lowerCamelCase_ =torch.randn(
1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0 ), )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase, sample_posterior=lowerCAmelCase, generator=lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
lowerCamelCase_ =torch.tensor(
[
-4.0_078e-01,
-3.8_323e-04,
-1.2_681e-01,
-1.1_462e-01,
2.0_095e-01,
1.0_893e-01,
-8.8_247e-02,
-3.0_361e-01,
-9.8_644e-03,
] )
elif torch_device == "cpu":
lowerCamelCase_ =torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
lowerCamelCase_ =torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(lowerCAmelCase, lowerCAmelCase, rtol=1e-2 ) )
@slow
class __UpperCamelCase ( unittest.TestCase ):
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
return f'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase ) for s in shape] )}.npy'''
def lowercase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self, lowerCAmelCase=0, lowerCAmelCase=(4, 3, 512, 512), lowerCAmelCase=False ):
"""simple docstring"""
lowerCamelCase_ =torch.floataa if fpaa else torch.floataa
lowerCamelCase_ =torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase, lowerCAmelCase ) ) ).to(lowerCAmelCase ).to(lowerCAmelCase )
return image
def lowercase__ ( self, lowerCAmelCase="CompVis/stable-diffusion-v1-4", lowerCAmelCase=False ):
"""simple docstring"""
lowerCamelCase_ ='''fp16''' if fpaa else None
lowerCamelCase_ =torch.floataa if fpaa else torch.floataa
lowerCamelCase_ =AutoencoderKL.from_pretrained(
lowerCAmelCase, subfolder='''vae''', torch_dtype=lowerCAmelCase, revision=lowerCAmelCase, )
model.to(lowerCAmelCase ).eval()
return model
def lowercase__ ( self, lowerCAmelCase=0 ):
"""simple docstring"""
if torch_device == "mps":
return torch.manual_seed(lowerCAmelCase )
return torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model()
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase )
lowerCamelCase_ =self.get_generator(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase, generator=lowerCAmelCase, sample_posterior=lowerCAmelCase ).sample
assert sample.shape == image.shape
lowerCamelCase_ =sample[-1, -2:, -2:, :2].flatten().float().cpu()
lowerCamelCase_ =torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model(fpaa=lowerCAmelCase )
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase, fpaa=lowerCAmelCase )
lowerCamelCase_ =self.get_generator(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase, generator=lowerCAmelCase, sample_posterior=lowerCAmelCase ).sample
assert sample.shape == image.shape
lowerCamelCase_ =sample[-1, -2:, :2, -2:].flatten().float().cpu()
lowerCamelCase_ =torch.tensor(lowerCAmelCase )
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model()
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
assert sample.shape == image.shape
lowerCamelCase_ =sample[-1, -2:, -2:, :2].flatten().float().cpu()
lowerCamelCase_ =torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model()
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase, shape=(3, 4, 64, 64) )
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
lowerCamelCase_ =sample[-1, -2:, :2, -2:].flatten().cpu()
lowerCamelCase_ =torch.tensor(lowerCAmelCase )
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model(fpaa=lowerCAmelCase )
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase, shape=(3, 4, 64, 64), fpaa=lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
lowerCamelCase_ =sample[-1, -2:, :2, -2:].flatten().float().cpu()
lowerCamelCase_ =torch.tensor(lowerCAmelCase )
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available(), reason='''xformers is not required when using PyTorch 2.0.''' )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model(fpaa=lowerCAmelCase )
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase, shape=(3, 4, 64, 64), fpaa=lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available(), reason='''xformers is not required when using PyTorch 2.0.''' )
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model()
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase, shape=(3, 4, 64, 64) )
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
lowerCamelCase_ =model.decode(lowerCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.get_sd_vae_model()
lowerCamelCase_ =self.get_sd_image(lowerCAmelCase )
lowerCamelCase_ =self.get_generator(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model.encode(lowerCAmelCase ).latent_dist
lowerCamelCase_ =dist.sample(generator=lowerCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
lowerCamelCase_ =sample[0, -1, -3:, -3:].flatten().cpu()
lowerCamelCase_ =torch.tensor(lowerCAmelCase )
lowerCamelCase_ =3e-3 if torch_device != '''mps''' else 1e-2
assert torch_all_close(lowerCAmelCase, lowerCAmelCase, atol=lowerCAmelCase )
| 6 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any:
"""simple docstring"""
lowerCamelCase_ =False
lowerCamelCase_ =search_prob
lowerCamelCase_ =start_temperate
lowerCamelCase_ =[]
lowerCamelCase_ =0
lowerCamelCase_ =None
while not search_end:
lowerCamelCase_ =current_state.score()
if best_state is None or current_score > best_state.score():
lowerCamelCase_ =current_state
scores.append(__snake_case )
iterations += 1
lowerCamelCase_ =None
lowerCamelCase_ =current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor
lowerCamelCase_ =neighbors.pop(__snake_case )
lowerCamelCase_ =picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCamelCase_ =change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCamelCase_ =picked_neighbor
