code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] ): '''simple docstring''' def update_area_of_max_square(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case_ : Optional[Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) snake_case_ : Tuple = update_area_of_max_square(row + 1 , col + 1 ) snake_case_ : Any = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: snake_case_ : Tuple = 1 + min([right, diagonal, down] ) snake_case_ : Optional[int] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 snake_case_ : Optional[int] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case_ : Any = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: snake_case_ : List[Any] = 1 + min([right, diagonal, down] ) snake_case_ : Any = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) snake_case_ : int = sub_problem_sol return sub_problem_sol else: return 0 snake_case_ : Any = [0] snake_case_ : List[str] = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : Any = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case_ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : Any = dp_array[row][col + 1] snake_case_ : Tuple = dp_array[row + 1][col + 1] snake_case_ : Union[str, Any] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case_ : Tuple = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[Any] = 0 return largest_square_area def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : List[str] = [0] * (cols + 1) snake_case_ : Dict = [0] * (cols + 1) snake_case_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : str = current_row[col + 1] snake_case_ : Optional[int] = next_row[col + 1] snake_case_ : List[str] = next_row[col] if mat[row][col] == 1: snake_case_ : Dict = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[int] = 0 snake_case_ : Union[str, Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): lowercase : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase : Optional[Any] = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : List[Any] = False lowercase : Any = False def a__ ( self :List[str] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any]=False ): snake_case_ : Any = super()._prepare_for_class(lowercase_ ,lowercase_ ,return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): snake_case_ : Dict = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) return inputs_dict class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,_UpperCamelCase :List[Any] ,_UpperCamelCase :List[Any]=1_3 ,_UpperCamelCase :Tuple=7 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :str=True ,_UpperCamelCase :Any=True ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :List[Any]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :List[Any]=2 ,_UpperCamelCase :Tuple=4 ,_UpperCamelCase :Optional[int]=3_7 ,_UpperCamelCase :Dict="gelu" ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Tuple=5_1_2 ,_UpperCamelCase :Dict=1_6 ,_UpperCamelCase :List[Any]=2 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :List[Any]=3 ,_UpperCamelCase :List[str]=4 ,_UpperCamelCase :List[str]=None ,): snake_case_ : int = parent snake_case_ : str = batch_size snake_case_ : str = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_input_mask snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : Optional[Any] = vocab_size snake_case_ : str = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : int = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Any = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Dict = num_labels snake_case_ : List[str] = num_choices snake_case_ : Tuple = scope snake_case_ : int = embedding_size def a__ ( self :Union[str, Any] ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_input_mask: snake_case_ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case_ : List[Any] = None snake_case_ : str = None snake_case_ : Tuple = None if self.use_labels: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case_ : int = ids_tensor([self.batch_size] ,self.num_choices ) snake_case_ : Any = MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,embedding_size=self.embedding_size ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :List[str] ): snake_case_ : List[Any] = TFMobileBertModel(config=lowercase_ ) snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : int = model(lowercase_ ) snake_case_ : List[str] = [input_ids, input_mask] snake_case_ : Dict = model(lowercase_ ) snake_case_ : Tuple = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :str ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[int] = TFMobileBertForMaskedLM(config=lowercase_ ) snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :str ,_UpperCamelCase :Any ,_UpperCamelCase :str ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=lowercase_ ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :str ,_UpperCamelCase :int ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Dict ): snake_case_ : Optional[int] = TFMobileBertForPreTraining(config=lowercase_ ) snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual( result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def a__ ( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int ,_UpperCamelCase :str ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :str ): snake_case_ : int = self.num_labels snake_case_ : Any = TFMobileBertForSequenceClassification(config=lowercase_ ) snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def a__ ( self :int ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Dict ): snake_case_ : int = self.num_choices snake_case_ : Any = TFMobileBertForMultipleChoice(config=lowercase_ ) snake_case_ : Tuple = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) snake_case_ : int = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) snake_case_ : str = tf.tile(tf.expand_dims(lowercase_ ,1 ) ,(1, self.num_choices, 1) ) snake_case_ : int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self :Tuple ,_UpperCamelCase :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Tuple = self.num_labels snake_case_ : Optional[int] = TFMobileBertForTokenClassification(config=lowercase_ ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :str ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any] ): snake_case_ : str = TFMobileBertForQuestionAnswering(config=lowercase_ ) snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self :Tuple ): snake_case_ : int = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : int = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def a__ ( self :Union[str, Any] ): snake_case_ : Any = TFMobileBertModelTest.TFMobileBertModelTester(self ) snake_case_ : Any = ConfigTester(self ,config_class=lowercase_ ,hidden_size=3_7 ) def a__ ( self :Optional[int] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def a__ ( self :List[str] ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def a__ ( self :List[Any] ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def a__ ( self :List[str] ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def a__ ( self :List[str] ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def a__ ( self :int ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def a__ ( self :Any ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def a__ ( self :List[str] ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) @slow def a__ ( self :Union[str, Any] ): for model_name in ["google/mobilebert-uncased"]: snake_case_ : List[Any] = TFMobileBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Tuple ): snake_case_ : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) snake_case_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ : str = model(lowercase_ )[0] snake_case_ : Any = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape ,lowercase_ ) snake_case_ : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,lowercase_ ,atol=1E-4 )
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionInpaintPipeline lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Optional[int] = frozenset([] ) def a__ ( self :Any ): torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,) snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self :Any ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self :Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a__ ( self :Tuple ): snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" ) snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,) snake_case_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCamelCase ( a__ ): lowercase : List[str] = 'Salesforce/blip-image-captioning-base' lowercase : Tuple = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowercase : Optional[int] = 'image_captioner' lowercase : Optional[Any] = AutoModelForVisionaSeq lowercase : List[Any] = ['image'] lowercase : Union[str, Any] = ['text'] def __init__( self :Any ,*_UpperCamelCase :List[str] ,**_UpperCamelCase :Tuple ): requires_backends(self ,["""vision"""] ) super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :"Image" ): return self.pre_processor(images=_UpperCamelCase ,return_tensors="""pt""" ) def a__ ( self :Optional[int] ,_UpperCamelCase :int ): return self.model.generate(**_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Dict ): return self.pre_processor.batch_decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase )[0].strip()
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Union[str, Any] = 0 # Number of processes finished snake_case_ : Tuple = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ : List[Any] = [0] * no_of_process # List to include calculation results snake_case_ : Tuple = [0] * no_of_process # Sort by arrival time. snake_case_ : str = [burst_time[i] for i in np.argsort(lowerCamelCase_ )] snake_case_ : List[Any] = [process_name[i] for i in np.argsort(lowerCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ : Optional[int] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ : Dict = arrival_time[i] snake_case_ : Union[str, Any] = 0 # Index showing the location of the process being performed snake_case_ : Optional[int] = 0 # Saves the current response ratio. snake_case_ : Optional[Any] = 0 for i in range(0 , lowerCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ : List[Any] = temp snake_case_ : Optional[int] = i # Calculate the turn around time snake_case_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = [0] * no_of_process for i in range(0 , lowerCamelCase_ ): snake_case_ : Union[str, Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A : Any = 5 __A : Optional[int] = ['A', 'B', 'C', 'D', 'E'] __A : str = [1, 2, 3, 4, 5] __A : Union[str, Any] = [1, 2, 3, 4, 5] __A : Dict = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Any = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __UpperCamelCase ( a_ ): lowercase : Optional[Any] = "realm" def __init__( self :Union[str, Any] ,_UpperCamelCase :Optional[Any]=3_0_5_2_2 ,_UpperCamelCase :int=7_6_8 ,_UpperCamelCase :Optional[Any]=1_2_8 ,_UpperCamelCase :Optional[Any]=1_2 ,_UpperCamelCase :Any=1_2 ,_UpperCamelCase :Optional[Any]=8 ,_UpperCamelCase :Tuple=3_0_7_2 ,_UpperCamelCase :Optional[Any]="gelu_new" ,_UpperCamelCase :List[Any]=0.1 ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :str=2 ,_UpperCamelCase :int=0.02 ,_UpperCamelCase :Union[str, Any]=1E-1_2 ,_UpperCamelCase :Optional[int]=2_5_6 ,_UpperCamelCase :Union[str, Any]=1_0 ,_UpperCamelCase :int=1E-3 ,_UpperCamelCase :List[Any]=5 ,_UpperCamelCase :List[Any]=3_2_0 ,_UpperCamelCase :Union[str, Any]=1_3_3_5_3_7_1_8 ,_UpperCamelCase :Optional[Any]=5_0_0_0 ,_UpperCamelCase :Any=1 ,_UpperCamelCase :Optional[Any]=0 ,_UpperCamelCase :Optional[Any]=2 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) # Common config snake_case_ : int = vocab_size snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Dict = hidden_size snake_case_ : Tuple = retriever_proj_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Dict = num_candidates snake_case_ : int = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Any = initializer_range snake_case_ : Optional[Any] = type_vocab_size snake_case_ : str = layer_norm_eps # Reader config snake_case_ : List[str] = span_hidden_size snake_case_ : Any = max_span_width snake_case_ : int = reader_layer_norm_eps snake_case_ : List[str] = reader_beam_size snake_case_ : Any = reader_seq_len # Retrieval config snake_case_ : Dict = num_block_records snake_case_ : str = searcher_beam_size
