code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__snake_case , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__snake_case , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__snake_case ) return parser.parse_args() def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =parse_args() # Import training_script as a module. lowerCamelCase_ =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase_ =script_fpath.stem lowerCamelCase_ =importlib.import_module(__snake_case ) # Patch sys.argv lowerCamelCase_ =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
6
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : str = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""PerceiverFeatureExtractor"""] a_ : Dict = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart a_ : Union[str, Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } a_ : Dict = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } @lru_cache() def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCamelCase_ =bs[:] lowerCamelCase_ =0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ =[chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def a_ ( __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char return pairs class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Any =VOCAB_FILES_NAMES lowercase : Optional[int] =PRETRAINED_VOCAB_FILES_MAP lowercase : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : int =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase="replace", lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase=False, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else bos_token lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else eos_token lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else sep_token lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else cls_token lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else unk_token lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, unk_token=lowerCAmelCase, sep_token=lowerCAmelCase, cls_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token=lowerCAmelCase, add_prefix_space=lowerCAmelCase, **lowerCAmelCase, ) with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} lowerCamelCase_ =errors # how to handle errors in decoding lowerCamelCase_ =bytes_to_unicode() lowerCamelCase_ ={v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase_ =[tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={} lowerCamelCase_ =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =get_pairs(lowerCAmelCase ) if not pairs: return token while True: lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(lowerCAmelCase ): try: lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ =j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =new_word if len(lowerCAmelCase ) == 1: break else: lowerCamelCase_ =get_pairs(lowerCAmelCase ) lowerCamelCase_ =''' '''.join(lowerCAmelCase ) lowerCamelCase_ =word return word def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for token in re.findall(self.pat, lowerCAmelCase ): lowerCamelCase_ =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(''' ''' ) ) return bpe_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''''''.join(lowerCAmelCase ) lowerCamelCase_ =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''', errors=self.errors ) return text def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' ) lowerCamelCase_ =0 with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] lowerCamelCase_ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase, token_ids_a=lowerCAmelCase, already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =kwargs.pop('''add_prefix_space''', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): lowerCamelCase_ =''' ''' + text return (text, kwargs)
6
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
1
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : bool = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis lowerCamelCase_ =[ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] lowerCamelCase_ =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__snake_case , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase_ =primes[:idx] break lowerCamelCase_, lowerCamelCase_ =n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase_ =False for r in range(__snake_case ): lowerCamelCase_ =pow(__snake_case , d * 2**r , __snake_case ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase_ =True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def a_ ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
6
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ : str = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
6
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Any =['image_processor', 'tokenizer'] lowercase : Optional[int] ='ChineseCLIPImageProcessor' lowercase : List[Any] =('BertTokenizer', 'BertTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor def __call__( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase ) if text is not None and images is not None: lowerCamelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ), tensor_type=lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class
6
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ : List[str] = logging.get_logger(__name__) a_ : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : Union[str, Any] ='resnet' lowercase : int =['basic', 'bottleneck'] def __init__( self, lowerCAmelCase=3, lowerCAmelCase=64, lowerCAmelCase=[256, 512, 1_024, 2_048], lowerCAmelCase=[3, 4, 6, 3], lowerCAmelCase="bottleneck", lowerCAmelCase="relu", lowerCAmelCase=False, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowerCamelCase_ =num_channels lowerCamelCase_ =embedding_size lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =layer_type lowerCamelCase_ =hidden_act lowerCamelCase_ =downsample_in_first_stage lowerCamelCase_ =['''stem'''] + [f'''stage{idx}''' for idx in range(1, len(lowerCAmelCase ) + 1 )] lowerCamelCase_, lowerCamelCase_ =get_aligned_output_features_output_indices( out_features=lowerCAmelCase, out_indices=lowerCAmelCase, stage_names=self.stage_names ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-3
6
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='LayoutLMv3ImageProcessor' lowercase : List[Any] =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ : Optional[int] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''test-model-flax''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase, repo_id='''test-model-flax''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) model.push_to_hub('''valid_org/test-model-flax-org''', use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase, repo_id='''valid_org/test-model-flax-org''', push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowerCamelCase_ =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) lowerCamelCase_ =flatten_dict(unfreeze(model.params ) ) lowerCamelCase_ =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowerCamelCase_ =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase, 1e-3, msg=f'''{key} not identical''' ) def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =True lowerCamelCase_ =flatten_dict(modela.params ) lowerCamelCase_ =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCamelCase_ =False return models_are_equal @require_flax class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowerCamelCase_ =FlaxBertModel(lowerCAmelCase ) lowerCamelCase_ ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase, lowerCAmelCase ), max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertTrue(check_models_equal(lowerCAmelCase, lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''bert''' lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase ): lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase ) lowerCamelCase_ =FlaxBertModel.from_pretrained(lowerCAmelCase, subfolder=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase )
6
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a_ : Any = numpy.array([0, 0]) a_ : List[str] = numpy.array([0.5, 0.8_66_02_54]) a_ : Union[str, Any] = numpy.array([1, 0]) a_ : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a_ ( __snake_case : list[numpy.ndarray] , __snake_case : int ) -> list[numpy.ndarray]: """simple docstring""" lowerCamelCase_ =initial_vectors for _ in range(__snake_case ): lowerCamelCase_ =iteration_step(__snake_case ) return vectors def a_ ( __snake_case : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" lowerCamelCase_ =[] for i, start_vector in enumerate(vectors[:-1] ): lowerCamelCase_ =vectors[i + 1] new_vectors.append(__snake_case ) lowerCamelCase_ =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a_ ( __snake_case : numpy.ndarray , __snake_case : float ) -> numpy.ndarray: """simple docstring""" lowerCamelCase_ =numpy.radians(__snake_case ) lowerCamelCase_, lowerCamelCase_ =numpy.cos(__snake_case ), numpy.sin(__snake_case ) lowerCamelCase_ =numpy.array(((c, -s), (s, c)) ) return numpy.dot(__snake_case , __snake_case ) def a_ ( __snake_case : list[numpy.ndarray] ) -> None: """simple docstring""" lowerCamelCase_ =plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCamelCase_, lowerCamelCase_ =zip(*__snake_case ) plt.plot(__snake_case , __snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
6
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a_ ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any]=1024 , __snake_case : Any=1024 , __snake_case : Dict=False , **__snake_case : List[str] ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained(__snake_case ) lowerCamelCase_ =SeqaSeqDataset(__snake_case , __snake_case , __snake_case , __snake_case , type_path='''train''' , **__snake_case ) lowerCamelCase_ =tok.pad_token_id def get_lens(__snake_case : List[str] ): lowerCamelCase_ =tqdm( DataLoader(__snake_case , batch_size=512 , num_workers=8 , shuffle=__snake_case , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCamelCase_ =[] for batch in dl: lowerCamelCase_ =batch['''input_ids'''].ne(__snake_case ).sum(1 ).tolist() lowerCamelCase_ =batch['''labels'''].ne(__snake_case ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__snake_case , __snake_case ): max_lens.append(max(__snake_case , __snake_case ) ) else: max_lens.extend(__snake_case ) return max_lens lowerCamelCase_ =get_lens(__snake_case ) lowerCamelCase_ =SeqaSeqDataset(__snake_case , __snake_case , __snake_case , __snake_case , type_path='''val''' , **__snake_case ) lowerCamelCase_ =get_lens(__snake_case ) pickle_save(__snake_case , train_ds.len_file ) pickle_save(__snake_case , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
6
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
1
'''simple docstring''' import os import numpy import onnx def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =a.name lowerCamelCase_ =b.name lowerCamelCase_ ='''''' lowerCamelCase_ ='''''' lowerCamelCase_ =a == b lowerCamelCase_ =name_a lowerCamelCase_ =name_b return res def a_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__snake_case , __snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __snake_case , __snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , __snake_case , __snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __snake_case , __snake_case ) def a_ ( __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(__snake_case , __snake_case , __snake_case ) def a_ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ =list(model.graph.initializer ) lowerCamelCase_ =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCamelCase_ =inits[i].name lowerCamelCase_ =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __snake_case , __snake_case ) def a_ ( __snake_case : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ =os.path.dirname(__snake_case ) lowerCamelCase_ =os.path.basename(__snake_case ) lowerCamelCase_ =onnx.load(os.path.join(__snake_case , __snake_case ) ) lowerCamelCase_ =list(model.graph.initializer ) lowerCamelCase_ =set() lowerCamelCase_ ={} lowerCamelCase_ =[] lowerCamelCase_ =0 for i in range(len(__snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(__snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__snake_case ) dup_set.add(__snake_case ) lowerCamelCase_ =inits[j].data_type lowerCamelCase_ =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , __snake_case ) total_reduced_size += mem_size lowerCamelCase_ =inits[i].name lowerCamelCase_ =inits[j].name if name_i in dup_map: dup_map[name_i].append(__snake_case ) else: lowerCamelCase_ =[name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) lowerCamelCase_ =sorted(__snake_case ) _remove_dup_initializers_from_model(__snake_case , __snake_case , __snake_case ) lowerCamelCase_ ='''optimized_''' + model_file_name lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) onnx.save(__snake_case , __snake_case ) return new_model
6
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
1
'''simple docstring''' def a_ ( __snake_case : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCamelCase_ =sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def a_ ( __snake_case : int ) -> typing.Counter[int]: """simple docstring""" lowerCamelCase_ =Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__snake_case , max_perimeter + 1 ): lowerCamelCase_ =(base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__snake_case ): lowerCamelCase_ =int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_ =pythagorean_triple(__snake_case ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : int , __snake_case : int ) -> list[list[int]]: """simple docstring""" lowerCamelCase_ =[] create_all_state(1 , __snake_case , __snake_case , [] , __snake_case ) return result def a_ ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : list[int] , __snake_case : list[list[int]] , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(__snake_case , total_number - level + 2 ): current_list.append(__snake_case ) create_all_state(i + 1 , __snake_case , level - 1 , __snake_case , __snake_case ) current_list.pop() def a_ ( __snake_case : list[list[int]] ) -> None: """simple docstring""" for i in total_list: print(*__snake_case ) if __name__ == "__main__": a_ : Tuple = 4 a_ : Union[str, Any] = 2 a_ : Tuple = generate_all_combinations(n, k) print_all_state(total_list)
6
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def a_ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> tuple: """simple docstring""" lowerCamelCase_ =namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a_ : List[Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=1 ): """simple docstring""" lowerCamelCase_ =tokenizer lowerCamelCase_ =dataset lowerCamelCase_ =len(lowerCAmelCase ) if n_tasks is None else n_tasks lowerCamelCase_ =n_copies def __iter__( self ): """simple docstring""" lowerCamelCase_ =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCamelCase_ =self.tokenizer(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =start_length lowerCamelCase_ =eof_strings lowerCamelCase_ =tokenizer def __call__( self, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase_ =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase ) def a_ ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def a_ ( __snake_case : str , __snake_case : Any , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int]=20 , **__snake_case : int ) -> Any: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): lowerCamelCase_ =batch['''ids'''].shape[-1] lowerCamelCase_ =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times lowerCamelCase_ =batch['''task_id'''].repeat(__snake_case ) lowerCamelCase_ =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase_ =generated_tokens.cpu().numpy() lowerCamelCase_ =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) lowerCamelCase_ =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase_ =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def a_ ( ) -> Any: """simple docstring""" # Setup configuration lowerCamelCase_ =HfArgumentParser(__snake_case ) lowerCamelCase_ =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase_ =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase_ ='''false''' if args.num_workers is None: lowerCamelCase_ =multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase_ =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer lowerCamelCase_ =AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase_ =tokenizer.eos_token lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase_ ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric lowerCamelCase_ =load_dataset('''openai_humaneval''' ) lowerCamelCase_ =load_metric('''code_eval''' ) lowerCamelCase_ =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowerCamelCase_ =args.n_samples // args.batch_size lowerCamelCase_ =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase_ =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase_ =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception lowerCamelCase_, lowerCamelCase_ =accelerator.prepare(__snake_case , __snake_case ) lowerCamelCase_ =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: lowerCamelCase_ =[] for task in tqdm(range(__snake_case ) ): lowerCamelCase_ =human_eval['''test'''][task]['''test'''] lowerCamelCase_ =F'''check({human_eval['test'][task]['entry_point']})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase_, lowerCamelCase_ =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
6
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
1
'''simple docstring''' import argparse a_ : int = """docs/source/_static/js/custom.js""" def a_ ( __snake_case : Tuple ) -> List[str]: """simple docstring""" with open(__snake_case , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() lowerCamelCase_ =0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 lowerCamelCase_ =F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") a_ : str = parser.parse_args() update_custom_js(args.version)
6
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
1
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : list[int] , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =len(__snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase_ =i + 1 else: lowerCamelCase_ =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
6
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : int = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""CLIPFeatureExtractor"""] a_ : List[str] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Dict = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ ={ '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], '''do_convert_rgb''': True, } lowerCamelCase_ =os.path.join(self.tmpdirname, lowerCAmelCase ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCamelCase_ =[Image.fromarray(np.moveaxis(lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_rust_tokenizer() lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ =ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase ) lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ =ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =self.get_tokenizer(cls_token='''(CLS)''', sep_token='''(SEP)''' ) lowerCamelCase_ =self.get_image_processor(do_normalize=lowerCAmelCase ) lowerCamelCase_ =ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='''(CLS)''', sep_token='''(SEP)''', do_normalize=lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =image_processor(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor(images=lowerCAmelCase, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowerCamelCase_ ='''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ =processor(text=lowerCAmelCase ) lowerCamelCase_ =tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowerCamelCase_ ='''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =processor(text=lowerCAmelCase, images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowerCamelCase_ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ =processor.batch_decode(lowerCAmelCase ) lowerCamelCase_ =tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =ChineseCLIPProcessor(tokenizer=lowerCAmelCase, image_processor=lowerCAmelCase ) lowerCamelCase_ ='''Alexandra,T-shirt的价格是15便士。''' lowerCamelCase_ =self.prepare_image_inputs() lowerCamelCase_ =processor(text=lowerCAmelCase, images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
6
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
1