else:
lowerCamelCase_ =(math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCamelCase_ =picked_neighbor
lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCamelCase_ =True
else:
lowerCamelCase_ =next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(__snake_case ) , __snake_case )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a_ : List[str] = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F"""{local_min.score()}"""
)
| 6 | 1 |
'''simple docstring'''
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def a_ ( __snake_case : List[str] ) -> Dict:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() )
@pytest.fixture
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
class __UpperCamelCase :
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =metric_id
class __UpperCamelCase :
lowercase : Union[str, Any] =[MetricMock(lowerCamelCase__ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def lowercase__ ( self ):
"""simple docstring"""
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() )
@pytest.mark.parametrize(
'''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def a_ ( __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
if "tmp_path" in args:
lowerCamelCase_ =tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(__snake_case , match='''https://huggingface.co/docs/evaluate''' ):
func(*__snake_case )
| 6 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def a_ ( __snake_case : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ =[
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__snake_case , __snake_case )
def a_ ( __snake_case : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =emb.weight.shape
lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case )
lowerCamelCase_ =emb.weight.data
return lin_layer
def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict:
"""simple docstring"""
lowerCamelCase_ ={}
for old_key in state_dict.keys():
lowerCamelCase_ =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCamelCase_ =state_dict[old_key]
return new_dict
def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =0
os.makedirs(__snake_case , exist_ok=__snake_case )
for expert in range(__snake_case ):
lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(__snake_case ):
lowerCamelCase_ =torch.load(__snake_case )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =os.path.join(
__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
torch.save(__snake_case , __snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__snake_case )[0]].dtype )
# Add the last block
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) )
lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(__snake_case )
lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case )
lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__snake_case ) == 1:
lowerCamelCase_ =os.path.join(__snake_case , __snake_case )
torch.save(__snake_case , __snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__snake_case , __snake_case )
# Otherwise, let's build the index
lowerCamelCase_ ={}
for idx, shard in enumerate(__snake_case ):
lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' )
lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) )
for key in shard:
lowerCamelCase_ =shard_file
# Add the metadata
lowerCamelCase_ ={'''total_size''': total_size}
lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n'''
f.write(__snake_case )
return metadata, index
if __name__ == "__main__":
a_ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--nllb_moe_checkpoint_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
a_ : Tuple = parser.parse_args()
a_ , a_ : int = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : Tuple = NllbMoeConfig.from_pretrained(
"""facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("""Done""")
model.save_pretrained(args.pytorch_dump_folder_path)
| 6 | 1 |
'''simple docstring'''
from sklearn.metrics import recall_score
import datasets
a_ : List[Any] = """
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
"""
a_ : Any = """
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{'recall': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{'recall': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric('recall')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{'recall': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric('recall')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'recall': array([1., 0., 0.])}
"""
a_ : Optional[Any] = """
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ), reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=1, lowerCAmelCase="binary", lowerCAmelCase=None, lowerCAmelCase="warn", ):
"""simple docstring"""
lowerCamelCase_ =recall_score(
lowerCAmelCase, lowerCAmelCase, labels=lowerCAmelCase, pos_label=lowerCAmelCase, average=lowerCAmelCase, sample_weight=lowerCAmelCase, zero_division=lowerCAmelCase, )
return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
| 6 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =['image_processor', 'tokenizer']
lowercase : int ='LayoutLMv2ImageProcessor'
lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''', lowerCAmelCase, )
lowerCamelCase_ =kwargs.pop('''feature_extractor''' )
lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCAmelCase, lowerCAmelCase )
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowerCAmelCase, lowerCAmelCase ):
lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCamelCase_ =features['''words''']