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] ): '''simple docstring''' snake_case_ : Tuple = SwinConfig(image_size=1_92 ) if "base" in model_name: snake_case_ : Dict = 6 snake_case_ : Union[str, Any] = 1_28 snake_case_ : List[str] = (2, 2, 18, 2) snake_case_ : Dict = (4, 8, 16, 32) elif "large" in model_name: snake_case_ : Union[str, Any] = 12 snake_case_ : Union[str, Any] = 1_92 snake_case_ : Union[str, Any] = (2, 2, 18, 2) snake_case_ : List[str] = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) snake_case_ : str = window_size snake_case_ : List[Any] = embed_dim snake_case_ : Tuple = depths snake_case_ : Optional[Any] = num_heads return config def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' if "encoder.mask_token" in name: snake_case_ : Union[str, Any] = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: snake_case_ : List[str] = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: snake_case_ : Tuple = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: snake_case_ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case_ : Dict = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case_ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case_ : Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case_ : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case_ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": snake_case_ : Union[str, Any] = "layernorm.weight" if name == "encoder.norm.bias": snake_case_ : List[str] = "layernorm.bias" if "decoder" in name: pass else: snake_case_ : Tuple = "swin." + name return name def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Dict ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ : Optional[int] = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: snake_case_ : Optional[int] = key.split(""".""" ) snake_case_ : List[Any] = int(key_split[2] ) snake_case_ : Optional[Any] = int(key_split[4] ) snake_case_ : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ : Tuple = val[:dim, :] snake_case_ : List[str] = val[ dim : dim * 2, : ] snake_case_ : Dict = val[-dim:, :] else: snake_case_ : List[Any] = val[ :dim ] snake_case_ : int = val[ dim : dim * 2 ] snake_case_ : Dict = val[ -dim: ] else: snake_case_ : Optional[Any] = val return orig_state_dict def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["model"] snake_case_ : List[str] = get_swin_config(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = SwinForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Union[str, Any] = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ : Any = ViTImageProcessor(size={"""height""": 1_92, """width""": 1_92} ) snake_case_ : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) snake_case_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) with torch.no_grad(): snake_case_ : Dict = model(**_SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : List[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __A : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :set ): '''simple docstring''' snake_case_ , snake_case_ : Tuple = len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) snake_case_ : Optional[Any] = 0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Union[str, Any]=1_4 ,_UpperCamelCase :str=7 ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :str=True ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Any=True ,_UpperCamelCase :List[Any]=True ,_UpperCamelCase :Optional[Any]=9_9 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :List[str]=5 ,_UpperCamelCase :Union[str, Any]=4 ,_UpperCamelCase :str=3_7 ,_UpperCamelCase :Tuple="gelu" ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Tuple=5_1_2 ,_UpperCamelCase :List[Any]=1_6 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :str=0.02 ,_UpperCamelCase :Any=3 ,_UpperCamelCase :Dict=4 ,_UpperCamelCase :Any=None ,): snake_case_ : int = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : int = use_token_type_ids snake_case_ : int = use_input_mask snake_case_ : Any = use_labels snake_case_ : int = use_mc_token_ids snake_case_ : Optional[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : Optional[Any] = type_sequence_label_size snake_case_ : List[Any] = initializer_range snake_case_ : Any = num_labels snake_case_ : str = num_choices snake_case_ : str = scope snake_case_ : List[Any] = self.vocab_size - 1 def a__ ( self :Dict ): snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : int = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case_ : Any = None if self.use_mc_token_ids: snake_case_ : int = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) snake_case_ : str = None snake_case_ : Optional[int] = None snake_case_ : Optional[int] = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case_ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case_ : List[Any] = self.get_config() snake_case_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def a__ ( self :str ): return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def a__ ( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Dict ,_UpperCamelCase :Any ,_UpperCamelCase :str ,_UpperCamelCase :Dict ,*_UpperCamelCase :Union[str, Any] ): snake_case_ : int = CTRLModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,head_mask=_UpperCamelCase ) model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def a__ ( self :List[str] ,_UpperCamelCase :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any] ,*_UpperCamelCase :int ): snake_case_ : Any = CTRLLMHeadModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : Union[str, Any] = model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self :Union[str, Any] ): snake_case_ : Any = self.prepare_config_and_inputs() ( snake_case_ ) : List[Any] = config_and_inputs snake_case_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ,*_UpperCamelCase :List[Any] ): snake_case_ : Optional[Any] = self.num_labels snake_case_ : Any = CTRLForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : str = model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase : int = (CTRLLMHeadModel,) if is_torch_available() else () lowercase : List[str] = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase : str = True lowercase : Any = False lowercase : List[str] = False def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[str] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def a__ ( self :Optional[int] ): snake_case_ : Union[str, Any] = CTRLModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self ,config_class=_UpperCamelCase ,n_embd=3_7 ) def a__ ( self :Optional[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def a__ ( self :int ): self.config_tester.run_common_tests() def a__ ( self :str ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self :Tuple ): pass @slow def a__ ( self :List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : str = CTRLModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def a__ ( self :str ): pass @require_torch class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def a__ ( self :List[Any] ): snake_case_ : Optional[int] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_UpperCamelCase ) snake_case_ : List[str] = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=_UpperCamelCase ) # Legal the president is snake_case_ : Optional[Any] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a snake_case_ : str = model.generate(_UpperCamelCase ,do_sample=_UpperCamelCase ) self.assertListEqual(output_ids[0].tolist() ,_UpperCamelCase )
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = ['image_processor', 'tokenizer'] lowercase : Any = 'ViTImageProcessor' lowercase : str = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self :Optional[int] ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,**_UpperCamelCase :Tuple ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) snake_case_ : Dict = kwargs.pop("""feature_extractor""" ) snake_case_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self :Dict ,_UpperCamelCase :int=None ,_UpperCamelCase :str=None ,_UpperCamelCase :str=None ,_UpperCamelCase :Optional[Any]=None ,**_UpperCamelCase :int ): if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: snake_case_ : Union[str, Any] = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None: snake_case_ : str = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None and images is not None: snake_case_ : List[Any] = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case_ : Any = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def a__ ( self :Tuple ,*_UpperCamelCase :Optional[Any] ,**_UpperCamelCase :Optional[Any] ): return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def a__ ( self :List[Any] ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Tuple ): return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def a__ ( self :Any ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def a__ ( self :str ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __UpperCamelCase ( _lowerCamelCase ): lowercase : str = DistilBertTokenizer lowercase : Tuple = DistilBertTokenizerFast lowercase : List[str] = True @slow def a__ ( self :Union[str, Any] ): snake_case_ : str = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Dict = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowercase_ ) snake_case_ : List[Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowercase_ ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(lowercase_ ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ ,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCamelCase : def a__ ( self :Dict ,_UpperCamelCase :Optional[int] ): raise NotImplementedError() def a__ ( self :int ): raise NotImplementedError() class __UpperCamelCase ( A__ ): def __init__( self :List[str] ,_UpperCamelCase :Any ,_UpperCamelCase :List[str] = False ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Any = tokenizer snake_case_ : int = skip_prompt snake_case_ : Dict = decode_kwargs # variables used in the streaming process snake_case_ : Tuple = [] snake_case_ : int = 0 snake_case_ : str = True def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: snake_case_ : List[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: snake_case_ : Union[str, Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) snake_case_ : Optional[int] = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): snake_case_ : Optional[Any] = text[self.print_len :] snake_case_ : Any = [] snake_case_ : List[str] = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): snake_case_ : Any = text[self.print_len :] self.print_len += len(lowerCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: snake_case_ : int = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(lowerCamelCase__ ) self.on_finalized_text(lowerCamelCase__ ) def a__ ( self :Optional[Any] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: snake_case_ : Dict = self.tokenizer.decode(self.token_cache ,**self.decode_kwargs ) snake_case_ : Dict = text[self.print_len :] snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = 0 else: snake_case_ : List[Any] = """""" snake_case_ : Union[str, Any] = True self.on_finalized_text(lowerCamelCase__ ,stream_end=lowerCamelCase__ ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Union[str, Any] = False ): print(lowerCamelCase__ ,flush=lowerCamelCase__ ,end="""""" if not stream_end else None ) def a__ ( self :Optional[Any] ,_UpperCamelCase :List[str] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False class __UpperCamelCase ( A__ ): def __init__( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Tuple = False ,_UpperCamelCase :Optional[Any] = None ,**_UpperCamelCase :List[str] ): super().__init__(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) snake_case_ : List[Any] = Queue() snake_case_ : Union[str, Any] = None snake_case_ : Union[str, Any] = timeout def a__ ( self :Tuple ,_UpperCamelCase :List[str] ,_UpperCamelCase :List[str] = False ): self.text_queue.put(lowerCamelCase__ ,timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal ,timeout=self.timeout ) def __iter__( self :List[str] ): return self def a__ ( self :int ): snake_case_ : Dict = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
356