'''simple docstring''' import numpy as np from PIL import Image def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # compute the shape of the output matrix lowerCamelCase_ =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase_ =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase_ =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ =0 lowerCamelCase_ =0 return updated_arr def a_ ( __snake_case : np.ndarray , __snake_case : int , __snake_case : int ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # compute the shape of the output matrix lowerCamelCase_ =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase_ =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase_ =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase_ =0 lowerCamelCase_ =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image a_ : int = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[str, Any] =['image_processor', 'tokenizer'] lowercase : Any ='BlipImageProcessor' lowercase : List[Any] =('BertTokenizer', 'BertTokenizerFast') def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =False super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor def __call__( self, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase_ =self.tokenizer lowerCamelCase_ =self.tokenizer( text=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) return text_encoding # add pixel_values lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors=lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer( text=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) else: lowerCamelCase_ =None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase ) return encoding_image_processor def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer.model_input_names lowerCamelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
6
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def a_ ( __snake_case : int , __snake_case : Any , __snake_case : Union[str, Any]=1e-12 ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__snake_case , axis=1 ) , a_min=__snake_case ) ).T lowerCamelCase_ =jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__snake_case , axis=1 ) , a_min=__snake_case ) ).T return jnp.matmul(__snake_case , norm_emb_a.T ) class __UpperCamelCase ( nn.Module ): lowercase : CLIPConfig lowercase : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase_ =nn.Dense(self.config.projection_dim, use_bias=lowerCAmelCase, dtype=self.dtype ) lowerCamelCase_ =self.param('''concept_embeds''', jax.nn.initializers.ones, (17, self.config.projection_dim) ) lowerCamelCase_ =self.param( '''special_care_embeds''', jax.nn.initializers.ones, (3, self.config.projection_dim) ) lowerCamelCase_ =self.param('''concept_embeds_weights''', jax.nn.initializers.ones, (17,) ) lowerCamelCase_ =self.param('''special_care_embeds_weights''', jax.nn.initializers.ones, (3,) ) def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.vision_model(lowerCAmelCase )[1] lowerCamelCase_ =self.visual_projection(lowerCAmelCase ) lowerCamelCase_ =jax_cosine_distance(lowerCAmelCase, self.special_care_embeds ) lowerCamelCase_ =jax_cosine_distance(lowerCAmelCase, self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase_ =0.0 lowerCamelCase_ =special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase_ =jnp.round(lowerCAmelCase, 3 ) lowerCamelCase_ =jnp.any(special_scores > 0, axis=1, keepdims=lowerCAmelCase ) # Use a lower threshold if an image has any special care concept lowerCamelCase_ =is_special_care * 0.0_1 lowerCamelCase_ =cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase_ =jnp.round(lowerCAmelCase, 3 ) lowerCamelCase_ =jnp.any(concept_scores > 0, axis=1 ) return has_nsfw_concepts class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple =CLIPConfig lowercase : Union[str, Any] ='clip_input' lowercase : List[str] =FlaxStableDiffusionSafetyCheckerModule def __init__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = jnp.floataa, lowerCAmelCase = True, **lowerCAmelCase, ): """simple docstring""" if input_shape is None: lowerCamelCase_ =(1, 224, 224, 3) lowerCamelCase_ =self.module_class(config=lowerCAmelCase, dtype=lowerCAmelCase, **lowerCAmelCase ) super().__init__(lowerCAmelCase, lowerCAmelCase, input_shape=lowerCAmelCase, seed=lowerCAmelCase, dtype=lowerCAmelCase, _do_init=_do_init ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =jax.random.normal(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =jax.random.split(lowerCAmelCase ) lowerCamelCase_ ={'''params''': params_rng, '''dropout''': dropout_rng} lowerCamelCase_ =self.module.init(lowerCAmelCase, lowerCAmelCase )['''params'''] return random_params def __call__( self, lowerCAmelCase, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params}, jnp.array(lowerCAmelCase, dtype=jnp.floataa ), rngs={}, )
6
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
1
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> bool: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCamelCase_ =True for i in range(__snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase_ =True if a[i].islower(): lowerCamelCase_ =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = """▁""" a_ : List[Any] = {"""vocab_file""": """spiece.model"""} a_ : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } a_ : str = { """google/pegasus-xsum""": 5_12, } a_ : Any = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Union[str, Any] =VOCAB_FILES_NAMES lowercase : List[str] =PRETRAINED_VOCAB_FILES_MAP lowercase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase="<pad>", lowerCAmelCase="</s>", lowerCAmelCase="<unk>", lowerCAmelCase="<mask_2>", lowerCAmelCase="<mask_1>", lowerCAmelCase=None, lowerCAmelCase=103, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase, lowerCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCAmelCase )}, but is''' f''' {type(lowerCAmelCase )}''' ) lowerCamelCase_ =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCAmelCase ), self.offset - 1 ) ] if len(set(lowerCAmelCase ) ) != len(lowerCAmelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowerCamelCase_ =additional_special_tokens_extended else: lowerCamelCase_ =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2, self.offset )] lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase, unk_token=lowerCAmelCase, mask_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token_sent=lowerCAmelCase, offset=lowerCAmelCase, additional_special_tokens=lowerCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase, ) lowerCamelCase_ =mask_token_sent lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase ) # add special tokens to encoder dict lowerCamelCase_ ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase, out_type=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCamelCase_ =self.sp_model.piece_to_id(lowerCAmelCase ) return sp_id + self.offset def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCamelCase_ =self.sp_model.IdToPiece(index - self.offset ) return token def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token lowerCamelCase_ =[] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def lowercase__ ( self, lowerCAmelCase=False ): """simple docstring""" return 1 def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =CTRLTokenizer lowercase : Union[str, Any] =False lowercase : Optional[int] =False def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ =['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowerCamelCase_ ={'''unk_token''': '''<unk>'''} lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''adapt react readapt apt''' lowerCamelCase_ ='''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase_ ='''adapt react readapt apt''' lowerCamelCase_ ='''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =tokens + [tokenizer.unk_token] lowerCamelCase_ =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase )
6
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase = 16, lowerCAmelCase = 88, lowerCAmelCase = None, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 32, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = "geglu", lowerCAmelCase = None, ): """simple docstring""" super().__init__() lowerCamelCase_ =nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase, attention_head_dim=lowerCAmelCase, in_channels=lowerCAmelCase, num_layers=lowerCAmelCase, dropout=lowerCAmelCase, norm_num_groups=lowerCAmelCase, cross_attention_dim=lowerCAmelCase, attention_bias=lowerCAmelCase, sample_size=lowerCAmelCase, num_vector_embeds=lowerCAmelCase, activation_fn=lowerCAmelCase, num_embeds_ada_norm=lowerCAmelCase, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase_ =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase_ =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase_ =[1, 0] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =hidden_states lowerCamelCase_ =[] lowerCamelCase_ =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase_ =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase_ =self.transformer_index_for_condition[i] lowerCamelCase_ =self.transformers[transformer_index]( lowerCAmelCase, encoder_hidden_states=lowerCAmelCase, timestep=lowerCAmelCase, cross_attention_kwargs=lowerCAmelCase, return_dict=lowerCAmelCase, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase_ =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase_ =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase )
6
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def a_ ( __snake_case : float , __snake_case : float , __snake_case : int ) -> float: """simple docstring""" lowerCamelCase_ =x lowerCamelCase_ =y for step in range(__snake_case ): # noqa: B007 lowerCamelCase_ =a * a - b * b + x lowerCamelCase_ =2 * a * b + y lowerCamelCase_ =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a_ ( __snake_case : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a_ ( __snake_case : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__snake_case , 1 , 1 ) ) def a_ ( __snake_case : int = 800 , __snake_case : int = 600 , __snake_case : float = -0.6 , __snake_case : float = 0 , __snake_case : float = 3.2 , __snake_case : int = 50 , __snake_case : bool = True , ) -> Image.Image: """simple docstring""" lowerCamelCase_ =Image.new('''RGB''' , (image_width, image_height) ) lowerCamelCase_ =img.load() # loop through the image-coordinates for image_x in range(__snake_case ): for image_y in range(__snake_case ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase_ =figure_width / image_width * image_height lowerCamelCase_ =figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase_ =figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase_ =get_distance(__snake_case , __snake_case , __snake_case ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase_ =get_color_coded_rgb(__snake_case ) else: lowerCamelCase_ =get_black_and_white_rgb(__snake_case ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ : Dict = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
6
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a_ : Optional[Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''', lowerCAmelCase, ) super().__init__(*lowerCAmelCase, **lowerCAmelCase )
6
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''ZinengTang/tvlt-base''' lowerCamelCase_ =tempfile.mkdtemp() def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint, **lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=lowerCAmelCase, feature_extractor=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase ) self.assertIsInstance(processor.image_processor, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=lowerCAmelCase, feature_extractor=lowerCAmelCase ) lowerCamelCase_ =np.ones([12_000] ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor(audio=lowerCAmelCase, return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=lowerCAmelCase, feature_extractor=lowerCAmelCase ) lowerCamelCase_ =np.ones([3, 224, 224] ) lowerCamelCase_ =image_processor(lowerCAmelCase, return_tensors='''np''' ) lowerCamelCase_ =processor(images=lowerCAmelCase, return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=lowerCAmelCase, feature_extractor=lowerCAmelCase ) lowerCamelCase_ =np.ones([12_000] ) lowerCamelCase_ =np.ones([3, 224, 224] ) lowerCamelCase_ =processor(audio=lowerCAmelCase, images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ), ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=lowerCAmelCase, feature_extractor=lowerCAmelCase ) self.assertListEqual( processor.model_input_names, image_processor.model_input_names + feature_extractor.model_input_names, msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''', )
6
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Optional[Any] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple ='poolformer' def __init__( self, lowerCAmelCase=3, lowerCAmelCase=16, lowerCAmelCase=16, lowerCAmelCase=3, lowerCAmelCase=4.0, lowerCAmelCase=[2, 2, 6, 2], lowerCAmelCase=[64, 128, 320, 512], lowerCAmelCase=[7, 3, 3, 3], lowerCAmelCase=[4, 2, 2, 2], lowerCAmelCase=[2, 1, 1, 1], lowerCAmelCase=4, lowerCAmelCase=0.0, lowerCAmelCase="gelu", lowerCAmelCase=True, lowerCAmelCase=1e-5, lowerCAmelCase=0.0_2, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =num_channels lowerCamelCase_ =patch_size lowerCamelCase_ =stride lowerCamelCase_ =padding lowerCamelCase_ =pool_size lowerCamelCase_ =hidden_sizes lowerCamelCase_ =mlp_ratio lowerCamelCase_ =depths lowerCamelCase_ =patch_sizes lowerCamelCase_ =strides lowerCamelCase_ =num_encoder_blocks lowerCamelCase_ =drop_path_rate lowerCamelCase_ =hidden_act lowerCamelCase_ =use_layer_scale lowerCamelCase_ =layer_scale_init_value lowerCamelCase_ =initializer_range super().__init__(**lowerCAmelCase ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 2e-3
6
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
1
'''simple docstring''' from math import ceil def a_ ( __snake_case : int = 1001 ) -> int: """simple docstring""" lowerCamelCase_ =1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCamelCase_ =2 * i + 1 lowerCamelCase_ =2 * i lowerCamelCase_ =total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a_ : Any = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
6
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Optional[Any] = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Tuple ='levit' def __init__( self, lowerCAmelCase=224, lowerCAmelCase=3, lowerCAmelCase=3, lowerCAmelCase=2, lowerCAmelCase=1, lowerCAmelCase=16, lowerCAmelCase=[128, 256, 384], lowerCAmelCase=[4, 8, 12], lowerCAmelCase=[4, 4, 4], lowerCAmelCase=[16, 16, 16], lowerCAmelCase=0, lowerCAmelCase=[2, 2, 2], lowerCAmelCase=[2, 2, 2], lowerCAmelCase=0.0_2, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =kernel_size lowerCamelCase_ =stride lowerCamelCase_ =padding lowerCamelCase_ =hidden_sizes lowerCamelCase_ =num_attention_heads lowerCamelCase_ =depths lowerCamelCase_ =key_dim lowerCamelCase_ =drop_path_rate lowerCamelCase_ =patch_size lowerCamelCase_ =attention_ratio lowerCamelCase_ =mlp_ratio lowerCamelCase_ =initializer_range lowerCamelCase_ =[ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
6
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
1
'''simple docstring''' from collections.abc import Callable import numpy as np def a_ ( __snake_case : Callable , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> np.array: """simple docstring""" lowerCamelCase_ =int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ =np.zeros((n + 1,) ) lowerCamelCase_ =ya lowerCamelCase_ =xa for k in range(__snake_case ): lowerCamelCase_ =y[k] + step_size * ode_func(__snake_case , y[k] ) lowerCamelCase_ =y[k] + ( (step_size / 2) * (ode_func(__snake_case , y[k] ) + ode_func(x + step_size , __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
1
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" def count_of_possible_combinations(__snake_case : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__snake_case ) def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __snake_case : int , __snake_case : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase_ =sum( count_of_possible_combinations_with_dp_array(target - item , __snake_case ) for item in array ) lowerCamelCase_ =answer return answer lowerCamelCase_ =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__snake_case , __snake_case ) def a_ ( __snake_case : int , __snake_case : list[int] , __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =[0] * (target + 1) lowerCamelCase_ =1 for i in range(1 , target + 1 ): for j in range(__snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a_ : List[str] = 3 a_ : str = 5 a_ : Union[str, Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
6
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =(DDIMParallelScheduler,) lowercase : List[Any] =(('eta', 0.0), ('num_inference_steps', 50)) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={ '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCAmelCase ) return config def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(**lowerCAmelCase ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =10, 0.0 lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for t in scheduler.timesteps: lowerCamelCase_ =model(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase ) lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config(steps_offset=1 ) lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowercase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1], [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase, beta_end=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase, prediction_type=lowerCAmelCase, sample_max_value=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase, num_inference_steps=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase, eta=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420, 400 ) - 0.1_4_7_7_1 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980, 960 ) - 0.3_2_4_6_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487, 486 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999, 998 ) - 0.0_2 ) ) < 1e-5 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.scheduler_classes[0] lowerCamelCase_ =self.get_scheduler_config() lowerCamelCase_ =scheduler_class(**lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_ =10, 0.0 scheduler.set_timesteps(lowerCAmelCase ) lowerCamelCase_ =self.dummy_model() lowerCamelCase_ =self.dummy_sample_deter lowerCamelCase_ =self.dummy_sample_deter + 0.1 lowerCamelCase_ =self.dummy_sample_deter - 0.1 lowerCamelCase_ =samplea.shape[0] lowerCamelCase_ =torch.stack([samplea, samplea, samplea], dim=0 ) lowerCamelCase_ =torch.arange(lowerCAmelCase )[0:3, None].repeat(1, lowerCAmelCase ) lowerCamelCase_ =model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) lowerCamelCase_ =scheduler.batch_step_no_noise(lowerCAmelCase, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), lowerCAmelCase ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop() lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(prediction_type='''v_prediction''' ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(set_alpha_to_one=lowerCAmelCase, beta_start=0.0_1 ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.full_loop(set_alpha_to_one=lowerCAmelCase, beta_start=0.0_1 ) lowerCamelCase_ =torch.sum(torch.abs(lowerCAmelCase ) ) lowerCamelCase_ =torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
6
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() a_ : Union[str, Any] = logging.get_logger("""transformers.models.encodec""") a_ : Dict = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } a_ : Dict = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } a_ : Any = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } a_ : Any = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } a_ : int = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } a_ : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } a_ : str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } a_ : List[Any] = [] a_ : Any = [] def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[str] ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) if weight_type is not None: lowerCamelCase_ =getattr(__snake_case , __snake_case ).shape else: lowerCamelCase_ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ =value elif weight_type == "weight_g": lowerCamelCase_ =value elif weight_type == "weight_v": lowerCamelCase_ =value elif weight_type == "bias": lowerCamelCase_ =value elif weight_type == "running_mean": lowerCamelCase_ =value elif weight_type == "running_var": lowerCamelCase_ =value elif weight_type == "num_batches_tracked": lowerCamelCase_ =value elif weight_type == "weight_ih_l0": lowerCamelCase_ =value elif weight_type == "weight_hh_l0": lowerCamelCase_ =value elif weight_type == "bias_ih_l0": lowerCamelCase_ =value elif weight_type == "bias_hh_l0": lowerCamelCase_ =value elif weight_type == "weight_ih_l1": lowerCamelCase_ =value elif weight_type == "weight_hh_l1": lowerCamelCase_ =value elif weight_type == "bias_ih_l1": lowerCamelCase_ =value elif weight_type == "bias_hh_l1": lowerCamelCase_ =value else: lowerCamelCase_ =value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( __snake_case : str , __snake_case : str ) -> Tuple: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase_, lowerCamelCase_ =key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict ) -> str: """simple docstring""" lowerCamelCase_ =[] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase_ =MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase_ =MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(F'''{name} was ignored''' ) continue lowerCamelCase_ =False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase_, lowerCamelCase_ =key.split('''.*.''' ) if prefix in name and suffix in name: lowerCamelCase_ =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowerCamelCase_ =True if "*" in mapped_key: lowerCamelCase_ =name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase_ =mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: lowerCamelCase_ ='''weight_g''' elif "weight_v" in name: lowerCamelCase_ ='''weight_v''' elif "weight_ih_l0" in name: lowerCamelCase_ ='''weight_ih_l0''' elif "weight_hh_l0" in name: lowerCamelCase_ ='''weight_hh_l0''' elif "bias_ih_l0" in name: lowerCamelCase_ ='''bias_ih_l0''' elif "bias_hh_l0" in name: lowerCamelCase_ ='''bias_hh_l0''' elif "weight_ih_l1" in name: lowerCamelCase_ ='''weight_ih_l1''' elif "weight_hh_l1" in name: lowerCamelCase_ ='''weight_hh_l1''' elif "bias_ih_l1" in name: lowerCamelCase_ ='''bias_ih_l1''' elif "bias_hh_l1" in name: lowerCamelCase_ ='''bias_hh_l1''' elif "bias" in name: lowerCamelCase_ ='''bias''' elif "weight" in name: lowerCamelCase_ ='''weight''' elif "running_mean" in name: lowerCamelCase_ ='''running_mean''' elif "running_var" in name: lowerCamelCase_ ='''running_var''' elif "num_batches_tracked" in name: lowerCamelCase_ ='''num_batches_tracked''' else: lowerCamelCase_ =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Tuple=None , __snake_case : List[str]=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCamelCase_ =EncodecConfig.from_pretrained(__snake_case ) else: lowerCamelCase_ =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase_ =[8, 5, 4, 4] lowerCamelCase_ =[2.2] lowerCamelCase_ =64 lowerCamelCase_ =3_2000 lowerCamelCase_ =2048 lowerCamelCase_ =False lowerCamelCase_ =False lowerCamelCase_ =False elif model_name == "encodec_48khz": lowerCamelCase_ =[8, 5, 4, 2] lowerCamelCase_ =[3.0, 6.0, 1_2.0, 2_4.0] lowerCamelCase_ =4_8000 lowerCamelCase_ =2 lowerCamelCase_ =False lowerCamelCase_ ='''time_group_norm''' lowerCamelCase_ =True lowerCamelCase_ =1.0 lowerCamelCase_ =0.0_1 else: raise ValueError(F'''Unknown model name: {model_name}''' ) lowerCamelCase_ =EncodecModel(__snake_case ) lowerCamelCase_ =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__snake_case ) lowerCamelCase_ =torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase_ =original_checkpoint['''best_state'''] recursively_load_weights(__snake_case , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a_ : Any = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