lowerCamelCase_ =self.tokenizer(
text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, )
# add pixel values
lowerCamelCase_ =features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] )
lowerCamelCase_ =images
return encoded_inputs
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =[]
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowerCAmelCase ) != len(lowerCAmelCase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' )
return images_with_overflow
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, )
return self.image_processor_class
@property
def lowercase__ ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, )
return self.image_processor
| 6 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[torch.FloatTensor] =None
lowercase : torch.FloatTensor =None
lowercase : Optional[Tuple[torch.FloatTensor]] =None
lowercase : Optional[Tuple[torch.FloatTensor]] =None
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=2, lowerCAmelCase=512, lowerCAmelCase="cls", lowerCAmelCase=False, lowerCAmelCase=True, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =project_dim
lowerCamelCase_ =pooler_fn
lowerCamelCase_ =learn_encoder
lowerCamelCase_ =use_attention_mask
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : int =[r'pooler', r'logit_scale']
lowercase : Union[str, Any] =[r'position_ids', r'predictions.decoder.bias']
lowercase : Any ='roberta'
lowercase : Optional[Any] =RobertaSeriesConfig
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
super().__init__(lowerCAmelCase )
lowerCamelCase_ =XLMRobertaModel(lowerCAmelCase )
lowerCamelCase_ =nn.Linear(config.hidden_size, config.project_dim )
lowerCamelCase_ =getattr(lowerCAmelCase, '''has_pre_transformation''', lowerCAmelCase )
if self.has_pre_transformation:
lowerCamelCase_ =nn.Linear(config.hidden_size, config.project_dim )
lowerCamelCase_ =nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps )
self.post_init()
def lowercase__ ( self, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, ):
"""simple docstring"""
lowerCamelCase_ =return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase_ =self.base_model(
input_ids=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, position_ids=lowerCAmelCase, head_mask=lowerCAmelCase, inputs_embeds=lowerCAmelCase, encoder_hidden_states=lowerCAmelCase, encoder_attention_mask=lowerCAmelCase, output_attentions=lowerCAmelCase, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCAmelCase, )
if self.has_pre_transformation:
lowerCamelCase_ =outputs['''hidden_states'''][-2]
lowerCamelCase_ =self.pre_LN(lowerCAmelCase )
lowerCamelCase_ =self.transformation_pre(lowerCAmelCase )
return TransformationModelOutput(
projection_state=lowerCAmelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
else:
lowerCamelCase_ =self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=lowerCAmelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
| 6 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =VQModel
lowercase : Union[str, Any] ='sample'
@property
def lowercase__ ( self, lowerCAmelCase=(32, 32) ):
"""simple docstring"""
lowerCamelCase_ =4
lowerCamelCase_ =3
lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase )
return {"sample": image}
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
@property
def lowercase__ ( self ):
"""simple docstring"""
return (3, 32, 32)
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ={
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
lowerCamelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ), 0 )
model.to(lowerCAmelCase )
lowerCamelCase_ =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(lowerCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size )
lowerCamelCase_ =image.to(lowerCAmelCase )
with torch.no_grad():
lowerCamelCase_ =model(lowerCAmelCase ).sample
lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
| 6 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Any = logging.get_logger(__name__)
a_ : Optional[int] = {
"""Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""",
"""Salesforce/blip-vqa-capfit-large""": (
"""https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-base""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-large""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"""
),
"""Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""",
"""Salesforce/blip-itm-large-flikr""": (
"""https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"""
),
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[Any] ='blip_text_model'
def __init__( self, lowerCAmelCase=30_524, lowerCAmelCase=768, lowerCAmelCase=768, lowerCAmelCase=3_072, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=8, lowerCAmelCase=512, lowerCAmelCase="gelu", lowerCAmelCase=1e-12, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=30_522, lowerCAmelCase=2, lowerCAmelCase=0, lowerCAmelCase=102, lowerCAmelCase=True, lowerCAmelCase=True, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(
pad_token_id=lowerCAmelCase, bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, sep_token_id=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =vocab_size
lowerCamelCase_ =hidden_size
lowerCamelCase_ =encoder_hidden_size
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =projection_dim
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =hidden_act
lowerCamelCase_ =initializer_range
lowerCamelCase_ =attention_probs_dropout_prob
lowerCamelCase_ =is_decoder