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ): '''simple docstring''' snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} snake_case_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ): '''simple docstring''' snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,): super().__init__() snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" ) snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : List[str] = max_source_length snake_case_ : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ : str = tokenizer snake_case_ : str = prefix if n_obs is not None: snake_case_ : int = self.src_lens[:n_obs] snake_case_ : Tuple = src_lang snake_case_ : str = tgt_lang def __len__( self :Any ): return len(self.src_lens ) def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[int] = index + 1 # linecache starts at 1 snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" ) snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer ) snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" ) snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" ) snake_case_ : int = source_inputs["""input_ids"""].squeeze() snake_case_ : str = target_inputs["""input_ids"""].squeeze() snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( _UpperCamelCase :str ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : Optional[int] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : List[Any] = getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case_ : List[str] = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' def remove_articles(lowerCamelCase_ :str ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ :Optional[Any] ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ :Tuple ): snake_case_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ :Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case_ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case_ : Optional[int] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
8
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[int] ): snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case_ : Union[str, Any] = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } snake_case_ : List[str] = os.path.join(self.tmpdirname ,lowercase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(lowercase_ ,lowercase_ ) def a__ ( self :Optional[int] ,**_UpperCamelCase :Tuple ): return BertTokenizer.from_pretrained(self.tmpdirname ,**lowercase_ ) def a__ ( self :int ,**_UpperCamelCase :Dict ): return BertTokenizerFast.from_pretrained(self.tmpdirname ,**lowercase_ ) def a__ ( self :Union[str, Any] ,**_UpperCamelCase :Any ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname ,**lowercase_ ) def a__ ( self :Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] snake_case_ : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self :Any ): snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : int = self.get_rust_tokenizer() snake_case_ : str = self.get_image_processor() snake_case_ : Tuple = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ,use_fast=lowercase_ ) snake_case_ : List[Any] = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ : Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,lowercase_ ) self.assertIsInstance(processor_fast.tokenizer ,lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,lowercase_ ) self.assertIsInstance(processor_fast.image_processor ,lowercase_ ) def a__ ( self :Any ): snake_case_ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) snake_case_ : Union[str, Any] = self.get_image_processor(do_normalize=lowercase_ ,padding_value=1.0 ) snake_case_ : Optional[int] = AlignProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowercase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowercase_ ) def a__ ( self :Any ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[str] = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) snake_case_ : Optional[int] = self.prepare_image_inputs() snake_case_ : str = image_processor(lowercase_ ,return_tensors="""np""" ) snake_case_ : Optional[Any] = processor(images=lowercase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def a__ ( self :Dict ): snake_case_ : Optional[int] = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : List[Any] = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) snake_case_ : Dict = '''lower newer''' snake_case_ : List[str] = processor(text=lowercase_ ) snake_case_ : Dict = tokenizer(lowercase_ ,padding="""max_length""" ,max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self :Any ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : str = self.get_tokenizer() snake_case_ : List[Any] = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) snake_case_ : Optional[int] = '''lower newer''' snake_case_ : Any = self.prepare_image_inputs() snake_case_ : Dict = processor(text=lowercase_ ,images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def a__ ( self :Any ): snake_case_ : Tuple = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : str = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) snake_case_ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Tuple = processor.batch_decode(lowercase_ ) snake_case_ : int = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) def a__ ( self :str ): snake_case_ : Tuple = self.get_image_processor() snake_case_ : Any = self.get_tokenizer() snake_case_ : Dict = AlignProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) snake_case_ : str = '''lower newer''' snake_case_ : List[str] = self.prepare_image_inputs() snake_case_ : Tuple = processor(text=lowercase_ ,images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : int = CanineTokenizer lowercase : Union[str, Any] = False def a__ ( self :Optional[int] ): super().setUp() snake_case_ : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self :List[str] ): return CanineTokenizer.from_pretrained("""google/canine-s""" ) def a__ ( self :List[Any] ,**_UpperCamelCase :Dict ): snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ,**__A ) snake_case_ : List[Any] = 1_0_2_4 return tokenizer @require_torch def a__ ( self :Dict ): snake_case_ : Optional[Any] = self.canine_tokenizer snake_case_ : Union[str, Any] = ["""Life is like a box of chocolates.""", """You never know what you\'re gonna get."""] # fmt: off snake_case_ : str = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on snake_case_ : Dict = tokenizer(__A ,padding=__A ,return_tensors="""pt""" ) self.assertIsInstance(__A ,__A ) snake_case_ : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__A ,__A ) self.assertEqual((2, 3_9) ,batch.input_ids.shape ) self.assertEqual((2, 3_9) ,batch.attention_mask.shape ) @require_torch