6
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __UpperCamelCase : def __init__( self, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=64, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =np.random.default_rng(lowerCAmelCase ) lowerCamelCase_ =length lowerCamelCase_ =rng.normal(size=(length,) ).astype(np.floataa ) lowerCamelCase_ =a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__( self ): """simple docstring""" return self.length def __getitem__( self, lowerCAmelCase ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __UpperCamelCase ( torch.nn.Module ): def __init__( self, lowerCAmelCase=0, lowerCAmelCase=0, lowerCAmelCase=False ): """simple docstring""" super().__init__() lowerCamelCase_ =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase_ =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCamelCase_ =True def lowercase__ ( self, lowerCAmelCase=None ): """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowerCamelCase_ =False return x * self.a[0] + self.b[0] class __UpperCamelCase ( torch.nn.Module ): def __init__( self, lowerCAmelCase=0, lowerCAmelCase=0, lowerCAmelCase=False ): """simple docstring""" super().__init__() lowerCamelCase_ =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) lowerCamelCase_ =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) lowerCamelCase_ =True def lowercase__ ( self, lowerCAmelCase=None ): """simple docstring""" if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) lowerCamelCase_ =False return x * self.a + self.b def a_ ( __snake_case : Dict , __snake_case : int = 16 ) -> Union[str, Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ ={'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} lowerCamelCase_ =load_dataset('''csv''' , data_files=__snake_case ) lowerCamelCase_ =datasets['''train'''].unique('''label''' ) lowerCamelCase_ ={v: i for i, v in enumerate(__snake_case )} def tokenize_function(__snake_case : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case , padding='''max_length''' ) if "label" in examples: lowerCamelCase_ =[label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__snake_case : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__snake_case , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader(tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=2 ) lowerCamelCase_ =DataLoader(tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=1 ) return train_dataloader, eval_dataloader
6
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
6
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ : Union[str, Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =['pixel_values'] def __init__( self, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = PILImageResampling.BILINEAR, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = 1 / 255, lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" super().__init__(**lowerCAmelCase ) lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 256} lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase_ =get_size_dict(lowerCAmelCase ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = PILImageResampling.BICUBIC, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ =get_resize_output_image_size(lowerCAmelCase, size=size['''shortest_edge'''], default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =get_size_dict(lowerCAmelCase ) return center_crop(lowerCAmelCase, size=(size['''height'''], size['''width''']), data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase ): """simple docstring""" return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" return normalize(lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = ChannelDimension.FIRST, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(lowerCAmelCase, default_to_square=lowerCAmelCase ) lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(lowerCAmelCase ) lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(image=lowerCAmelCase, size=lowerCAmelCase, resample=lowerCAmelCase ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(image=lowerCAmelCase, size=lowerCAmelCase ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(image=lowerCAmelCase, mean=lowerCAmelCase, std=lowerCAmelCase ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowerCamelCase_ ={'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
6
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int]=0.9_9_9 , __snake_case : List[str]="cosine" , ) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case : Tuple ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case : Any ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase_ =[] for i in range(__snake_case ): lowerCamelCase_ =i / num_diffusion_timesteps lowerCamelCase_ =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : List[Any] =[e.name for e in KarrasDiffusionSchedulers] lowercase : str =2 @register_to_config def __init__( self, lowerCAmelCase = 1_000, lowerCAmelCase = 0.0_0_0_8_5, lowerCAmelCase = 0.0_1_2, lowerCAmelCase = "linear", lowerCAmelCase = None, lowerCAmelCase = "epsilon", lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = 1.0, lowerCAmelCase = "linspace", lowerCAmelCase = 0, ): """simple docstring""" if trained_betas is not None: lowerCamelCase_ =torch.tensor(lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase_ =torch.linspace(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_ =( torch.linspace(beta_start**0.5, beta_end**0.5, lowerCAmelCase, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_ =betas_for_alpha_bar(lowerCAmelCase, alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowerCamelCase_ =betas_for_alpha_bar(lowerCAmelCase, alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase_ =1.0 - self.betas lowerCamelCase_ =torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =use_karras_sigmas def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if schedule_timesteps is None: lowerCamelCase_ =self.timesteps lowerCamelCase_ =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase_ =1 if len(lowerCAmelCase ) > 1 else 0 else: lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep lowerCamelCase_ =self._index_counter[timestep_int] return indices[pos].item() @property def lowercase__ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(lowerCAmelCase ) lowerCamelCase_ =self.sigmas[step_index] lowerCamelCase_ =sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =num_inference_steps lowerCamelCase_ =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase_ =np.linspace(0, num_train_timesteps - 1, lowerCAmelCase, dtype=lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase_ =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(0, lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase_ =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(lowerCAmelCase, 0, -step_ratio )).round().copy().astype(lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCamelCase_ =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase_ =np.log(lowerCAmelCase ) lowerCamelCase_ =np.interp(lowerCAmelCase, np.arange(0, len(lowerCAmelCase ) ), lowerCAmelCase ) if self.config.use_karras_sigmas: lowerCamelCase_ =self._convert_to_karras(in_sigmas=lowerCAmelCase, num_inference_steps=self.num_inference_steps ) lowerCamelCase_ =np.array([self._sigma_to_t(lowerCAmelCase, lowerCAmelCase ) for sigma in sigmas] ) lowerCamelCase_ =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ).to(device=lowerCAmelCase ) lowerCamelCase_ =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase_ =torch.from_numpy(lowerCAmelCase ) lowerCamelCase_ =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase ).startswith('''mps''' ): # mps does not support float64 lowerCamelCase_ =timesteps.to(lowerCAmelCase, dtype=torch.floataa ) else: lowerCamelCase_ =timesteps.to(device=lowerCAmelCase ) # empty dt and derivative lowerCamelCase_ =None lowerCamelCase_ =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase_ =defaultdict(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =np.log(lowerCAmelCase ) # get distribution lowerCamelCase_ =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCamelCase_ =np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCamelCase_ =low_idx + 1 lowerCamelCase_ =log_sigmas[low_idx] lowerCamelCase_ =log_sigmas[high_idx] # interpolate sigmas lowerCamelCase_ =(low - log_sigma) / (low - high) lowerCamelCase_ =np.clip(lowerCAmelCase, 0, 1 ) # transform interpolation to time range lowerCamelCase_ =(1 - w) * low_idx + w * high_idx lowerCamelCase_ =t.reshape(sigma.shape ) return t def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =in_sigmas[-1].item() lowerCamelCase_ =in_sigmas[0].item() lowerCamelCase_ =7.0 # 7.0 is the value used in the paper lowerCamelCase_ =np.linspace(0, 1, lowerCAmelCase ) lowerCamelCase_ =sigma_min ** (1 / rho) lowerCamelCase_ =sigma_max ** (1 / rho) lowerCamelCase_ =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase__ ( self ): """simple docstring""" return self.dt is None def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(lowerCAmelCase ) # advance index counter by 1 lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase_ =self.sigmas[step_index] lowerCamelCase_ =self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCamelCase_ =self.sigmas[step_index - 1] lowerCamelCase_ =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase_ =0 lowerCamelCase_ =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_next lowerCamelCase_ =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_next lowerCamelCase_ =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCamelCase_ =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCamelCase_ =pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase_ =(sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase_ =sigma_next - sigma_hat # store for 2nd order step lowerCamelCase_ =derivative lowerCamelCase_ =dt lowerCamelCase_ =sample else: # 2. 2nd order / Heun's method lowerCamelCase_ =(sample - pred_original_sample) / sigma_next lowerCamelCase_ =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCamelCase_ =self.dt lowerCamelCase_ =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase ): # mps does not support float64 lowerCamelCase_ =self.timesteps.to(original_samples.device, dtype=torch.floataa ) lowerCamelCase_ =timesteps.to(original_samples.device, dtype=torch.floataa ) else: lowerCamelCase_ =self.timesteps.to(original_samples.device ) lowerCamelCase_ =timesteps.to(original_samples.device ) lowerCamelCase_ =[self.index_for_timestep(lowerCAmelCase, lowerCAmelCase ) for t in timesteps] lowerCamelCase_ =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase_ =sigma.unsqueeze(-1 ) lowerCamelCase_ =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
6
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=3, lowerCAmelCase=18, lowerCAmelCase=30, lowerCAmelCase=400, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=[0.5, 0.5, 0.5], lowerCAmelCase=[0.5, 0.5, 0.5], ): """simple docstring""" lowerCamelCase_ =size if size is not None else {'''shortest_edge''': 18} lowerCamelCase_ =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =min_resolution lowerCamelCase_ =max_resolution lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean lowerCamelCase_ =image_std def lowercase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =LevitImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =LevitImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase, '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase, '''size''' ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowerCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, Image.Image ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, np.ndarray ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ =prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase, torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase, torch.Tensor ) # Test not batched input lowerCamelCase_ =image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase_ =image_processing(lowerCAmelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
6
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : jnp.ndarray lowercase : jnp.ndarray class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : Tuple[int] =(16, 32, 96, 2_56) lowercase : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) lowerCamelCase_ =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ =self.block_out_channels[i] lowerCamelCase_ =self.block_out_channels[i + 1] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(lowerCAmelCase ) lowerCamelCase_ =blocks lowerCamelCase_ =nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) for block in self.blocks: lowerCamelCase_ =block(lowerCAmelCase ) lowerCamelCase_ =nn.silu(lowerCAmelCase ) lowerCamelCase_ =self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class __UpperCamelCase ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =32 lowercase : int =4 lowercase : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase : Union[bool, Tuple[bool]] =False lowercase : Tuple[int] =(3_20, 6_40, 12_80, 12_80) lowercase : int =2 lowercase : Union[int, Tuple[int]] =8 lowercase : Optional[Union[int, Tuple[int]]] =None lowercase : int =12_80 lowercase : float =0.0 lowercase : bool =False lowercase : jnp.dtype =jnp.floataa lowercase : bool =True lowercase : int =0 lowercase : str ="rgb" lowercase : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_ =jnp.ones((1,), dtype=jnp.intaa ) lowerCamelCase_ =jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa ) lowerCamelCase_ =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ =jnp.zeros(lowerCAmelCase, dtype=jnp.floataa ) lowerCamelCase_, lowerCamelCase_ =jax.random.split(lowerCAmelCase ) lowerCamelCase_ ={'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )["params"] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.block_out_channels lowerCamelCase_ =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ =nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time lowerCamelCase_ =FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) lowerCamelCase_ =FlaxTimestepEmbedding(lowerCAmelCase, dtype=self.dtype ) lowerCamelCase_ =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) lowerCamelCase_ =self.only_cross_attention if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =block_out_channels[0] lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ =output_channel lowerCamelCase_ =block_out_channels[i] lowerCamelCase_ =i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ =FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: lowerCamelCase_ =FlaxDownBlockaD( in_channels=lowerCAmelCase, out_channels=lowerCAmelCase, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(lowerCAmelCase ) lowerCamelCase_ =down_blocks lowerCamelCase_ =controlnet_down_blocks # mid lowerCamelCase_ =block_out_channels[-1] lowerCamelCase_ =FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) lowerCamelCase_ =nn.Conv( lowerCAmelCase, kernel_size=(1, 1), padding='''VALID''', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 1.0, lowerCAmelCase = True, lowerCAmelCase = False, ): """simple docstring""" lowerCamelCase_ =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ =jnp.flip(lowerCAmelCase, axis=1 ) # 1. time if not isinstance(lowerCAmelCase, jnp.ndarray ): lowerCamelCase_ =jnp.array([timesteps], dtype=jnp.intaa ) elif isinstance(lowerCAmelCase, jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ =jnp.expand_dims(lowerCAmelCase, 0 ) lowerCamelCase_ =self.time_proj(lowerCAmelCase ) lowerCamelCase_ =self.time_embedding(lowerCAmelCase ) # 2. pre-process lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.conv_in(lowerCAmelCase ) lowerCamelCase_ =jnp.transpose(lowerCAmelCase, (0, 2, 3, 1) ) lowerCamelCase_ =self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase_ =(sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) else: lowerCamelCase_, lowerCamelCase_ =down_block(lowerCAmelCase, lowerCAmelCase, deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ =self.mid_block(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, deterministic=not train ) # 5. contronet blocks lowerCamelCase_ =() for down_block_res_sample, controlnet_block in zip(lowerCAmelCase, self.controlnet_down_blocks ): lowerCamelCase_ =controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ =controlnet_down_block_res_samples lowerCamelCase_ =self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling lowerCamelCase_ =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase, mid_block_res_sample=lowerCAmelCase )
6
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
1
'''simple docstring''' import unittest import numpy as np def a_ ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =np.shape(__snake_case ) lowerCamelCase_ =np.shape(__snake_case ) lowerCamelCase_ =np.shape(__snake_case ) if shape_a[0] != shape_b[0]: lowerCamelCase_ =( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: lowerCamelCase_ =( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__snake_case ) lowerCamelCase_ =pseudo_inv if a_inv is None: try: lowerCamelCase_ =np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1], [6, 3]] ) lowerCamelCase_ =schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.block([[a, b], [b.T, c]] ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) lowerCamelCase_ =np.linalg.det(lowerCAmelCase ) self.assertAlmostEqual(lowerCAmelCase, det_a * det_s ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase ): schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase_ =np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase_ =np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase ): schur_complement(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[Any] ) -> int: """simple docstring""" # Initialise PyTorch model lowerCamelCase_ =FunnelConfig.from_json_file(__snake_case ) print(F'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase_ =FunnelBaseModel(__snake_case ) if base_model else FunnelModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) a_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
6