lowerCamelCase_ =use_cache
@classmethod
def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
cls._set_token_in_kwargs(lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =cls.get_config_dict(lowerCAmelCase, **lowerCAmelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get('''model_type''' ) == "blip":
lowerCamelCase_ =config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCAmelCase, **lowerCAmelCase )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] ='blip_vision_model'
def __init__( self, lowerCAmelCase=768, lowerCAmelCase=3_072, lowerCAmelCase=512, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=384, lowerCAmelCase=16, lowerCAmelCase="gelu", lowerCAmelCase=1e-5, lowerCAmelCase=0.0, lowerCAmelCase=1e-10, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
lowerCamelCase_ =hidden_size
lowerCamelCase_ =intermediate_size
lowerCamelCase_ =projection_dim
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =patch_size
lowerCamelCase_ =image_size
lowerCamelCase_ =initializer_range
lowerCamelCase_ =attention_dropout
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =hidden_act
@classmethod
def lowercase__ ( cls, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
cls._set_token_in_kwargs(lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =cls.get_config_dict(lowerCAmelCase, **lowerCAmelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get('''model_type''' ) == "blip":
lowerCamelCase_ =config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowerCAmelCase, **lowerCAmelCase )
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] ='blip'
lowercase : Tuple =True
def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=512, lowerCAmelCase=2.6_5_9_2, lowerCAmelCase=256, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
if text_config is None:
lowerCamelCase_ ={}
logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' )
if vision_config is None:
lowerCamelCase_ ={}
logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' )
lowerCamelCase_ =BlipTextConfig(**lowerCAmelCase )
lowerCamelCase_ =BlipVisionConfig(**lowerCAmelCase )
lowerCamelCase_ =self.vision_config.hidden_size
lowerCamelCase_ =projection_dim
lowerCamelCase_ =logit_scale_init_value
lowerCamelCase_ =1.0
lowerCamelCase_ =0.0_2
lowerCamelCase_ =image_text_hidden_size
@classmethod
def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ):
"""simple docstring"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =copy.deepcopy(self.__dict__ )
lowerCamelCase_ =self.text_config.to_dict()
lowerCamelCase_ =self.vision_config.to_dict()
lowerCamelCase_ =self.__class__.model_type
return output
| 6 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
a_ : List[Any] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
a_ : List[Any] = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
a_ : Any = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def lowercase__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
lowerCamelCase_ =[
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase )
return score
| 6 | 1 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class __UpperCamelCase :
def __init__( self ):
"""simple docstring"""
lowerCamelCase_ ={}
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=1 ):
"""simple docstring"""
if self.graph.get(lowerCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
lowerCamelCase_ =[[w, v]]
if not self.graph.get(lowerCAmelCase ):
lowerCamelCase_ =[]
def lowercase__ ( self ):
"""simple docstring"""
return list(self.graph )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if self.graph.get(lowerCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ):
"""simple docstring"""
if s == d:
return []
lowerCamelCase_ =[]
lowerCamelCase_ =[]
if s == -2:
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return visited
def lowercase__ ( self, lowerCAmelCase=-1 ):
"""simple docstring"""
if c == -1:
lowerCamelCase_ =floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
lowerCamelCase_ =floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase, lowerCAmelCase, 1 )
def lowercase__ ( self, lowerCAmelCase=-2 ):
"""simple docstring"""
lowerCamelCase_ =deque()
lowerCamelCase_ =[]
if s == -2:
lowerCamelCase_ =list(self.graph )[0]
d.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
while d:
lowerCamelCase_ =d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return len(self.graph[u] )
def lowercase__ ( self, lowerCAmelCase=-2 ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
if s == -2:
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =s
lowerCamelCase_ =[]
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return sorted_nodes
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =-2
lowerCamelCase_ =[]
lowerCamelCase_ =s
lowerCamelCase_ =False
lowerCamelCase_ =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
lowerCamelCase_ =len(lowerCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
lowerCamelCase_ =True
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =False
indirect_parents.append(lowerCAmelCase )
lowerCamelCase_ =s
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return list(lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =-2
lowerCamelCase_ =[]
lowerCamelCase_ =s
lowerCamelCase_ =False
lowerCamelCase_ =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
lowerCamelCase_ =len(lowerCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
lowerCamelCase_ =True
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =False