def a__ ( self :Optional[Any] ): snake_case_ : Optional[int] = self.canine_tokenizer snake_case_ : Any = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] snake_case_ : List[Any] = tokenizer(__A ,padding=__A ,return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" ,__A ) self.assertIn("""attention_mask""" ,__A ) self.assertIn("""token_type_ids""" ,__A ) @require_torch def a__ ( self :Union[str, Any] ): snake_case_ : Optional[Any] = self.canine_tokenizer snake_case_ : Dict = [ """What\'s the weater?""", """It\'s about 25 degrees.""", ] snake_case_ : List[Any] = tokenizer( text_target=__A ,max_length=3_2 ,padding="""max_length""" ,truncation=__A ,return_tensors="""pt""" ) self.assertEqual(3_2 ,targets["""input_ids"""].shape[1] ) def a__ ( self :Optional[int] ): # safety check on max_len default value so we are sure the test works snake_case_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length ,4_2 ) # Now let's start the test snake_case_ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : str = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : Union[str, Any] = tokenizer.encode(__A ,add_special_tokens=__A ) tokenizer.save_pretrained(__A ) snake_case_ : Any = tokenizer.__class__.from_pretrained(__A ) snake_case_ : Any = after_tokenizer.encode(__A ,add_special_tokens=__A ) self.assertListEqual(__A ,__A ) shutil.rmtree(__A ) snake_case_ : List[str] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : int = tempfile.mkdtemp() snake_case_ : Optional[int] = """ He is very happy, UNwant\u00E9d,running""" snake_case_ : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case_ : List[Any] = chr(0xE_0_0_7 ) additional_special_tokens.append(__A ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) snake_case_ : Optional[int] = tokenizer.encode(__A ,add_special_tokens=__A ) tokenizer.save_pretrained(__A ) snake_case_ : List[str] = tokenizer.__class__.from_pretrained(__A ) snake_case_ : Optional[Any] = after_tokenizer.encode(__A ,add_special_tokens=__A ) self.assertListEqual(__A ,__A ) self.assertIn(__A ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,4_2 ) snake_case_ : Optional[Any] = tokenizer.__class__.from_pretrained(__A ,model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length ,4_3 ) shutil.rmtree(__A ) def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ , snake_case_ : Dict = self.get_clean_sequence(__A ) # a special token for Canine can be defined as follows: snake_case_ : int = 0xE_0_0_5 snake_case_ : List[str] = chr(__A ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) snake_case_ : List[str] = tokenizer.encode(__A ,add_special_tokens=__A ) self.assertEqual(len(__A ) ,1 ) snake_case_ : Union[str, Any] = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=__A ) snake_case_ : int = tokenizer.encode(__A ,add_special_tokens=__A ) snake_case_ : Union[str, Any] = tokenizer.encode(__A ,add_special_tokens=__A ) snake_case_ : List[Any] = tokenizer.encode(__A ,add_special_tokens=__A ) self.assertEqual(__A ,input_encoded + special_token_id ) snake_case_ : int = tokenizer.decode(__A ,skip_special_tokens=__A ) self.assertTrue(special_token not in decoded ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Dict = chr(0xE_0_0_5 ) snake_case_ : Union[str, Any] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=__A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) snake_case_ : Dict = tokenizer.tokenize(__A ) snake_case_ : Optional[Any] = tokenizer.tokenize(__A ) self.assertEqual(len(__A ) ,1 ) self.assertEqual(len(__A ) ,1 ) self.assertEqual(token_a[0] ,__A ) self.assertEqual(token_a[0] ,__A ) @require_tokenizers def a__ ( self :List[str] ): snake_case_ : Optional[int] = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: snake_case_ : List[str] = 0xE_0_0_6 snake_case_ : Union[str, Any] = chr(__A ) snake_case_ : Union[str, Any] = AddedToken(__A ,lstrip=__A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__A ) tokenizer.from_pretrained(__A ) def a__ ( self :Optional[Any] ): snake_case_ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__A ) with open(os.path.join(__A ,"""special_tokens_map.json""" ) ,encoding="""utf-8""" ) as json_file: snake_case_ : Any = json.load(__A ) with open(os.path.join(__A ,"""tokenizer_config.json""" ) ,encoding="""utf-8""" ) as json_file: snake_case_ : List[Any] = json.load(__A ) # a special token for Canine can be defined as follows: snake_case_ : List[str] = 0xE_0_0_6 snake_case_ : Tuple = chr(__A ) snake_case_ : int = [new_token_a] snake_case_ : Optional[Any] = [new_token_a] with open(os.path.join(__A ,"""special_tokens_map.json""" ) ,"""w""" ,encoding="""utf-8""" ) as outfile: json.dump(__A ,__A ) with open(os.path.join(__A ,"""tokenizer_config.json""" ) ,"""w""" ,encoding="""utf-8""" ) as outfile: json.dump(__A ,__A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ : Optional[int] = tokenizer_class.from_pretrained(__A ,extra_ids=0 ) self.assertIn(__A ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) snake_case_ : Dict = 0xE_0_0_7 snake_case_ : Dict = chr(__A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ : int = [AddedToken(__A ,lstrip=__A )] snake_case_ : int = tokenizer_class.from_pretrained( __A ,additional_special_tokens=__A ,extra_ids=0 ) self.assertIn(__A ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def a__ ( self :Optional[int] ): snake_case_ : Tuple = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Optional[Any] = """hello world""" if self.space_between_special_tokens: snake_case_ : Tuple = """[CLS] hello world [SEP]""" else: snake_case_ : Any = input snake_case_ : int = tokenizer.encode(__A ,add_special_tokens=__A ) snake_case_ : Optional[Any] = tokenizer.decode(__A ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__A ,[output, output.lower()] ) def a__ ( self :Union[str, Any] ): snake_case_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case_ : Dict = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] snake_case_ : List[Any] = """a""" snake_case_ : Tuple = ord(__A ) for attr in attributes_list: setattr(__A ,attr + """_id""" ,__A ) self.assertEqual(getattr(__A ,__A ) ,__A ) self.assertEqual(getattr(__A ,attr + """_id""" ) ,__A ) setattr(__A ,attr + """_id""" ,__A ) self.assertEqual(getattr(__A ,__A ) ,__A ) self.assertEqual(getattr(__A ,attr + """_id""" ) ,__A ) setattr(__A ,"""additional_special_tokens_ids""" ,[] ) self.assertListEqual(getattr(__A ,"""additional_special_tokens""" ) ,[] ) self.assertListEqual(getattr(__A ,"""additional_special_tokens_ids""" ) ,[] ) snake_case_ : List[str] = 0xE_0_0_6 snake_case_ : List[str] = chr(__A ) setattr(__A ,"""additional_special_tokens_ids""" ,[additional_special_token_id] ) self.assertListEqual(getattr(__A ,"""additional_special_tokens""" ) ,[additional_special_token] ) self.assertListEqual(getattr(__A ,"""additional_special_tokens_ids""" ) ,[additional_special_token_id] ) def a__ ( self :Union[str, Any] ): pass def a__ ( self :Any ): pass def a__ ( self :Union[str, Any] ): pass def a__ ( self :str ): pass def a__ ( self :Optional[Any] ): pass def a__ ( self :Optional[int] ): pass def a__ ( self :int ): pass def a__ ( self :Optional[int] ): pass