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Any = logging.get_logger(__name__) a_ : Any = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } a_ : Union[str, Any] = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } a_ : str = """</w>""" a_ : Optional[int] = """@@ """ def a_ ( __snake_case : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ =set() lowerCamelCase_ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ =char return pairs # Speech2Text2 has no max input length a_ : Any = {"""facebook/s2t-wav2vec2-large-en-de""": 10_24} class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Any =VOCAB_FILES_NAMES lowercase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP lowercase : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="<pad>", lowerCAmelCase="</s>", lowerCAmelCase="<unk>", lowerCAmelCase=False, lowerCAmelCase=None, **lowerCAmelCase, ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase, bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, pad_token=lowerCAmelCase, do_lower_case=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =do_lower_case with open(lowerCAmelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase_ =json.load(lowerCAmelCase ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowerCamelCase_ =None lowerCamelCase_ =None else: with open(lowerCAmelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase_ =merges_handle.read().split('''\n''' )[:-1] lowerCamelCase_ =[tuple(merge.split()[:2] ) for merge in merges] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ ={} @property def lowercase__ ( self ): """simple docstring""" return len(self.decoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCamelCase_ =get_pairs(lowerCAmelCase ) if not pairs: return token while True: lowerCamelCase_ =min(lowerCAmelCase, key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_, lowerCamelCase_ =bigram lowerCamelCase_ =[] lowerCamelCase_ =0 while i < len(lowerCAmelCase ): try: lowerCamelCase_ =word.index(lowerCAmelCase, lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ =j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ =tuple(lowerCAmelCase ) lowerCamelCase_ =new_word if len(lowerCAmelCase ) == 1: break else: lowerCamelCase_ =get_pairs(lowerCAmelCase ) lowerCamelCase_ =''' '''.join(lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: lowerCamelCase_ ='''\n''' + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase ): lowerCamelCase_ =word.replace(lowerCAmelCase, '''''' ) lowerCamelCase_ =word.replace(''' ''', lowerCAmelCase ) lowerCamelCase_ =word return word def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowerCamelCase_ =text.lower() lowerCamelCase_ =text.split() lowerCamelCase_ =[] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.decoder.get(lowerCAmelCase, self.unk_token ) return result def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''' '''.join(lowerCAmelCase ) # make sure @@ tokens are concatenated lowerCamelCase_ =''''''.join(string.split(lowerCAmelCase ) ) return string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase, ensure_ascii=lowerCAmelCase ) + '''\n''' ) lowerCamelCase_ =0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase, '''w''', encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(''' '''.join(lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
6
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
1
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def a_ ( __snake_case : Tuple , __snake_case : str , __snake_case : Any , __snake_case : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ =multiprocessing.Manager() lowerCamelCase_ =manager.list() lowerCamelCase_ =multiprocessing.Process(target=__snake_case , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def a_ ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCamelCase_ =shutil.rmtree lowerCamelCase_ =os.rmdir lowerCamelCase_ =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCamelCase_ ={} with swallow_io(): with time_limit(__snake_case ): exec(__snake_case , __snake_case ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. lowerCamelCase_ =rmtree lowerCamelCase_ =rmdir lowerCamelCase_ =chdir @contextlib.contextmanager def a_ ( __snake_case : Optional[Any] ) -> List[str]: """simple docstring""" def signal_handler(__snake_case : str , __snake_case : int ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __snake_case ) signal.signal(signal.SIGALRM , __snake_case ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def a_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =WriteOnlyStringIO() with contextlib.redirect_stdout(__snake_case ): with contextlib.redirect_stderr(__snake_case ): with redirect_stdin(__snake_case ): yield @contextlib.contextmanager def a_ ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__snake_case ): yield dirname class __UpperCamelCase ( lowerCamelCase__ ): pass class __UpperCamelCase ( io.StringIO ): def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise OSError def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise OSError def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" raise OSError def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return False class __UpperCamelCase ( contextlib._RedirectStream ): # type: ignore lowercase : Optional[Any] ='stdin' @contextlib.contextmanager def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" if root == ".": yield return lowerCamelCase_ =os.getcwd() os.chdir(__snake_case ) try: yield except BaseException as exc: raise exc finally: os.chdir(__snake_case ) def a_ ( __snake_case : Optional[Any]=None ) -> Tuple: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCamelCase_ =None lowerCamelCase_ =None import os lowerCamelCase_ ='''1''' lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None import shutil lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None import subprocess lowerCamelCase_ =None # type: ignore lowerCamelCase_ =None import sys lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None
6
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
1
'''simple docstring''' import math import os import sys def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ ='''''' try: with open(__snake_case , '''rb''' ) as binary_file: lowerCamelCase_ =binary_file.read() for dat in data: lowerCamelCase_ =F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a_ ( __snake_case : dict[str, str] , __snake_case : str , __snake_case : int , __snake_case : str ) -> None: """simple docstring""" lexicon.pop(__snake_case ) lowerCamelCase_ =last_match_id if math.loga(__snake_case ).is_integer(): for curr_key in lexicon: lowerCamelCase_ ='''0''' + lexicon[curr_key] lowerCamelCase_ =bin(__snake_case )[2:] def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ ={'''0''': '''0''', '''1''': '''1'''} lowerCamelCase_, lowerCamelCase_ ='''''', '''''' lowerCamelCase_ =len(__snake_case ) for i in range(len(__snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase_ =lexicon[curr_string] result += last_match_id add_key_to_lexicon(__snake_case , __snake_case , __snake_case , __snake_case ) index += 1 lowerCamelCase_ ='''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowerCamelCase_ =lexicon[curr_string] result += last_match_id return result def a_ ( __snake_case : str , __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =os.path.getsize(__snake_case ) lowerCamelCase_ =bin(__snake_case )[2:] lowerCamelCase_ =len(__snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a_ ( __snake_case : str , __snake_case : str ) -> None: """simple docstring""" lowerCamelCase_ =8 try: with open(__snake_case , '''wb''' ) as opened_file: lowerCamelCase_ =[ to_write[i : i + byte_length] for i in range(0 , len(__snake_case ) , __snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a_ ( __snake_case : str , __snake_case : str ) -> None: """simple docstring""" lowerCamelCase_ =read_file_binary(__snake_case ) lowerCamelCase_ =compress_data(__snake_case ) lowerCamelCase_ =add_file_length(__snake_case , __snake_case ) write_file_binary(__snake_case , __snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
6
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
1
'''simple docstring''' def a_ ( __snake_case : int , __snake_case : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowerCamelCase_ =str(bin(__snake_case ) )[2:] # remove the leading "0b" lowerCamelCase_ =str(bin(__snake_case ) )[2:] # remove the leading "0b" lowerCamelCase_ =max(len(__snake_case ) , len(__snake_case ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[Any] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Dict ='table-transformer' lowercase : Optional[Any] =['past_key_values'] lowercase : Union[str, Any] ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self, lowerCAmelCase=True, lowerCAmelCase=None, lowerCAmelCase=3, lowerCAmelCase=100, lowerCAmelCase=6, lowerCAmelCase=2_048, lowerCAmelCase=8, lowerCAmelCase=6, lowerCAmelCase=2_048, lowerCAmelCase=8, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=True, lowerCAmelCase="relu", lowerCAmelCase=256, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=1.0, lowerCAmelCase=False, lowerCAmelCase="sine", lowerCAmelCase="resnet50", lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=1, lowerCAmelCase=5, lowerCAmelCase=2, lowerCAmelCase=1, lowerCAmelCase=1, lowerCAmelCase=5, lowerCAmelCase=2, lowerCAmelCase=0.1, **lowerCAmelCase, ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCamelCase_ =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =backbone_config.get('''model_type''' ) lowerCamelCase_ =CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ =config_class.from_dict(lowerCAmelCase ) # set timm attributes to None lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =None, None, None lowerCamelCase_ =use_timm_backbone lowerCamelCase_ =backbone_config lowerCamelCase_ =num_channels lowerCamelCase_ =num_queries lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =init_xavier_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =decoder_layerdrop lowerCamelCase_ =encoder_layers lowerCamelCase_ =auxiliary_loss lowerCamelCase_ =position_embedding_type lowerCamelCase_ =backbone lowerCamelCase_ =use_pretrained_backbone lowerCamelCase_ =dilation # Hungarian matcher lowerCamelCase_ =class_cost lowerCamelCase_ =bbox_cost lowerCamelCase_ =giou_cost # Loss coefficients lowerCamelCase_ =mask_loss_coefficient lowerCamelCase_ =dice_loss_coefficient lowerCamelCase_ =bbox_loss_coefficient lowerCamelCase_ =giou_loss_coefficient lowerCamelCase_ =eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowercase__ ( self ): """simple docstring""" return self.d_model class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-5 @property def lowercase__ ( self ): """simple docstring""" return 12
6
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
1
'''simple docstring''' class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =name lowerCamelCase_ =val def __str__( self ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self, lowerCAmelCase ): """simple docstring""" return self.val < other.val class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ ={} lowerCamelCase_ =self.build_heap(lowerCAmelCase ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" return self.get_value(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return (idx - 1) // 2 def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return idx * 2 + 1 def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return idx * 2 + 2 def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.heap_dict[key] def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =len(lowerCAmelCase ) - 1 lowerCamelCase_ =self.get_parent_idx(lowerCAmelCase ) for idx, i in enumerate(lowerCAmelCase ): lowerCamelCase_ =idx lowerCamelCase_ =i.val for i in range(lowerCAmelCase, -1, -1 ): self.sift_down(lowerCAmelCase, lowerCAmelCase ) return array def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" while True: lowerCamelCase_ =self.get_left_child_idx(lowerCAmelCase ) # noqa: E741 lowerCamelCase_ =self.get_right_child_idx(lowerCAmelCase ) lowerCamelCase_ =idx if l < len(lowerCAmelCase ) and array[l] < array[idx]: lowerCamelCase_ =l if r < len(lowerCAmelCase ) and array[r] < array[smallest]: lowerCamelCase_ =r if smallest != idx: lowerCamelCase_, lowerCamelCase_ =array[smallest], array[idx] ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCamelCase_ =smallest else: break def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_parent_idx(lowerCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCamelCase_, lowerCamelCase_ =self.heap[idx], self.heap[p] lowerCamelCase_, lowerCamelCase_ =( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCamelCase_ =p lowerCamelCase_ =self.get_parent_idx(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" return self.heap[0] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.heap[-1], self.heap[0] lowerCamelCase_, lowerCamelCase_ =( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCamelCase_ =self.heap.pop() del self.idx_of_element[x] self.sift_down(0, self.heap ) return x def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.heap.append(lowerCAmelCase ) lowerCamelCase_ =len(self.heap ) - 1 lowerCamelCase_ =node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self ): """simple docstring""" return len(self.heap ) == 0 def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCamelCase_ =new_value lowerCamelCase_ =new_value self.sift_up(self.idx_of_element[node] ) a_ : Optional[int] = Node("""R""", -1) a_ : List[str] = Node("""B""", 6) a_ : Optional[int] = Node("""A""", 3) a_ : str = Node("""X""", 1) a_ : Any = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array a_ : str = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( __snake_case : List[str] , __snake_case : Optional[int]=0.9_9_9 , __snake_case : Dict="cosine" , ) -> Tuple: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case : Tuple ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase_ =[] for i in range(_UpperCAmelCase ): lowerCamelCase_ =i / num_diffusion_timesteps lowerCamelCase_ =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase : Optional[int] =[e.name for e in KarrasDiffusionSchedulers] lowercase : List[str] =2 @register_to_config def __init__( self, lowerCAmelCase = 1_000, lowerCAmelCase = 0.0_0_0_8_5, lowerCAmelCase = 0.0_1_2, lowerCAmelCase = "linear", lowerCAmelCase = None, lowerCAmelCase = "epsilon", lowerCAmelCase = "linspace", lowerCAmelCase = 0, ): """simple docstring""" if trained_betas is not None: lowerCamelCase_ =torch.tensor(__a, dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase_ =torch.linspace(__a, __a, __a, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_ =( torch.linspace(beta_start**0.5, beta_end**0.5, __a, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_ =betas_for_alpha_bar(__a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase_ =1.0 - self.betas lowerCamelCase_ =torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(__a, __a, __a ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if schedule_timesteps is None: lowerCamelCase_ =self.timesteps lowerCamelCase_ =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase_ =1 if len(__a ) > 1 else 0 else: lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(__a ) else timestep lowerCamelCase_ =self._index_counter[timestep_int] return indices[pos].item() @property def lowercase__ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(__a ) if self.state_in_first_order: lowerCamelCase_ =self.sigmas[step_index] else: lowerCamelCase_ =self.sigmas_interpol[step_index] lowerCamelCase_ =sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =num_inference_steps lowerCamelCase_ =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase_ =np.linspace(0, num_train_timesteps - 1, __a, dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase_ =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(0, __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase_ =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ =(np.arange(__a, 0, -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCamelCase_ =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase_ =torch.from_numpy(np.log(__a ) ).to(__a ) lowerCamelCase_ =np.interp(__a, np.arange(0, len(__a ) ), __a ) lowerCamelCase_ =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase_ =torch.from_numpy(__a ).to(device=__a ) # interpolate sigmas lowerCamelCase_ =sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() lowerCamelCase_ =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase_ =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__a ).startswith('''mps''' ): # mps does not support float64 lowerCamelCase_ =torch.from_numpy(__a ).to(__a, dtype=torch.floataa ) else: lowerCamelCase_ =torch.from_numpy(__a ).to(__a ) # interpolate timesteps lowerCamelCase_ =self.sigma_to_t(__a ).to(__a, dtype=timesteps.dtype ) lowerCamelCase_ =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() lowerCamelCase_ =torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCamelCase_ =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase_ =defaultdict(__a ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =sigma.log() # get distribution lowerCamelCase_ =log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCamelCase_ =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCamelCase_ =low_idx + 1 lowerCamelCase_ =self.log_sigmas[low_idx] lowerCamelCase_ =self.log_sigmas[high_idx] # interpolate sigmas lowerCamelCase_ =(low - log_sigma) / (low - high) lowerCamelCase_ =w.clamp(0, 1 ) # transform interpolation to time range lowerCamelCase_ =(1 - w) * low_idx + w * high_idx lowerCamelCase_ =t.view(sigma.shape ) return t @property def lowercase__ ( self ): """simple docstring""" return self.sample is None def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = True, ): """simple docstring""" lowerCamelCase_ =self.index_for_timestep(__a ) # advance index counter by 1 lowerCamelCase_ =timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase_ =self.sigmas[step_index] lowerCamelCase_ =self.sigmas_interpol[step_index + 1] lowerCamelCase_ =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCamelCase_ =self.sigmas[step_index - 1] lowerCamelCase_ =self.sigmas_interpol[step_index] lowerCamelCase_ =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase_ =0 lowerCamelCase_ =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase_ =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_ =sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase_ =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase_ =(sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase_ =sigma_interpol - sigma_hat # store for 2nd order step lowerCamelCase_ =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCamelCase_ =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCamelCase_ =sigma_next - sigma_hat lowerCamelCase_ =self.sample lowerCamelCase_ =None lowerCamelCase_ =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 lowerCamelCase_ =self.timesteps.to(original_samples.device, dtype=torch.floataa ) lowerCamelCase_ =timesteps.to(original_samples.device, dtype=torch.floataa ) else: lowerCamelCase_ =self.timesteps.to(original_samples.device ) lowerCamelCase_ =timesteps.to(original_samples.device ) lowerCamelCase_ =[self.index_for_timestep(__a, __a ) for t in timesteps] lowerCamelCase_ =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase_ =sigma.unsqueeze(-1 ) lowerCamelCase_ =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Optional[int] = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' import operator as op a_ : List[str] = """scaler.pt""" a_ : Union[str, Any] = """pytorch_model""" a_ : int = """random_states""" a_ : str = """optimizer""" a_ : Tuple = """scheduler""" a_ : Dict = """pytorch_model.bin""" a_ : Optional[int] = """pytorch_model.bin.index.json""" a_ : int = """model.safetensors""" a_ : str = """model.safetensors.index.json""" a_ : List[Any] = """1.10.2""" a_ : int = """py38""" a_ : Optional[int] = """4.17.0""" a_ : Any = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] a_ : Any = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] a_ : Optional[Any] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] a_ : Any = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] a_ : Union[str, Any] = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] a_ : int = """2.0.1""" a_ : int = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] a_ : Optional[Any] = ["""default""", """reduce-overhead""", """max-autotune"""] a_ : Optional[Any] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a_ : Optional[int] = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] a_ : Optional[Any] = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): lowercase : str = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : Tuple = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : str = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : int = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : Any = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : List[str] = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : Dict = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : List[Any] = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : Optional[Any] = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : Any = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : List[str] = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : int = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) class __UpperCamelCase ( metaclass=A__ ): lowercase : List[str] = ['flax'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] ) @classmethod def lowercase__ ( cls, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(cls, ['''flax'''] )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' def a_ ( __snake_case : Any ) -> List[str]: """simple docstring""" lowerCamelCase_ =len(lowerCamelCase__ ) while cur > 1: # Find the maximum number in arr lowerCamelCase_ =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase_ =arr[mi::-1] + arr[mi + 1 : len(lowerCamelCase__ )] # Reverse whole list lowerCamelCase_ =arr[cur - 1 :: -1] + arr[cur : len(lowerCamelCase__ )] cur -= 1 return arr if __name__ == "__main__": a_ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() a_ : int = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: a_ : Dict = None