indirect_parents.append(lowerCAmelCase )
lowerCamelCase_ =s
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return False
def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ):
"""simple docstring"""
lowerCamelCase_ =time()
self.dfs(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =time()
return end - begin
def lowercase__ ( self, lowerCAmelCase=-2 ):
"""simple docstring"""
lowerCamelCase_ =time()
self.bfs(lowerCAmelCase )
lowerCamelCase_ =time()
return end - begin
class __UpperCamelCase :
def __init__( self ):
"""simple docstring"""
lowerCamelCase_ ={}
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=1 ):
"""simple docstring"""
if self.graph.get(lowerCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
lowerCamelCase_ =[[w, v]]
# add the other way
if self.graph.get(lowerCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
lowerCamelCase_ =[[w, u]]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ):
"""simple docstring"""
if self.graph.get(lowerCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(lowerCAmelCase )
# the other way round
if self.graph.get(lowerCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ):
"""simple docstring"""
if s == d:
return []
lowerCamelCase_ =[]
lowerCamelCase_ =[]
if s == -2:
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(lowerCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return visited
def lowercase__ ( self, lowerCAmelCase=-1 ):
"""simple docstring"""
if c == -1:
lowerCamelCase_ =floor(random() * 10_000 ) + 10
for i in range(lowerCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
lowerCamelCase_ =floor(random() * c ) + 1
if n != i:
self.add_pair(lowerCAmelCase, lowerCAmelCase, 1 )
def lowercase__ ( self, lowerCAmelCase=-2 ):
"""simple docstring"""
lowerCamelCase_ =deque()
lowerCamelCase_ =[]
if s == -2:
lowerCamelCase_ =list(self.graph )[0]
d.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
while d:
lowerCamelCase_ =d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def lowercase__ ( self, lowerCAmelCase ):
"""simple docstring"""
return len(self.graph[u] )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =-2
lowerCamelCase_ =[]
lowerCamelCase_ =s
lowerCamelCase_ =False
lowerCamelCase_ =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
lowerCamelCase_ =len(lowerCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
lowerCamelCase_ =True
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =False
indirect_parents.append(lowerCAmelCase )
lowerCamelCase_ =s
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return list(lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =[]
lowerCamelCase_ =list(self.graph )[0]
stack.append(lowerCAmelCase )
visited.append(lowerCAmelCase )
lowerCamelCase_ =-2
lowerCamelCase_ =[]
lowerCamelCase_ =s
lowerCamelCase_ =False
lowerCamelCase_ =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
lowerCamelCase_ =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
lowerCamelCase_ =len(lowerCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
lowerCamelCase_ =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
lowerCamelCase_ =True
if len(lowerCAmelCase ) != 0:
lowerCamelCase_ =stack[len(lowerCAmelCase ) - 1]
else:
lowerCamelCase_ =False
indirect_parents.append(lowerCAmelCase )
lowerCamelCase_ =s
lowerCamelCase_ =ss
# check if se have reached the starting point
if len(lowerCAmelCase ) == 0:
return False
def lowercase__ ( self ):
"""simple docstring"""
return list(self.graph )
def lowercase__ ( self, lowerCAmelCase=-2, lowerCAmelCase=-1 ):
"""simple docstring"""
lowerCamelCase_ =time()
self.dfs(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =time()
return end - begin
def lowercase__ ( self, lowerCAmelCase=-2 ):
"""simple docstring"""
lowerCamelCase_ =time()
self.bfs(lowerCAmelCase )
lowerCamelCase_ =time()
return end - begin
| 6 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
a_ : Tuple = logging.get_logger(__name__)
a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
a_ : Tuple = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
a_ : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_12,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_12,
}
a_ : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_12,
"""facebook/dpr-question_encoder-multiset-base""": 5_12,
}
a_ : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": 5_12,
"""facebook/dpr-reader-multiset-base""": 5_12,
}
a_ : Optional[int] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
a_ : Dict = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[Any] =VOCAB_FILES_NAMES
lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : Dict =DPRContextEncoderTokenizer
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Optional[int] =VOCAB_FILES_NAMES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase : List[Any] =DPRQuestionEncoderTokenizer
a_ : Union[str, Any] = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
a_ : Dict = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(lowerCamelCase__ )
class __UpperCamelCase :
def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
elif titles is None or texts is None:
lowerCamelCase_ =titles if texts is None else texts
return super().__call__(
lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, )
lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles]
lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages
assert len(lowerCAmelCase ) == len(
lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.'''
lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids''']
lowerCamelCase_ ={
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase )
]
}
if return_attention_mask is not False:
lowerCamelCase_ =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowerCamelCase_ =attention_mask
return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ):
"""simple docstring"""
lowerCamelCase_ =reader_input['''input_ids''']
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3]
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ )
lowerCamelCase_ =[]
for doc_id in sorted_docs:
lowerCamelCase_ =list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase_ =sequence_ids.index(self.pad_token_id )
else:
lowerCamelCase_ =len(lowerCAmelCase )
lowerCamelCase_ =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) )
if len(lowerCAmelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ):
"""simple docstring"""
lowerCamelCase_ =[]
for start_index, start_score in enumerate(lowerCAmelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase )
lowerCamelCase_ =[]
for (start_index, end_index), score in scores:
assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]'''
lowerCamelCase_ =end_index - start_index + 1
assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(lowerCamelCase__ )
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
lowercase : int =VOCAB_FILES_NAMES
lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP
lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION
lowercase : int =['input_ids', 'attention_mask']
lowercase : Dict =DPRReaderTokenizer
| 6 | 1 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self, lowerCAmelCase, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = 32, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], lowerCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], lowerCAmelCase = True, lowerCAmelCase=7, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=3, ):
"""simple docstring"""
lowerCamelCase_ =parent
lowerCamelCase_ =do_resize
lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 288}
lowerCamelCase_ =size_divisor
lowerCamelCase_ =do_rescale
lowerCamelCase_ =rescale_factor
lowerCamelCase_ =do_normalize
lowerCamelCase_ =do_center_crop
lowerCamelCase_ =image_mean
lowerCamelCase_ =image_std
lowerCamelCase_ =do_pad
lowerCamelCase_ =batch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =min_resolution
lowerCamelCase_ =max_resolution
def lowercase__ ( self ):
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False ):
"""simple docstring"""
if not batched:
lowerCamelCase_ =self.size['''shortest_edge''']
lowerCamelCase_ =image_inputs[0]
if isinstance(lowerCAmelCase, Image.Image ):
lowerCamelCase_, lowerCamelCase_ =image.size
else:
lowerCamelCase_, lowerCamelCase_ =image.shape[1], image.shape[2]
lowerCamelCase_ =size / min(lowerCAmelCase, lowerCAmelCase )
if h < w:
lowerCamelCase_, lowerCamelCase_ =size, scale * w
else:
lowerCamelCase_, lowerCamelCase_ =scale * h, size
lowerCamelCase_ =int((1_333 / 800) * size )
if max(lowerCAmelCase, lowerCAmelCase ) > max_size:
lowerCamelCase_ =max_size / max(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =newh * scale
lowerCamelCase_ =neww * scale
lowerCamelCase_, lowerCamelCase_ =int(newh + 0.5 ), int(neww + 0.5 )
lowerCamelCase_, lowerCamelCase_ =(
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
lowerCamelCase_ =[]
for image in image_inputs:
lowerCamelCase_, lowerCamelCase_ =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCamelCase_ =max(lowerCAmelCase, key=lambda lowerCAmelCase : item[0] )[0]
lowerCamelCase_ =max(lowerCAmelCase, key=lambda lowerCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : Optional[Any] =BridgeTowerImageProcessor if is_vision_available() else None
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =BridgeTowerImageProcessingTester(self )
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase, '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase, '''size_divisor''' ) )
def lowercase__ ( self ):
"""simple docstring"""
pass
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, Image.Image )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, np.ndarray )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase, torch.Tensor )
# Test not batched input
lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values
lowerCamelCase_, lowerCamelCase_ =self.image_processor_tester.get_expected_values(lowerCAmelCase, batched=lowerCAmelCase )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
| 6 |
'''simple docstring'''
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def a_ ( ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
lowerCamelCase_ =Dataset.from_dict(__snake_case )
return dataset
class __UpperCamelCase ( lowerCamelCase__ ):