358
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __A : Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Any = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: snake_case_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : int = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Tuple = value elif weight_type == "bias": snake_case_ : str = value else: snake_case_ : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Any = [] snake_case_ : Any = fairseq_model.state_dict() snake_case_ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : int = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Tuple = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Optional[int] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : int = name.split(lowerCamelCase_ )[0].split(""".""" )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("""*""" , lowerCamelCase_ ) if "weight_g" in name: snake_case_ : List[Any] = """weight_g""" elif "weight_v" in name: snake_case_ : str = """weight_v""" elif "bias" in name: snake_case_ : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Dict = """weight""" else: snake_case_ : Union[str, Any] = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] snake_case_ : int = name.split(""".""" ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any=None , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :str=True ): '''simple docstring''' if config_path is not None: snake_case_ : int = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: snake_case_ : Union[str, Any] = UniSpeechSatConfig() snake_case_ : List[str] = """""" if is_finetuned: snake_case_ : List[Any] = UniSpeechSatForCTC(lowerCamelCase_ ) else: snake_case_ : Optional[Any] = UniSpeechSatForPreTraining(lowerCamelCase_ ) snake_case_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : List[Any] = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
359
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : List[str] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCamelCase ( lowercase__ ): lowercase : List[Any] = 'canine' def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[str] = layer_norm_eps # Character config: snake_case_ : Any = downsampling_rate snake_case_ : List[str] = upsampling_kernel_size snake_case_ : int = num_hash_functions snake_case_ : Tuple = num_hash_buckets snake_case_ : Tuple = local_transformer_stride
8
0
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __UpperCamelCase : def a__ ( self :List[Any] ): torch.manual_seed(0 ) snake_case_ : List[str] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) snake_case_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = UNetaDConditionModel( sample_size=3_2 ,layers_per_block=1 ,block_out_channels=[3_2, 6_4] ,down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] ,mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" ,up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=3_2 ,encoder_hid_dim=3_2 ,attention_head_dim=8 ,addition_embed_type="""text""" ,addition_embed_type_num_heads=2 ,cross_attention_norm="""group_norm""" ,resnet_time_scale_shift="""scale_shift""" ,act_fn="""gelu""" ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case_ : List[Any] = DDPMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=snake_case__ ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="""epsilon""" ,variance_type="""learned_range""" ,) torch.manual_seed(0 ) snake_case_ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def a__ ( self :Optional[Any] ): torch.manual_seed(0 ) snake_case_ : Optional[int] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) snake_case_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( sample_size=3_2 ,layers_per_block=[1, 2] ,block_out_channels=[3_2, 6_4] ,down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] ,mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" ,up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=3_2 ,encoder_hid_dim=3_2 ,attention_head_dim=8 ,addition_embed_type="""text""" ,addition_embed_type_num_heads=2 ,cross_attention_norm="""group_norm""" ,resnet_time_scale_shift="""scale_shift""" ,act_fn="""gelu""" ,class_embed_type="""timestep""" ,mid_block_scale_factor=1.4_14 ,time_embedding_act_fn="""gelu""" ,time_embedding_dim=3_2 ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case_ : List[Any] = DDPMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=snake_case__ ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="""epsilon""" ,variance_type="""learned_range""" ,) torch.manual_seed(0 ) snake_case_ : Tuple = DDPMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""squaredcos_cap_v2""" ,beta_start=0.00_01 ,beta_end=0.02 ,) torch.manual_seed(0 ) snake_case_ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def a__ ( self :Any ): snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : List[str] = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) snake_case_ : Union[str, Any] = inputs['''prompt'''] snake_case_ : Any = inputs['''generator'''] snake_case_ : Optional[int] = inputs['''num_inference_steps'''] snake_case_ : Tuple = inputs['''output_type'''] if "image" in inputs: snake_case_ : Union[str, Any] = inputs['''image'''] else: snake_case_ : Tuple = None if "mask_image" in inputs: snake_case_ : Union[str, Any] = inputs['''mask_image'''] else: snake_case_ : List[str] = None if "original_image" in