try: import msvcrt except ImportError: a_ : Optional[Any] = None try: import fcntl except ImportError: a_ : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ : List[str] = OSError # Data # ------------------------------------------------ a_ : Optional[int] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ : Dict = """3.0.12""" a_ : Dict = None def a_ ( ) -> Tuple: """simple docstring""" global _logger lowerCamelCase_ =_logger or logging.getLogger(__name__ ) return _logger class __UpperCamelCase ( lowercase__ ): def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =lock_file return None def __str__( self ): """simple docstring""" lowerCamelCase_ =f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =lock return None def __enter__( self ): """simple docstring""" return self.lock def __exit__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.lock.release() return None class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=-1, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCamelCase_ =self.hash_filename_if_too_long(_a, _a ) # The path to the lock file. lowerCamelCase_ =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCamelCase_ =None # The default timeout value. lowerCamelCase_ =timeout # We use this lock primarily for the lock counter. lowerCamelCase_ =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCamelCase_ =0 return None @property def lowercase__ ( self ): """simple docstring""" return self._lock_file @property def lowercase__ ( self ): """simple docstring""" return self._timeout @timeout.setter def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =float(_a ) return None def lowercase__ ( self ): """simple docstring""" raise NotImplementedError() def lowercase__ ( self ): """simple docstring""" raise NotImplementedError() @property def lowercase__ ( self ): """simple docstring""" return self._lock_file_fd is not None def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=0.0_5 ): """simple docstring""" if timeout is None: lowerCamelCase_ =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCamelCase_ =id(self ) lowerCamelCase_ =self._lock_file lowerCamelCase_ =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(_a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCamelCase_ =max(0, self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self, lowerCAmelCase=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCamelCase_ =id(self ) lowerCamelCase_ =self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() lowerCamelCase_ =0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ): """simple docstring""" self.acquire() return self def __exit__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" self.release() return None def __del__( self ): """simple docstring""" self.release(force=_a ) return None def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =os.path.basename(_a ) if len(_a ) > max_length and max_length > 0: lowerCamelCase_ =os.path.dirname(_a ) lowerCamelCase_ =str(hash(_a ) ) lowerCamelCase_ =filename[: max_length - len(_a ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(_a, _a ) else: return path class __UpperCamelCase ( lowercase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=-1, lowerCAmelCase=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(_a, timeout=_a, max_filename_length=_a ) lowerCamelCase_ ='\\\\?\\' + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCamelCase_ =os.open(self._lock_file, _a ) except OSError: pass else: try: msvcrt.locking(_a, msvcrt.LK_NBLCK, 1 ) except OSError: os.close(_a ) else: lowerCamelCase_ =fd return None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self._lock_file_fd lowerCamelCase_ =None msvcrt.locking(_a, msvcrt.LK_UNLCK, 1 ) os.close(_a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __UpperCamelCase ( lowercase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase=-1, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =os.statvfs(os.path.dirname(_a ) ).f_namemax super().__init__(_a, timeout=_a, max_filename_length=_a ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCamelCase_ =os.open(self._lock_file, _a ) try: fcntl.flock(_a, fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_a ) else: lowerCamelCase_ =fd return None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self._lock_file_fd lowerCamelCase_ =None fcntl.flock(_a, fcntl.LOCK_UN ) os.close(_a ) return None class __UpperCamelCase ( lowercase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCamelCase_ =os.open(self._lock_file, _a ) except OSError: pass else: lowerCamelCase_ =fd return None def lowercase__ ( self ): """simple docstring""" os.close(self._lock_file_fd ) lowerCamelCase_ =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ : List[str] = None if msvcrt: a_ : Union[str, Any] = WindowsFileLock elif fcntl: a_ : Dict = UnixFileLock else: a_ : Any = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' from torch import nn class __UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() lowerCamelCase_ =class_size lowerCamelCase_ =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCamelCase_ =nn.Linear(_snake_case, _snake_case ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.mlp(_snake_case ) return logits
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): a_ : Tuple = True from torch.cuda.amp import autocast a_ : str = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : Optional[bool] =field( default=lowercase__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase : Optional[bool] =field( default=lowercase__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowercase : Optional[float] =field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) lowercase : Optional[float] =field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) lowercase : Optional[float] =field( default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def a_ ( __snake_case : ModelArguments , __snake_case : TrainingArguments ) -> int: """simple docstring""" logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase_ =logging.WARNING if model_args.verbose_logging: lowerCamelCase_ =logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowerCamelCase_ =logging.INFO logger.setLevel(lowerCamelCase_ ) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowercase__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] =field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase : Optional[str] =field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase : Optional[str] =field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowercase : bool =field( default=lowercase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase : Optional[int] =field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase : Optional[float] =field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __UpperCamelCase : lowercase : WavaVecaForPreTraining lowercase : WavaVecaFeatureExtractor lowercase : Union[bool, str] ="longest" lowercase : Optional[int] =None lowercase : Optional[int] =None def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.feature_extractor.pad( _UpperCamelCase, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) lowerCamelCase_ =self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) lowerCamelCase_ =batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCamelCase_ =self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) lowerCamelCase_ =torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCamelCase_ =1 lowerCamelCase_ =attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCamelCase_ =_compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=_UpperCamelCase, min_masks=2, ) return batch class __UpperCamelCase ( lowercase__ ): def __init__( self, *lowerCAmelCase, lowerCAmelCase=1, lowerCAmelCase=0, lowerCAmelCase=1.0, **lowerCAmelCase ): """simple docstring""" super().__init__(*_UpperCamelCase, **_UpperCamelCase ) lowerCamelCase_ =0 lowerCamelCase_ =max_gumbel_temp lowerCamelCase_ =min_gumbel_temp lowerCamelCase_ =gumbel_temp_decay def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" model.train() lowerCamelCase_ =self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): lowerCamelCase_ =self.compute_loss(_UpperCamelCase, _UpperCamelCase ) else: lowerCamelCase_ =self.compute_loss(_UpperCamelCase, _UpperCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCamelCase_ =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCamelCase_ =loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCamelCase_ =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ =parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase_ , lowerCamelCase_ ) # Downloading and loading a dataset from the hub. lowerCamelCase_ =load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCamelCase_ =DatasetDict() lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCamelCase_ =DatasetDict() lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) lowerCamelCase_ =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCamelCase_ =WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase_ ) def prepare_dataset(__snake_case : List[Any] ): # check that all files have the correct sampling rate lowerCamelCase_ =librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowerCamelCase_ =datasets.map( lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long lowerCamelCase_ =vectorized_datasets.filter( lambda __snake_case : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__snake_case : Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowerCamelCase_ =vectorized_datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCamelCase_ =WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) lowerCamelCase_ =WavaVecaForPreTraining(lowerCamelCase_ ) lowerCamelCase_ =DataCollatorForWavaVecaPretraining(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) lowerCamelCase_ =WavaVecaPreTrainer( model=lowerCamelCase_ , data_collator=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=lowerCamelCase_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def a_ ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =checkpoints.load_tax_checkpoint(__snake_case ) lowerCamelCase_ =flatten_dict(__snake_case ) return flax_params def a_ ( __snake_case : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ ={ '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCamelCase_ ={ '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase_ ='''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(__snake_case , __snake_case ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase_ =new_key.replace(__snake_case , __snake_case ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __snake_case ) lowerCamelCase_ =new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase_ =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __snake_case ) lowerCamelCase_ =flax_dict[key] lowerCamelCase_ ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase_ =torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase_ =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def a_ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Any=False , __snake_case : Optional[Any]=False ) -> Any: """simple docstring""" lowerCamelCase_ =get_flax_param(__snake_case ) if not use_large: lowerCamelCase_ =PixaStructVisionConfig() lowerCamelCase_ =PixaStructTextConfig() else: lowerCamelCase_ =PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase_ =PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase_ =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__snake_case ) lowerCamelCase_ =PixaStructForConditionalGeneration(__snake_case ) lowerCamelCase_ =rename_and_convert_flax_params(__snake_case ) model.load_state_dict(__snake_case ) lowerCamelCase_ =AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCamelCase_ =PixaStructImageProcessor() lowerCamelCase_ =PixaStructProcessor(image_processor=__snake_case , tokenizer=__snake_case ) if use_large: lowerCamelCase_ =4096 lowerCamelCase_ =True # mkdir if needed os.makedirs(__snake_case , exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) print('''Model saved in {}'''.format(__snake_case ) ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") a_ : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=2, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=36, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=6, lowerCAmelCase=6, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, lowerCAmelCase=1_000, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =num_channels lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =text_seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =coordinate_size lowerCamelCase_ =shape_size lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope lowerCamelCase_ =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase_ =text_seq_length lowerCamelCase_ =(image_size // patch_size) ** 2 + 1 lowerCamelCase_ =self.text_seq_length + self.image_seq_length def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase_ =bbox[i, j, 3] lowerCamelCase_ =bbox[i, j, 1] lowerCamelCase_ =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase_ =bbox[i, j, 2] lowerCamelCase_ =bbox[i, j, 0] lowerCamelCase_ =t lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCamelCase_ =LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image lowerCamelCase_ =model(snake_case__, pixel_values=snake_case__ ) lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__ ) lowerCamelCase_ =model(snake_case__, bbox=snake_case__, pixel_values=snake_case__, token_type_ids=snake_case__ ) lowerCamelCase_ =model(snake_case__, bbox=snake_case__, pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase_ =model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase_ =model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, labels=snake_case__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, labels=snake_case__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCamelCase_ =model( snake_case__, bbox=snake_case__, pixel_values=snake_case__, attention_mask=snake_case__, token_type_ids=snake_case__, start_positions=snake_case__, end_positions=snake_case__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( lowerCamelCase_ ) =config_and_inputs lowerCamelCase_ ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A_ , A_ , unittest.TestCase ): lowercase : str =False lowercase : Any =False lowercase : List[Any] =False lowercase : int =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase : Dict =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return True def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=snake_case__, hidden_size=37 ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): lowerCamelCase_ ={ k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(snake_case__, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): lowerCamelCase_ =torch.ones(self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in get_values(snake_case__ ): lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowerCamelCase_ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: lowerCamelCase_ =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=snake_case__, ) return inputs_dict def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ =type self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(snake_case__ ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=snake_case__, return_tensors='''pt''' ).pixel_values.to(snake_case__ ) lowerCamelCase_ =torch.tensor([[1, 2]] ) lowerCamelCase_ =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCamelCase_ =model( input_ids=input_ids.to(snake_case__ ), bbox=bbox.to(snake_case__ ), pixel_values=pixel_values.to(snake_case__ ), ) # verify the logits lowerCamelCase_ =torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, snake_case__ ) lowerCamelCase_ =torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], snake_case__, atol=1e-4 ) )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(lowerCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ): lowerCamelCase_ =sum(lowerCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(lowerCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import baseaa def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def a_ ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" return baseaa.baadecode(lowercase__ ).decode('''utf-8''' ) if __name__ == "__main__": a_ : List[str] = """Hello World!""" a_ : Any = baseaa_encode(test) print(encoded) a_ : str = baseaa_decode(encoded) print(decoded)
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a_ : Dict = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } a_ : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a_ ( __snake_case : Tuple , __snake_case : int=False ) -> Tuple: """simple docstring""" lowerCamelCase_ =create_model( '''HTSAT-tiny''' , '''roberta''' , _lowerCamelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowerCamelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def a_ ( __snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =R""".*sequential.(\d+).*""" lowerCamelCase_ =R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase_ =key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): # replace sequential layers with list lowerCamelCase_ =re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) lowerCamelCase_ =key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_lowerCamelCase )//3}.linear.''' ) elif re.match(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ =int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase_ =1 if projecton_layer == 0 else 2 lowerCamelCase_ =key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase_ =value lowerCamelCase_ =mixed_qkv.size(0 ) // 3 lowerCamelCase_ =mixed_qkv[:qkv_dim] lowerCamelCase_ =mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase_ =mixed_qkv[qkv_dim * 2 :] lowerCamelCase_ =query_layer lowerCamelCase_ =key_layer lowerCamelCase_ =value_layer else: lowerCamelCase_ =value return model_state_dict def a_ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : List[Any]=False ) -> List[str]: """simple docstring""" lowerCamelCase_ =init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase ) clap_model.eval() lowerCamelCase_ =clap_model.state_dict() lowerCamelCase_ =rename_state_dict(_lowerCamelCase ) lowerCamelCase_ =ClapConfig() lowerCamelCase_ =enable_fusion lowerCamelCase_ =ClapModel(_lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) transformers_config.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") a_ : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Dict = {"""vocab_file""": """vocab.txt"""} a_ : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } a_ : str = { """openbmb/cpm-ant-10b""": 10_24, } def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =collections.OrderedDict() with open(a_ , '''r''' , encoding='''utf-8''' ) as reader: lowerCamelCase_ =reader.readlines() for index, token in enumerate(a_ ): lowerCamelCase_ =token.rstrip('''\n''' ) lowerCamelCase_ =index return vocab class __UpperCamelCase ( a_ ): def __init__( self, lowerCAmelCase, lowerCAmelCase="<unk>", lowerCAmelCase=200 ): """simple docstring""" lowerCamelCase_ =vocab lowerCamelCase_ =unk_token lowerCamelCase_ =max_input_chars_per_word def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =list(lowercase_ ) if len(lowercase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ =0 lowerCamelCase_ =[] while start < len(lowercase_ ): lowerCamelCase_ =len(lowercase_ ) lowerCamelCase_ =None while start < end: lowerCamelCase_ =''''''.join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase_ ) lowerCamelCase_ =end return sub_tokens class __UpperCamelCase ( a_ ): lowercase : str =VOCAB_FILES_NAMES lowercase : int =PRETRAINED_VOCAB_FILES_MAP lowercase : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =['''input_ids''', '''attention_mask'''] lowercase : Union[str, Any] =False def __init__( self, lowerCAmelCase, lowerCAmelCase="<d>", lowerCAmelCase="</d>", lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="<pad>", lowerCAmelCase="<unk>", lowerCAmelCase="</n>", lowerCAmelCase="</_>", lowerCAmelCase="left", **lowerCAmelCase, ): """simple docstring""" requires_backends(self, ['''jieba'''] ) super().__init__( bod_token=lowercase_, eod_token=lowercase_, bos_token=lowercase_, eos_token=lowercase_, pad_token=lowercase_, unk_token=lowercase_, line_token=lowercase_, space_token=lowercase_, padding_side=lowercase_, **lowercase_, ) lowerCamelCase_ =bod_token lowerCamelCase_ =eod_token lowerCamelCase_ =load_vocab(lowercase_ ) lowerCamelCase_ =self.encoder[space_token] lowerCamelCase_ =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ =collections.OrderedDict(sorted(self.encoder.items(), key=lambda lowerCAmelCase : x[1] ) ) lowerCamelCase_ ={v: k for k, v in self.encoder.items()} lowerCamelCase_ =WordpieceTokenizer(vocab=self.encoder, unk_token=self.unk_token ) @property def lowercase__ ( self ): """simple docstring""" return self.encoder[self.bod_token] @property def lowercase__ ( self ): """simple docstring""" return self.encoder[self.eod_token] @property def lowercase__ ( self ): """simple docstring""" return self.encoder["\n"] @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for x in jieba.cut(lowercase_, cut_all=lowercase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase_ ) ) return output_tokens def lowercase__ ( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[i for i in token_ids if i >= 0] lowerCamelCase_ =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase_, **lowercase_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return token in self.encoder def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return "".join(lowercase_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowercase_, self.encoder.get(self.unk_token ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowercase_, self.unk_token ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if os.path.isdir(lowercase_ ): lowerCamelCase_ =os.path.join( lowercase_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase_ =(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCamelCase_ =0 if " " in self.encoder: lowerCamelCase_ =self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ =self.encoder['''\n'''] del self.encoder["\n"] lowerCamelCase_ =collections.OrderedDict(sorted(self.encoder.items(), key=lambda lowerCAmelCase : x[1] ) ) with open(lowercase_, '''w''', encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase_ =token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_, token_ids_a=lowercase_, already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ ))