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ), 2 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =get_dataset()
lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase )
self.assertEqual(len(lowerCAmelCase ), 2 )
print(lowerCAmelCase )
self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
| 6 | 1 |
'''simple docstring'''
import enum
import shutil
import sys
a_ , a_ : List[str] = shutil.get_terminal_size()
a_ : Dict = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class __UpperCamelCase ( enum.Enum ):
lowercase : Optional[int] =0
lowercase : Any =1
def a_ ( __snake_case : Dict , __snake_case : Tuple="" ) -> Dict:
"""simple docstring"""
sys.stdout.write(str(__snake_case ) + end )
sys.stdout.flush()
def a_ ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : Dict="" ) -> Optional[Any]:
"""simple docstring"""
forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , __snake_case )
def a_ ( ) -> int:
"""simple docstring"""
forceWrite('''\r''' )
def a_ ( __snake_case : int , __snake_case : str ) -> Tuple:
"""simple docstring"""
forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' )
def a_ ( ) -> Any:
"""simple docstring"""
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def a_ ( ) -> int:
"""simple docstring"""
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 6 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ : Any = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 6 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
a_ : Tuple = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : Any ='AutoTokenizer'
lowercase : Union[str, Any] =['tokenizer']
lowercase : List[Any] ={
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self, lowerCAmelCase, lowerCAmelCase=None ):
"""simple docstring"""
super().__init__(lowerCAmelCase )
lowerCamelCase_ =speaker_embeddings
@classmethod
def lowercase__ ( cls, lowerCAmelCase, lowerCAmelCase="speaker_embeddings_path.json", **lowerCAmelCase ):
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
lowerCamelCase_ =get_file_from_repo(
lowerCAmelCase, lowerCAmelCase, subfolder=kwargs.pop('''subfolder''', lowerCAmelCase ), cache_dir=kwargs.pop('''cache_dir''', lowerCAmelCase ), force_download=kwargs.pop('''force_download''', lowerCAmelCase ), proxies=kwargs.pop('''proxies''', lowerCAmelCase ), resume_download=kwargs.pop('''resume_download''', lowerCAmelCase ), local_files_only=kwargs.pop('''local_files_only''', lowerCAmelCase ), use_auth_token=kwargs.pop('''use_auth_token''', lowerCAmelCase ), revision=kwargs.pop('''revision''', lowerCAmelCase ), )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(lowerCAmelCase, lowerCAmelCase )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
lowerCamelCase_ =None
else:
with open(lowerCAmelCase ) as speaker_embeddings_json:
lowerCamelCase_ =json.load(lowerCAmelCase )
else:
lowerCamelCase_ =None
lowerCamelCase_ =AutoTokenizer.from_pretrained(lowerCAmelCase, **lowerCAmelCase )
return cls(tokenizer=lowerCAmelCase, speaker_embeddings=lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase="speaker_embeddings_path.json", lowerCAmelCase="speaker_embeddings", lowerCAmelCase = False, **lowerCAmelCase, ):
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowerCAmelCase, lowerCAmelCase, '''v2''' ), exist_ok=lowerCAmelCase )
lowerCamelCase_ ={}
lowerCamelCase_ =save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCamelCase_ =self._load_voice_preset(lowerCAmelCase )
lowerCamelCase_ ={}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''], lowerCAmelCase, f'''{prompt_key}_{key}''' ), voice_preset[key], allow_pickle=lowerCAmelCase, )
lowerCamelCase_ =os.path.join(lowerCAmelCase, f'''{prompt_key}_{key}.npy''' )
lowerCamelCase_ =tmp_dict
with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), '''w''' ) as fp:
json.dump(lowerCAmelCase, lowerCAmelCase )
super().save_pretrained(lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase )
def lowercase__ ( self, lowerCAmelCase = None, **lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =self.speaker_embeddings[voice_preset]
lowerCamelCase_ ={}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
lowerCamelCase_ =get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''', '''/''' ), voice_preset_paths[key], subfolder=kwargs.pop('''subfolder''', lowerCAmelCase ), cache_dir=kwargs.pop('''cache_dir''', lowerCAmelCase ), force_download=kwargs.pop('''force_download''', lowerCAmelCase ), proxies=kwargs.pop('''proxies''', lowerCAmelCase ), resume_download=kwargs.pop('''resume_download''', lowerCAmelCase ), local_files_only=kwargs.pop('''local_files_only''', lowerCAmelCase ), use_auth_token=kwargs.pop('''use_auth_token''', lowerCAmelCase ), revision=kwargs.pop('''revision''', lowerCAmelCase ), )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path', '/' ), voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
lowerCamelCase_ =np.load(lowerCAmelCase )
return voice_preset_dict
def lowercase__ ( self, lowerCAmelCase = None ):
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key], np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase="pt", lowerCAmelCase=256, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=False, **lowerCAmelCase, ):
"""simple docstring"""
if voice_preset is not None and not isinstance(lowerCAmelCase, lowerCAmelCase ):
if (
isinstance(lowerCAmelCase, lowerCAmelCase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCamelCase_ =self._load_voice_preset(lowerCAmelCase )
else:
if isinstance(lowerCAmelCase, lowerCAmelCase ) and not voice_preset.endswith('''.npz''' ):
lowerCamelCase_ =voice_preset + '''.npz'''
lowerCamelCase_ =np.load(lowerCAmelCase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
lowerCamelCase_ =self.tokenizer(
lowerCAmelCase, return_tensors=lowerCAmelCase, padding='''max_length''', max_length=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, add_special_tokens=lowerCAmelCase, **lowerCAmelCase, )
if voice_preset is not None:
lowerCamelCase_ =voice_preset
return encoded_text
| 6 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def a_ ( __snake_case : int = 150_0000 ) -> int:
"""simple docstring"""
lowerCamelCase_ =defaultdict(__snake_case )
lowerCamelCase_ =2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ):
if gcd(__snake_case , __snake_case ) > 1:
continue
lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(__snake_case , limit + 1 , __snake_case ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 6 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
lowercase : Union[str, Any] =IFImgaImgSuperResolutionPipeline
lowercase : List[Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
lowercase : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
lowercase : List[Any] =PipelineTesterMixin.required_optional_params - {'latents'}
def lowercase__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
lowerCamelCase_ =floats_tensor((1, 3, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
lowerCamelCase_ ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', )
def lowercase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def lowercase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''', reason='''float16 requires CUDA''' )
def lowercase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1e-1 )
def lowercase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def lowercase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def lowercase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
| 6 |
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ : Tuple = 16
a_ : Optional[int] = 32
def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str:
"""simple docstring"""
lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__snake_case : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCamelCase_ =datasets.map(
__snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__snake_case : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCamelCase_ =16
elif accelerator.mixed_precision != "no":
lowerCamelCase_ =8
else:
lowerCamelCase_ =None
return tokenizer.pad(
__snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCamelCase_ =DataLoader(
tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
lowerCamelCase_ =DataLoader(
tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ : Tuple = mocked_dataloaders # noqa: F811
def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]:
"""simple docstring"""
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1":
lowerCamelCase_ =2
# Initialize accelerator
lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ =config['''lr''']
lowerCamelCase_ =int(config['''num_epochs'''] )
lowerCamelCase_ =int(config['''seed'''] )
lowerCamelCase_ =int(config['''batch_size'''] )
lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__snake_case )
def inner_training_loop(__snake_case : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCamelCase_ =model.to(accelerator.device )
# Instantiate optimizer
lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case )
lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case )
# Instantiate scheduler
lowerCamelCase_ =get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.loss
accelerator.backward(__snake_case )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ =model(**__snake_case )
lowerCamelCase_ =outputs.logits.argmax(dim=-1 )
lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
lowerCamelCase_ =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __snake_case )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def a_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCamelCase_ =parser.parse_args()
lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 6 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.