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} a_ : Optional[int] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } a_ : List[str] = { """moussaKam/mbarthez""": 10_24, """moussaKam/barthez""": 10_24, """moussaKam/barthez-orangesum-title""": 10_24, } a_ : List[Any] = """▁""" class __UpperCamelCase ( __lowercase ): lowercase : Any =VOCAB_FILES_NAMES lowercase : str =PRETRAINED_VOCAB_FILES_MAP lowercase : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =["input_ids", "attention_mask"] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =AddedToken(_a, lstrip=_a, rstrip=_a ) if isinstance(_a, _a ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a, eos_token=_a, unk_token=_a, sep_token=_a, cls_token=_a, pad_token=_a, mask_token=_a, sp_model_kwargs=self.sp_model_kwargs, **_a, ) lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) lowerCamelCase_ ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCamelCase_ =len(self.sp_model ) - 1 lowerCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] lowerCamelCase_ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a, token_ids_a=_a, already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(_a, out_type=_a ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ =self.sp_model.PieceToId(_a ) return spm_id if spm_id else self.unk_token_id def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_a ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ ='''''' lowerCamelCase_ =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token lowerCamelCase_ =True lowerCamelCase_ =[] else: current_sub_tokens.append(_a ) lowerCamelCase_ =False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( _a, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _a ) elif not os.path.isfile(self.vocab_file ): with open(_a, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a_ ( __snake_case : str ) -> int: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a_ ( __snake_case : int , __snake_case : List[str] , __snake_case : str ) -> List[str]: """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def a_ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ =[line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] lowerCamelCase_ =[] if args.gold_data_mode == "qa": lowerCamelCase_ =pd.read_csv(lowerCAmelCase__ , sep='''\t''' , header=lowerCAmelCase__ ) for answer_list in data[1]: lowerCamelCase_ =ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: lowerCamelCase_ =[line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] lowerCamelCase_ =[[reference] for reference in references] lowerCamelCase_ =0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase_ =1_0_0.0 * em / total lowerCamelCase_ =1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def a_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ =args.k lowerCamelCase_ =[line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] lowerCamelCase_ =[line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] lowerCamelCase_ =0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCamelCase_ =set(hypo.split('''\t''' )[:k] ) lowerCamelCase_ =set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCamelCase_ =1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def a_ ( __snake_case : Dict , __snake_case : Any , __snake_case : Dict ) -> int: """simple docstring""" def strip_title(__snake_case : Optional[int] ): if title.startswith('''\"''' ): lowerCamelCase_ =title[1:] if title.endswith('''\"''' ): lowerCamelCase_ =title[:-1] return title lowerCamelCase_ =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) lowerCamelCase_ =rag_model.rag.question_encoder(lowerCAmelCase__ ) lowerCamelCase_ =question_enc_outputs[0] lowerCamelCase_ =rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) lowerCamelCase_ =rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCamelCase_ =[] for docs in all_docs: lowerCamelCase_ =[strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append('''\t'''.join(lowerCAmelCase__ ) ) return provenance_strings def a_ ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Tuple ) -> List[Any]: """simple docstring""" with torch.no_grad(): lowerCamelCase_ =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) lowerCamelCase_ =inputs_dict.input_ids.to(args.device ) lowerCamelCase_ =inputs_dict.attention_mask.to(args.device ) lowerCamelCase_ =rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCamelCase_ =rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info('''Q: {} - A: {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def a_ ( ) -> List[str]: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCAmelCase__ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCAmelCase__ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCAmelCase__ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCAmelCase__ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCAmelCase__ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCAmelCase__ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCAmelCase__ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCAmelCase__ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCAmelCase__ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCAmelCase__ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCAmelCase__ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCAmelCase__ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def a_ ( __snake_case : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ ={} if args.model_type is None: lowerCamelCase_ =infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): lowerCamelCase_ =RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration lowerCamelCase_ =args.n_docs if args.index_name is not None: lowerCamelCase_ =args.index_name if args.index_path is not None: lowerCamelCase_ =args.index_path else: lowerCamelCase_ =BartForConditionalGeneration lowerCamelCase_ =( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCAmelCase__ ) lowerCamelCase_ =get_scores if args.eval_mode == """e2e""" else get_precision_at_k lowerCamelCase_ =evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCAmelCase__ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): lowerCamelCase_ =RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCamelCase_ =model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: lowerCamelCase_ =model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: lowerCamelCase_ =[] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: lowerCamelCase_ =evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) + '''\n''' ) preds_file.flush() lowerCamelCase_ =[] if len(lowerCAmelCase__ ) > 0: lowerCamelCase_ =evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a_ : Any = get_args() main(args)
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ : int = logging.get_logger(__name__) def a_ ( __snake_case : List[str] , __snake_case : Any=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ =OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): lowerCamelCase_ ="segformer.encoder." + key if key.startswith('''backbone''' ): lowerCamelCase_ =key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase_ =key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCamelCase_ =key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: lowerCamelCase_ =key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase_ =key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] lowerCamelCase_ =key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: lowerCamelCase_ =key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCamelCase_ =key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase_ =key[key.find('''block''' ) + len('''block''' )] lowerCamelCase_ =key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: lowerCamelCase_ =key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCamelCase_ =key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCamelCase_ =key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCamelCase_ =key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCamelCase_ =key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCamelCase_ =key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCamelCase_ =key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCamelCase_ =key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase_ =key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCamelCase_ =key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if key.startswith('''head''' ): lowerCamelCase_ =key.replace('''head''' , '''classifier''' ) lowerCamelCase_ =value return new_state_dict def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase_ =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCamelCase_ =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCamelCase_ =kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase_ =kv_bias[: config.hidden_sizes[i]] lowerCamelCase_ =kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase_ =kv_bias[ config.hidden_sizes[i] : ] def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ =Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def a_ ( __snake_case : Tuple , __snake_case : Dict , __snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =SegformerConfig() lowerCamelCase_ =False # set attributes based on model_name lowerCamelCase_ ="huggingface/label-files" if "segformer" in model_name: lowerCamelCase_ =model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: lowerCamelCase_ =150 lowerCamelCase_ ="ade20k-id2label.json" lowerCamelCase_ =(1, 150, 128, 128) elif "city" in model_name: lowerCamelCase_ =19 lowerCamelCase_ ="cityscapes-id2label.json" lowerCamelCase_ =(1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowerCamelCase_ =True lowerCamelCase_ =model_name[4:6] lowerCamelCase_ =1000 lowerCamelCase_ ="imagenet-1k-id2label.json" lowerCamelCase_ =(1, 1000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowerCamelCase_ =json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(a_ ): v for k, v in idalabel.items()} lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCamelCase_ =[64, 128, 320, 512] lowerCamelCase_ =256 elif size == "b2": lowerCamelCase_ =[64, 128, 320, 512] lowerCamelCase_ =768 lowerCamelCase_ =[3, 4, 6, 3] elif size == "b3": lowerCamelCase_ =[64, 128, 320, 512] lowerCamelCase_ =768 lowerCamelCase_ =[3, 4, 18, 3] elif size == "b4": lowerCamelCase_ =[64, 128, 320, 512] lowerCamelCase_ =768 lowerCamelCase_ =[3, 8, 27, 3] elif size == "b5": lowerCamelCase_ =[64, 128, 320, 512] lowerCamelCase_ =768 lowerCamelCase_ =[3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowerCamelCase_ =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) # prepare image lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=a_ , return_tensors='''pt''' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowerCamelCase_ =torch.load(a_ , map_location=torch.device('''cpu''' ) ) else: lowerCamelCase_ =torch.load(a_ , map_location=torch.device('''cpu''' ) )["state_dict"] # rename keys lowerCamelCase_ =rename_keys(a_ , encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict if encoder_only: lowerCamelCase_ =False lowerCamelCase_ =SegformerForImageClassification(a_ ) else: lowerCamelCase_ =SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCamelCase_ =model(a_ ) lowerCamelCase_ =outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCamelCase_ =torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCamelCase_ =torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCamelCase_ =torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCamelCase_ =torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: lowerCamelCase_ =logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a_ : Optional[Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def a_ ( __snake_case : Any , __snake_case : int=() , __snake_case : Optional[Any]=None , __snake_case : Tuple="no" , __snake_case : Any="29500" ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCamelCase_ =True elif "IPython" in sys.modules: lowerCamelCase_ ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCamelCase_ =PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , _UpperCamelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCamelCase_ =8 lowerCamelCase_ =PrepareForLaunch(_UpperCamelCase , distributed_type='''TPU''' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*_UpperCamelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr='''127.0.01''' , master_port=_UpperCamelCase , mixed_precision=_UpperCamelCase ): lowerCamelCase_ =PrepareForLaunch(_UpperCamelCase , distributed_type='''MULTI_GPU''' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_ ='''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*_UpperCamelCase ) def a_ ( __snake_case : Any , __snake_case : List[str]=() , __snake_case : Union[str, Any]=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowerCamelCase_ =PrepareForLaunch(_UpperCamelCase , debug=_UpperCamelCase ) start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method='''fork''' )
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0
'''simple docstring''' def a_ ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def a_ ( __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =credit_card_number lowerCamelCase_ =0 lowerCamelCase_ =len(a__ ) - 2 for i in range(a__ , -1 , -2 ): # double the value of every second digit lowerCamelCase_ =int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCamelCase_ =cc_number[:i] + str(a__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def a_ ( __snake_case : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(a__ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(a__ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(a__ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
368
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def a_ ( __snake_case : str , __snake_case : bool = True , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : float = math.inf , __snake_case : float = -math.inf , __snake_case : bool = False , __snake_case : float = 100 , __snake_case : float = 0.0_1 , __snake_case : float = 1 , ) -> Any: """simple docstring""" lowerCamelCase_ =False lowerCamelCase_ =search_prob lowerCamelCase_ =start_temperate lowerCamelCase_ =[] lowerCamelCase_ =0 lowerCamelCase_ =None while not search_end: lowerCamelCase_ =current_state.score() if best_state is None or current_score > best_state.score(): lowerCamelCase_ =current_state scores.append(__snake_case ) iterations += 1 lowerCamelCase_ =None lowerCamelCase_ =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCamelCase_ =random.randint(0 , len(__snake_case ) - 1 ) # picking a random neighbor lowerCamelCase_ =neighbors.pop(__snake_case ) lowerCamelCase_ =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCamelCase_ =change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCamelCase_ =picked_neighbor else: lowerCamelCase_ =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCamelCase_ =picked_neighbor lowerCamelCase_ =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCamelCase_ =True else: lowerCamelCase_ =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case ) , __snake_case ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def a_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) a_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a_ : List[str] = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def a_ ( __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return (3 * x**2) - (6 * y) a_ : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) a_ : Dict = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a_ : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : List[Any] = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
0
'''simple docstring''' def a_ ( __snake_case : list[int] ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCamelCase_ =numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products lowerCamelCase_ =numbers[i] if number < 0: lowerCamelCase_ =min_till_now, max_till_now lowerCamelCase_ =max(UpperCAmelCase__ , max_till_now * number ) lowerCamelCase_ =min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now lowerCamelCase_ =max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
370
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int =['image_processor', 'tokenizer'] lowercase : int ='LayoutLMv2ImageProcessor' lowercase : Any =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = True, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = True, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ =self.image_processor(images=lowerCAmelCase, return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ =features['''words'''] lowerCamelCase_ =self.tokenizer( text=text if text is not None else features['''words'''], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['''boxes'''], word_labels=lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, stride=lowerCAmelCase, pad_to_multiple_of=lowerCAmelCase, return_token_type_ids=lowerCAmelCase, return_attention_mask=lowerCAmelCase, return_overflowing_tokens=lowerCAmelCase, return_special_tokens_mask=lowerCAmelCase, return_offsets_mapping=lowerCAmelCase, return_length=lowerCAmelCase, verbose=lowerCAmelCase, return_tensors=lowerCAmelCase, **lowerCAmelCase, ) # add pixel values lowerCamelCase_ =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ =self.get_overflowing_images(lowerCAmelCase, encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ =images return encoded_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase )} and {len(lowerCAmelCase )}''' ) return images_with_overflow def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import datasets a_ : Dict = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ a_ : Tuple = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ a_ : Union[str, Any] = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} """ def a_ ( __snake_case : Dict , __snake_case : Union[str, Any] ) -> str: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ), codebase_urls=[], reference_urls=[], format='''numpy''', ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return {"accuracy": simple_accuracy(_a, _a )}
371
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =VQModel lowercase : Union[str, Any] ='sample' @property def lowercase__ ( self, lowerCAmelCase=(32, 32) ): """simple docstring""" lowerCamelCase_ =4 lowerCamelCase_ =3 lowerCamelCase_ =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) return {"sample": image} @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self ): """simple docstring""" return (3, 32, 32) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowerCamelCase_ =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''', output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ), 0 ) model.to(lowerCAmelCase ) lowerCamelCase_ =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCamelCase_ =torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size ) lowerCamelCase_ =image.to(lowerCAmelCase ) with torch.no_grad(): lowerCamelCase_ =model(lowerCAmelCase ).sample lowerCamelCase_ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) )
6
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) def a_ ( __snake_case : Union[str, Any] , __snake_case : int=False ) -> List[str]: """simple docstring""" lowerCamelCase_ =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCamelCase_ =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def a_ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[int]=False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ ="" else: lowerCamelCase_ ="deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase_ =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ =in_proj_bias[: config.hidden_size] lowerCamelCase_ =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ =in_proj_bias[-config.hidden_size :] def a_ ( __snake_case : int , __snake_case : List[str] , __snake_case : Any ) -> Any: """simple docstring""" lowerCamelCase_ =dct.pop(__lowerCamelCase ) lowerCamelCase_ =val def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ =Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def a_ ( __snake_case : Dict , __snake_case : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ =DeiTConfig() # all deit models have fine-tuned heads lowerCamelCase_ =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase_ =1000 lowerCamelCase_ ="huggingface/label-files" lowerCamelCase_ ="imagenet-1k-id2label.json" lowerCamelCase_ =json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(__lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =int(deit_name[-6:-4] ) lowerCamelCase_ =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): lowerCamelCase_ =192 lowerCamelCase_ =768 lowerCamelCase_ =12 lowerCamelCase_ =3 elif deit_name[9:].startswith('''small''' ): lowerCamelCase_ =384 lowerCamelCase_ =1536 lowerCamelCase_ =12 lowerCamelCase_ =6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): lowerCamelCase_ =1024 lowerCamelCase_ =4096 lowerCamelCase_ =24 lowerCamelCase_ =16 # load original model from timm lowerCamelCase_ =timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ =timm_model.state_dict() lowerCamelCase_ =create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # load HuggingFace model lowerCamelCase_ =DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCamelCase_ =int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCamelCase_ =DeiTImageProcessor(size=__lowerCamelCase , crop_size=config.image_size ) lowerCamelCase_ =image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ =encoding["pixel_values"] lowerCamelCase_ =model(__lowerCamelCase ) lowerCamelCase_ =timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1e-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a_ : Union[str, Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
350
'''simple docstring''' import datasets from .evaluate import evaluate a_ : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ a_ : List[Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ a_ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase_ =[ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase_ =evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
6
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a_ : str = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def a_ ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ =['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) a_ : str = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =list(s_dict.keys() ) for key in keys: lowerCamelCase_ =key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase_ =new_key.replace(_snake_case , _snake_case ) print(F'''{key} -> {new_key}''' ) lowerCamelCase_ =s_dict.pop(_snake_case ) return s_dict def a_ ( __snake_case : int ) -> str: """simple docstring""" lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : str , __snake_case : str ) -> bytes: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCamelCase_ =os.path.basename(_snake_case ) lowerCamelCase_ =url.split('''/''' )[-2] lowerCamelCase_ =os.path.join(_snake_case , _snake_case ) if os.path.exists(_snake_case ) and not os.path.isfile(_snake_case ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_snake_case ): lowerCamelCase_ =open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_snake_case ) as source, open(_snake_case , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_snake_case , unit_divisor=1024 ) as loop: while True: lowerCamelCase_ =source.read(8192 ) if not buffer: break output.write(_snake_case ) loop.update(len(_snake_case ) ) lowerCamelCase_ =open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def a_ ( __snake_case : Any , __snake_case : int ) -> str: """simple docstring""" if ".pt" not in checkpoint_path: lowerCamelCase_ =_download(_MODELS[checkpoint_path] ) else: lowerCamelCase_ =torch.load(_snake_case , map_location='''cpu''' ) lowerCamelCase_ =original_checkpoint['''dims'''] lowerCamelCase_ =original_checkpoint['''model_state_dict'''] lowerCamelCase_ =state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) lowerCamelCase_ =True lowerCamelCase_ =state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowerCamelCase_ =WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_snake_case , decoder_ffn_dim=_snake_case , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) lowerCamelCase_ =WhisperForConditionalGeneration(_snake_case ) lowerCamelCase_ =model.model.load_state_dict(_snake_case , strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: lowerCamelCase_ =make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase_ =proj_out_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
351
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a_ : Tuple = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Tuple = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a_ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } a_ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } a_ : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } a_ : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a_ : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[Any] =VOCAB_FILES_NAMES lowercase : Any =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : Dict =DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] =DPRQuestionEncoderTokenizer a_ : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a_ : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a_ : Dict = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __UpperCamelCase : def __call__( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = False, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) elif titles is None or texts is None: lowerCamelCase_ =titles if texts is None else texts return super().__call__( lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase, return_attention_mask=lowerCAmelCase, **lowerCAmelCase, ) lowerCamelCase_ =titles if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [titles] lowerCamelCase_ =texts if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [texts] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =questions if not isinstance(lowerCAmelCase, lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' lowerCamelCase_ =super().__call__(lowerCAmelCase, lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ =super().__call__(lowerCAmelCase, add_special_tokens=lowerCAmelCase, padding=lowerCAmelCase, truncation=lowerCAmelCase )['''input_ids'''] lowerCamelCase_ ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase, lowerCAmelCase ) ] } if return_attention_mask is not False: lowerCamelCase_ =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ =attention_mask return self.pad(lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_tensors=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 16, lowerCAmelCase = 64, lowerCAmelCase = 4, ): """simple docstring""" lowerCamelCase_ =reader_input['''input_ids'''] lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =reader_output[:3] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =sorted(range(lowerCAmelCase ), reverse=lowerCAmelCase, key=relevance_logits.__getitem__ ) lowerCamelCase_ =[] for doc_id in sorted_docs: lowerCamelCase_ =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ =sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCAmelCase, top_spans=lowerCAmelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCAmelCase, start_index=lowerCAmelCase, end_index=lowerCAmelCase, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =[] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ =sorted(lowerCAmelCase, key=lambda lowerCAmelCase : x[1], reverse=lowerCAmelCase ) lowerCamelCase_ =[] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowerCamelCase_ =end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): lowercase : int =VOCAB_FILES_NAMES lowercase : Tuple =READER_PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =READER_PRETRAINED_INIT_CONFIGURATION lowercase : int =['input_ids', 'attention_mask'] lowercase : Dict =DPRReaderTokenizer
6
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" if isinstance(snake_case__, snake_case__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCamelCase_ =deepcopy(snake_case__ ) elif os.path.exists(snake_case__ ): with io.open(snake_case__, '''r''', encoding='''utf-8''' ) as f: lowerCamelCase_ =json.load(snake_case__ ) else: try: lowerCamelCase_ =baseaa.urlsafe_baadecode(snake_case__ ).decode('''utf-8''' ) lowerCamelCase_ =json.loads(snake_case__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowerCamelCase_ =config self.set_stage_and_offload() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_value('''zero_optimization.stage''', -1 ) # offload lowerCamelCase_ =False if self.is_zeroa() or self.is_zeroa(): lowerCamelCase_ =set(['''cpu''', '''nvme'''] ) lowerCamelCase_ =set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCamelCase_ =True def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.config # find the config node of interest if it exists lowerCamelCase_ =ds_key_long.split('''.''' ) lowerCamelCase_ =nodes.pop() for node in nodes: lowerCamelCase_ =config.get(snake_case__ ) if config is None: return None, ds_key return config, ds_key def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =self.find_config_node(snake_case__ ) if config is None: return default return config.get(snake_case__, snake_case__ ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =self.config # find the config node of interest if it exists lowerCamelCase_ =ds_key_long.split('''.''' ) for node in nodes: lowerCamelCase_ =config lowerCamelCase_ =config.get(snake_case__ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case__ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_value(snake_case__ ) return False if value is None else bool(snake_case__ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_value(snake_case__ ) return False if value is None else not bool(snake_case__ ) def lowercase__ ( self ): """simple docstring""" return self._stage == 2 def lowercase__ ( self ): """simple docstring""" return self._stage == 3 def lowercase__ ( self ): """simple docstring""" return self._offload class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =engine def lowercase__ ( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" self.engine.backward(snake_case__, **snake_case__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): def __init__( self, lowerCAmelCase ): """simple docstring""" super().__init__(snake_case__, device_placement=snake_case__, scaler=snake_case__ ) lowerCamelCase_ =hasattr(self.optimizer, '''overflow''' ) def lowercase__ ( self, lowerCAmelCase=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowercase__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowercase__ ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__(snake_case__, snake_case__ ) def lowercase__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=0.0_0_1, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =params lowerCamelCase_ =lr lowerCamelCase_ =weight_decay lowerCamelCase_ =kwargs class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=0, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =optimizer lowerCamelCase_ =total_num_steps lowerCamelCase_ =warmup_num_steps lowerCamelCase_ =kwargs
352
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase_ ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase_ =Dataset.from_dict(__snake_case ) return dataset class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_ =make_duplicate_clusters(lowerCAmelCase, 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =get_dataset() lowerCamelCase_, lowerCamelCase_ =deduplicate_dataset(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ), 2 ) print(lowerCAmelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''], 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''], lowerCAmelCase )
6
0
'''simple docstring''' a_ : Optional[int] = """\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n""" a_ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a_ : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
0
'''simple docstring''' from typing import Any def a_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> Union[str, Any]: """simple docstring""" _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step lowerCamelCase_ ={} lowerCamelCase_ ={} for state in states_space: lowerCamelCase_ =observations_space[0] lowerCamelCase_ =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase_ =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): lowerCamelCase_ =observations_space[o] lowerCamelCase_ =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase_ ="""""" lowerCamelCase_ =-1 for k_state in states_space: lowerCamelCase_ =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase_ =probability lowerCamelCase_ =k_state # Update probabilities and pointers dicts lowerCamelCase_ =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase_ =arg_max # The final observation lowerCamelCase_ =observations_space[len(snake_case_ ) - 1] # argmax for given final observation lowerCamelCase_ ="""""" lowerCamelCase_ =-1 for k_state in states_space: lowerCamelCase_ =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase_ =probability lowerCamelCase_ =k_state lowerCamelCase_ =arg_max # Process pointers backwards lowerCamelCase_ =last_state lowerCamelCase_ =[] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) lowerCamelCase_ =pointers[previous, observations_space[o]] result.reverse() return result def a_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> str: """simple docstring""" _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def a_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> str: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def a_ ( __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: """simple docstring""" _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def a_ ( __snake_case : Any , __snake_case : str ) -> Tuple: """simple docstring""" if not isinstance(_object , snake_case_ ): lowerCamelCase_ =F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): lowerCamelCase_ =F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def a_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> int: """simple docstring""" _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def a_ ( __snake_case : Any , __snake_case : str ) -> Dict: """simple docstring""" _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def a_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> Union[str, Any]: """simple docstring""" if not isinstance(_object , snake_case_ ): lowerCamelCase_ =F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): lowerCamelCase_ =F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): lowerCamelCase_ ="""nested dictionary """ if nested else """""" lowerCamelCase_ =F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCamelCase ( __UpperCamelCase ): @staticmethod @abstractmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError()
355
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Tuple = 16 a_ : Optional[int] = 32 def a_ ( __snake_case : Accelerator , __snake_case : int = 16 ) -> str: """simple docstring""" lowerCamelCase_ =AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCamelCase_ =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case : int ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ =16 elif accelerator.mixed_precision != "no": lowerCamelCase_ =8 else: lowerCamelCase_ =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCamelCase_ =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase_ =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ : Tuple = mocked_dataloaders # noqa: F811 def a_ ( __snake_case : List[str] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case ) == "1": lowerCamelCase_ =2 # Initialize accelerator lowerCamelCase_ =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ =config['''lr'''] lowerCamelCase_ =int(config['''num_epochs'''] ) lowerCamelCase_ =int(config['''seed'''] ) lowerCamelCase_ =int(config['''batch_size'''] ) lowerCamelCase_ =evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ =AdamW(params=model.parameters() , lr=__snake_case ) lowerCamelCase_, lowerCamelCase_ =get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler lowerCamelCase_ =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(dim=-1 ) lowerCamelCase_, lowerCamelCase_ =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase_ =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCamelCase_ =parser.parse_args() lowerCamelCase_ ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
6
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a_ : int = logging.get_logger(__name__) class __UpperCamelCase ( __lowerCamelCase ): def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''', UpperCamelCase_, ) super().__init__(*UpperCamelCase_, **UpperCamelCase_ )
356
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ : List[str] = """src/diffusers""" # Matches is_xxx_available() a_ : int = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla a_ : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") a_ : Optional[Any] = """ {0} = None """ a_ : List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ a_ : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a_ ( __snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =_re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def a_ ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(__snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ =0 lowerCamelCase_ ={} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 lowerCamelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: lowerCamelCase_ =objects else: line_index += 1 return backend_specific_objects def a_ ( __snake_case : Dict , __snake_case : int ) -> Union[str, Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def a_ ( __snake_case : Tuple=None ) -> List[str]: """simple docstring""" if backend_specific_objects is None: lowerCamelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ ='''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' lowerCamelCase_ ='''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) lowerCamelCase_ =dummy_file return dummy_files def a_ ( __snake_case : Dict=False ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ ={'''torch''': '''pt'''} # Locate actual dummy modules and read their content. lowerCamelCase_ =os.path.join(__snake_case , '''utils''' ) lowerCamelCase_ ={ backend: os.path.join(__snake_case , F'''dummy_{short_names.get(__snake_case , __snake_case )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ =f.read() else: lowerCamelCase_ ='''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a_ : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
6
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Tuple = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "spm_char.model"} a_ : int = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } a_ : Any = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): lowercase : Dict =VOCAB_FILES_NAMES lowercase : str =PRETRAINED_VOCAB_FILES_MAP lowercase : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_, eos_token=a_, unk_token=a_, pad_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase__ ( self ): """simple docstring""" return self.sp_model.get_piece_size() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(a_, out_type=a_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.piece_to_id(a_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.sp_model.IdToPiece(a_ ) return token def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token lowerCamelCase_ =[] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) lowerCamelCase_ =[1] if token_ids_a is None: return ([0] * len(a_ )) + suffix_ones return ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( a_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
'''simple docstring''' def a_ ( __snake_case : list[list] ) -> list[list]: """simple docstring""" lowerCamelCase_ =current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowerCamelCase_ =row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowerCamelCase_ =column continue lowerCamelCase_ =column / magnitude # Subtract to cancel term lowerCamelCase_ =current_set[0] lowerCamelCase_ =[first_row] lowerCamelCase_ =current_set[1::] for row in current_set: lowerCamelCase_ =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase_ =final_set[0] lowerCamelCase_ =[] lowerCamelCase_ =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase_ =simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowerCamelCase_ =resultant return final_set def a_ ( __snake_case : list[list] ) -> list: """simple docstring""" if len(lowerCAmelCase__ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) lowerCamelCase_ =len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase_ =equations.copy() if any(0 in row for row in data_set ): lowerCamelCase_ =data_set.copy() lowerCamelCase_ =[] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowerCamelCase_ =data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , lowerCAmelCase__ ) lowerCamelCase_ =data_set.copy() lowerCamelCase_ =simplify(lowerCAmelCase__ ) lowerCamelCase_ =simplified[::-1] lowerCamelCase_ =[] for row in simplified: lowerCamelCase_ =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase_ =row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowerCamelCase_ =temp_row[1::] lowerCamelCase_ =temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowerCamelCase_ =[] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() a_ : List[str] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Dict =KandinskyVaaPipeline lowercase : List[Any] =[ 'image_embeds', 'negative_image_embeds', ] lowercase : Tuple =['image_embeds', 'negative_image_embeds'] lowercase : Dict =[ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Tuple =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase_ =UNetaDConditionModel(**_snake_case ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_unet lowerCamelCase_ =self.dummy_movq lowerCamelCase_ =DDIMScheduler( num_train_timesteps=1_000, beta_schedule='''linear''', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, clip_sample=_snake_case, set_alpha_to_one=_snake_case, steps_offset=1, prediction_type='''epsilon''', thresholding=_snake_case, ) lowerCamelCase_ ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCamelCase_ =floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( _snake_case ) if str(_snake_case ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(_snake_case ) else: lowerCamelCase_ =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCamelCase_ ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**_snake_case ) lowerCamelCase_ =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(_snake_case ) ) lowerCamelCase_ =output.images lowerCamelCase_ =pipe( **self.get_dummy_inputs(_snake_case ), return_dict=_snake_case, )[0] lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ =np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowerCamelCase_ =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) lowerCamelCase_ =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''', torch_dtype=torch.floataa ) lowerCamelCase_ =pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) lowerCamelCase_ ='''red cat, 4k photo''' lowerCamelCase_ =torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCamelCase_, lowerCamelCase_ =pipe_prior( _snake_case, generator=_snake_case, num_inference_steps=5, negative_prompt='''''', ).to_tuple() lowerCamelCase_ =torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCamelCase_ =pipeline( image_embeds=_snake_case, negative_image_embeds=_snake_case, generator=_snake_case, num_inference_steps=100, output_type='''np''', ) lowerCamelCase_ =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case, _snake_case )
360
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : int = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( __snake_case , unittest.TestCase ): lowercase : List[Any] =XGLMTokenizer lowercase : int =XGLMTokenizerFast lowercase : List[Any] =True lowercase : Optional[int] =True def lowercase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ =XGLMTokenizer(lowerCAmelCase, keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''<pad>''' lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ), lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(len(lowerCAmelCase ), 1_008 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1_008 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XGLMTokenizer(lowerCAmelCase, keep_accents=lowerCAmelCase ) lowerCamelCase_ =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) lowerCamelCase_ =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) @cached_property def lowercase__ ( self ): """simple docstring""" return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def lowercase__ ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase, f.name ) lowerCamelCase_ =XGLMTokenizer(f.name, keep_accents=lowerCAmelCase ) lowerCamelCase_ =pickle.dumps(lowerCAmelCase ) pickle.loads(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ =self.get_tokenizer() lowerCamelCase_ =self.get_rust_tokenizer() lowerCamelCase_ ='''I was born in 92000, and this is falsé.''' lowerCamelCase_ =tokenizer.tokenize(lowerCAmelCase ) lowerCamelCase_ =rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) lowerCamelCase_ =rust_tokenizer.encode(lowerCAmelCase, add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.get_rust_tokenizer() lowerCamelCase_ =tokenizer.encode(lowerCAmelCase ) lowerCamelCase_ =rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''Hello World!''' lowerCamelCase_ =[2, 31_227, 4_447, 35] self.assertListEqual(lowerCAmelCase, self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off lowerCamelCase_ =[2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase, self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={ '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase, model_name='''facebook/xglm-564M''', padding=lowerCAmelCase, )
361
'''simple docstring''' def a_ ( __snake_case : int = 1000 ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =1, 1 lowerCamelCase_ =2 while True: lowerCamelCase_ =0 lowerCamelCase_ =fa + fa lowerCamelCase_, lowerCamelCase_ =fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
6
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def a_ ( __snake_case : List[str] , __snake_case : Any , __snake_case : List[str] , __snake_case : Dict ) -> int: """simple docstring""" lowerCamelCase_ ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase_ ={ '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } lowerCamelCase_ =F'''{src_lang}-{tgt_lang}''' lowerCamelCase_ =F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) lowerCamelCase_ =os.path.join(UpperCamelCase__ , '''README.md''' ) print(F'''Generating {path}''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project a_ : Any = Path(__file__).resolve().parent.parent.parent a_ : List[Any] = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : int = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __UpperCamelCase : def __init__( self, lowerCAmelCase = "cpu", lowerCAmelCase = "openai/clip-vit-large-patch14" ): """simple docstring""" lowerCamelCase_ =device lowerCamelCase_ =CLIPTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] lowerCamelCase_ =[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] lowerCamelCase_ =torchvision.transforms.Normalize(self.image_mean, self.image_std ) lowerCamelCase_ =torchvision.transforms.Resize(224 ) lowerCamelCase_ =torchvision.transforms.CenterCrop(224 ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.resize(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.center_crop(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.normalize(_SCREAMING_SNAKE_CASE ) return images def __call__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.tokenizer(text=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.preprocess_img(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase=10, lowerCAmelCase=0.0_1, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase="image", lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=False, lowerCAmelCase=False, ): """simple docstring""" super().__init__() lowerCamelCase_ =None lowerCamelCase_ =device if device else get_device() if vqgan: lowerCamelCase_ =vqgan else: lowerCamelCase_ =load_vqgan(self.device, conf_path=_SCREAMING_SNAKE_CASE, ckpt_path=_SCREAMING_SNAKE_CASE ) self.vqgan.eval() if clip: lowerCamelCase_ =clip else: lowerCamelCase_ =CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) lowerCamelCase_ =ProcessorGradientFlow(device=self.device ) lowerCamelCase_ =iterations lowerCamelCase_ =lr lowerCamelCase_ =log lowerCamelCase_ =make_grid lowerCamelCase_ =return_val lowerCamelCase_ =quantize lowerCamelCase_ =self.vqgan.decoder.z_shape def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=5, lowerCAmelCase=True ): """simple docstring""" lowerCamelCase_ =[] if output_path is None: lowerCamelCase_ ="./animation.gif" if input_path is None: lowerCamelCase_ =self.save_path lowerCamelCase_ =sorted(glob(input_path + '''/*''' ) ) if not len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_SCREAMING_SNAKE_CASE ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) lowerCamelCase_ =total_duration / len(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[frame_duration] * len(_SCREAMING_SNAKE_CASE ) if extend_frames: lowerCamelCase_ =1.5 lowerCamelCase_ =3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_SCREAMING_SNAKE_CASE ) ) imageio.mimsave(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, duration=_SCREAMING_SNAKE_CASE ) print(f'''gif saved to {output_path}''' ) def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None ): """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError lowerCamelCase_ =preprocess(Image.open(_SCREAMING_SNAKE_CASE ), target_image_size=256 ).to(self.device ) lowerCamelCase_ =preprocess_vqgan(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.vqgan.encode(_SCREAMING_SNAKE_CASE ) return z def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.latent.detach().requires_grad_() lowerCamelCase_ =base_latent + transform_vector if self.quantize: lowerCamelCase_ =self.vqgan.quantize(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =trans_latent return self.vqgan.decode(_SCREAMING_SNAKE_CASE ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" lowerCamelCase_ =self.clip_preprocessor(text=_SCREAMING_SNAKE_CASE, images=_SCREAMING_SNAKE_CASE, return_tensors='''pt''', padding=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.clip(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =clip_outputs.logits_per_image if weights is not None: lowerCamelCase_ =similarity_logits * weights return similarity_logits.sum() def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self._get_clip_similarity(pos_prompts['''prompts'''], _SCREAMING_SNAKE_CASE, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: lowerCamelCase_ =self._get_clip_similarity(neg_prompts['''prompts'''], _SCREAMING_SNAKE_CASE, weights=neg_prompts['''weights'''] ) else: lowerCamelCase_ =torch.tensor([1], device=self.device ) lowerCamelCase_ =-torch.log(_SCREAMING_SNAKE_CASE ) + torch.log(_SCREAMING_SNAKE_CASE ) return loss def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =torch.randn_like(self.latent, requires_grad=_SCREAMING_SNAKE_CASE, device=self.device ) lowerCamelCase_ =torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCamelCase_ =self._add_vector(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =loop_post_process(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._get_CLIP_loss(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) print('''CLIP loss''', _SCREAMING_SNAKE_CASE ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" wandb.init(reinit=_SCREAMING_SNAKE_CASE, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: lowerCamelCase_ =Image.open(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =image.resize((256, 256) ) wandb.log('''Original Image''', wandb.Image(_SCREAMING_SNAKE_CASE ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if not prompts: return [] lowerCamelCase_ =[] lowerCamelCase_ =[] if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =[prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_SCREAMING_SNAKE_CASE, (tuple, list) ): lowerCamelCase_ =prompt[0] lowerCamelCase_ =float(prompt[1] ) elif ":" in prompt: lowerCamelCase_ =prompt.split(''':''' ) lowerCamelCase_ =float(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =prompt lowerCamelCase_ =1.0 processed_prompts.append(_SCREAMING_SNAKE_CASE ) weights.append(_SCREAMING_SNAKE_CASE ) return { "prompts": processed_prompts, "weights": torch.tensor(_SCREAMING_SNAKE_CASE, device=self.device ), } def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=False, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=None, ): """simple docstring""" if image_path: lowerCamelCase_ =self._get_latent(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) assert pos_prompts, "You must provide at least one positive prompt." lowerCamelCase_ =self.process_prompts(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.process_prompts(_SCREAMING_SNAKE_CASE ) if save_final and save_path is None: lowerCamelCase_ =os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =save_path + "_" + get_timestamp() os.makedirs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =save_path lowerCamelCase_ =self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =loop_post_process(_SCREAMING_SNAKE_CASE ) for iter, transformed_img in enumerate(self._optimize_CLIP(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ): if show_intermediate: show_pil(_SCREAMING_SNAKE_CASE ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_SCREAMING_SNAKE_CASE )} ) if show_final: show_pil(_SCREAMING_SNAKE_CASE ) if save_final: transformed_img.save(os.path.join(self.save_path, f'''iter_{iter:03d}_final.png''' ) )
363
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : str =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] ) class __UpperCamelCase ( metaclass=lowerCamelCase__ ): lowercase : Any =['speech'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''speech'''] )
6
0
def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a_ ( __snake_case : Dict ) -> Any: """simple docstring""" lowerCamelCase_ =model.config lowerCamelCase_ =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCamelCase_ =MBartConfig( is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE_ , add_final_layer_norm=SCREAMING_SNAKE_CASE_ , ) return encoder_config, decoder_config def a_ ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: lowerCamelCase_ =name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowerCamelCase_ =name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowerCamelCase_ =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowerCamelCase_ ='''encoder.''' + name if "attn.proj" in name: lowerCamelCase_ =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowerCamelCase_ =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase_ =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase_ =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase_ =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase_ =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCamelCase_ ='''encoder.layernorm.weight''' if name == "encoder.norm.bias": lowerCamelCase_ ='''encoder.layernorm.bias''' return name def a_ ( __snake_case : List[str] , __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase_ =orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowerCamelCase_ =key.split('''.''' ) lowerCamelCase_ =int(key_split[3] ) lowerCamelCase_ =int(key_split[5] ) lowerCamelCase_ =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase_ =val[:dim, :] lowerCamelCase_ =val[dim : dim * 2, :] lowerCamelCase_ =val[-dim:, :] else: lowerCamelCase_ =val[:dim] lowerCamelCase_ =val[dim : dim * 2] lowerCamelCase_ =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCamelCase_ =val return orig_state_dict def a_ ( __snake_case : List[Any] , __snake_case : List[str]=None , __snake_case : Union[str, Any]=False ) -> Any: """simple docstring""" # load original model lowerCamelCase_ =DonutModel.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() # load HuggingFace model lowerCamelCase_, lowerCamelCase_ =get_configs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =DonutSwinModel(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =MBartForCausalLM(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ =original_model.state_dict() lowerCamelCase_ =convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify results on scanned document lowerCamelCase_ =load_dataset('''hf-internal-testing/example-documents''' ) lowerCamelCase_ =dataset['''test'''][0]['''image'''].convert('''RGB''' ) lowerCamelCase_ =XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ , from_slow=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCamelCase_ =DonutProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCamelCase_ ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCamelCase_ ='''When is the coffee break?''' lowerCamelCase_ =task_prompt.replace('''{user_input}''' , SCREAMING_SNAKE_CASE_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCamelCase_ ='''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCamelCase_ ='''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCamelCase_ ='''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCamelCase_ ='''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCamelCase_ ='''hello world''' else: raise ValueError('''Model name not supported''' ) lowerCamelCase_ =original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )[ '''input_ids''' ] lowerCamelCase_ =original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_, lowerCamelCase_ =model.encoder.embeddings(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) # verify encoder hidden states lowerCamelCase_ =original_model.encoder(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =model.encoder(SCREAMING_SNAKE_CASE_ ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) # verify decoder hidden states lowerCamelCase_ =original_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).logits lowerCamelCase_ =model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) a_ : Any = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =ShapEImgaImgPipeline lowercase : Dict =['image'] lowercase : str =['image'] lowercase : int =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) lowerCamelCase_ =CLIPVisionModel(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ =ShapERenderer(**lowerCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =self.dummy_renderer lowerCamelCase_ =HeunDiscreteScheduler( beta_schedule='''exp''', num_train_timesteps=1_024, prediction_type='''sample''', use_karras_sigmas=lowerCAmelCase, clip_sample=lowerCAmelCase, clip_sample_range=1.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.images[0] lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ =np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =1 lowerCamelCase_ =2 lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ =batch_size * [inputs[key]] lowerCamelCase_ =pipe(**lowerCAmelCase, num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowerCamelCase_ =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe( lowerCAmelCase, generator=lowerCAmelCase, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='''np''', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase )
6
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCamelCase ( UpperCamelCase__ ): lowercase : List[str] =( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowercase : Dict ='CIDAS/clipseg-rd64-refined' lowercase : Any ='image_segmenter' lowercase : Any =CLIPSegForImageSegmentation lowercase : Optional[Any] =['image', 'text'] lowercase : Dict =['image'] def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" requires_backends(self, ['''vision'''] ) super().__init__(*__lowerCamelCase, **__lowerCamelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" return self.pre_processor(text=[label], images=[image], padding=__lowerCamelCase, return_tensors='''pt''' ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" with torch.no_grad(): lowerCamelCase_ =self.model(**__lowerCamelCase ).logits return logits def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =outputs.cpu().detach().numpy() lowerCamelCase_ =0 lowerCamelCase_ =1 return Image.fromarray((array * 255).astype(np.uinta ) )
366
'''simple docstring''' from itertools import product def a_ ( __snake_case : int , __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =sides_number lowerCamelCase_ =max_face_number * dice_number lowerCamelCase_ =[0] * (max_total + 1) lowerCamelCase_ =1 lowerCamelCase_ =range(__snake_case , max_face_number + 1 ) for dice_numbers in product(__snake_case , repeat=__snake_case ): lowerCamelCase_ =sum(__snake_case ) totals_frequencies[total] += 1 return totals_frequencies def a_ ( ) -> float: """simple docstring""" lowerCamelCase_ =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase_ =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase_ =0 lowerCamelCase_ =9 lowerCamelCase_ =4 * 9 lowerCamelCase_ =6 for peter_total in range(__snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase_ =(4**9) * (6**6) lowerCamelCase_ =peter_wins_count / total_games_number lowerCamelCase_ =round(__snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
6
0
'''simple docstring''' from string import ascii_uppercase a_ : int = {str(ord(c) - 55): c for c in ascii_uppercase} def a_ ( __snake_case : int , __snake_case : int ) -> str: """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) lowerCamelCase_ ='''''' lowerCamelCase_ =0 lowerCamelCase_ =0 while div != 1: lowerCamelCase_, lowerCamelCase_ =divmod(__lowerCamelCase , __lowerCamelCase ) if base >= 11 and 9 < mod < 36: lowerCamelCase_ =ALPHABET_VALUES[str(__lowerCamelCase )] else: lowerCamelCase_ =str(__lowerCamelCase ) new_value += actual_value lowerCamelCase_ =num // base lowerCamelCase_ =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
367
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union a_ : Tuple = TypeVar("""T""") a_ : Dict = Union[List[T], Tuple[T, ...]] a_ : int = Union[T, List[T], Dict[str, T]] a_ : Optional[Any] = Union[str, bytes, os.PathLike]
6
0