inputs: snake_case_ : Optional[Any] = inputs['''original_image'''] else: snake_case_ : Optional[int] = None snake_case_ : List[Any] = pipe.encode_prompt(snake_case__ ) # inputs with prompt converted to embeddings snake_case_ : List[Any] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: snake_case_ : Any = image if mask_image is not None: snake_case_ : Dict = mask_image if original_image is not None: snake_case_ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case__ ,snake_case__ ,snake_case__ ) snake_case_ : Tuple = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) snake_case_ : Tuple = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ ,snake_case__ ) is None ,F'''`{optional_component}` did not stay set to None after loading.''' ,) snake_case_ : Optional[int] = self.get_dummy_inputs(snake_case__ ) snake_case_ : List[Any] = inputs['''generator'''] snake_case_ : int = inputs['''num_inference_steps'''] snake_case_ : Any = inputs['''output_type'''] # inputs with prompt converted to embeddings snake_case_ : Union[str, Any] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: snake_case_ : List[Any] = image if mask_image is not None: snake_case_ : Union[str, Any] = mask_image if original_image is not None: snake_case_ : List[Any] = original_image snake_case_ : Tuple = pipe_loaded(**snake_case__ )[0] snake_case_ : Dict = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ ,1E-4 ) def a__ ( self :Optional[int] ): snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : Dict = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case_ : Tuple = self.get_dummy_inputs(snake_case__ ) snake_case_ : str = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) snake_case_ : Optional[Any] = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests snake_case_ : List[Any] = self.get_dummy_inputs(snake_case__ ) snake_case_ : Optional[Any] = pipe_loaded(**snake_case__ )[0] snake_case_ : str = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ ,1E-4 )
361
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
8
0
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase ( lowerCamelCase_ :list[int] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Optional[Any] = [0] * no_of_processes snake_case_ : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowercase ): snake_case_ : Any = burst_time[i] snake_case_ : list[int] = [] snake_case_ : str = 0 snake_case_ : Tuple = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case_ : List[str] = [] snake_case_ : Dict = -1 for i in range(_lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowercase ) if len(_lowercase ) > 0: snake_case_ : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case_ : Optional[int] = i total_time += burst_time[target_process] completed += 1 snake_case_ : Optional[int] = 0 snake_case_ : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase ( lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :list[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = [0] * no_of_processes for i in range(_lowercase ): snake_case_ : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') __A : Optional[int] = 4 __A : Union[str, Any] = [2, 5, 3, 7] __A : Optional[int] = [0, 0, 0, 0] __A : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __A : List[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Any = set() snake_case_ : List[str] = [] def parse_line(lowerCamelCase_ :Tuple ): for line in fp: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Dict = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase_ ) > 0: snake_case_ : List[Any] = """\n""".join(lowerCamelCase_ ) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCamelCase_ ) buffer.clear() continue else: snake_case_ : Tuple = line.strip() buffer.append(lowerCamelCase_ ) if from_gh: for filename in os.listdir(lowerCamelCase_ ): snake_case_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) else: try: with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : Any = set() snake_case_ : Union[str, Any] = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase_ , lowerCamelCase_ ) ) return selected_warnings if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' return values.split(""",""" ) __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) __A : Dict = parser.parse_args() __A : Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A : Any = extract_warnings(args.output_dir, args.targets) __A : Union[str, Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
363
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( __lowerCAmelCase ): lowercase : int = (UnCLIPScheduler,) def a__ ( self :List[Any] ,**_UpperCamelCase :int ): snake_case_ : Any = { """num_train_timesteps""": 1_0_0_0, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowerCAmelCase_ ) return config def a__ ( self :Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def a__ ( self :Union[str, Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def a__ ( self :Any ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def a__ ( self :Any ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def a__ ( self :Any ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def a__ ( self :List[Any] ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ ,prev_timestep=lowerCAmelCase_ ) def a__ ( self :Optional[int] ): snake_case_ : List[str] = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config(variance_type="""fixed_small_log""" ) snake_case_ : Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def a__ ( self :str ): snake_case_ : Any = self.scheduler_classes[0] snake_case_ : Optional[int] = self.get_scheduler_config(variance_type="""learned_range""" ) snake_case_ : Optional[int] = scheduler_class(**lowerCAmelCase_ ) snake_case_ : Dict = 0.5 assert scheduler._get_variance(1 ,predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def a__ ( self :Tuple ): snake_case_ : int = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**lowerCAmelCase_ ) snake_case_ : List[Any] = scheduler.timesteps snake_case_ : str = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter snake_case_ : str = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual snake_case_ : str = model(lowerCAmelCase_ ,lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 snake_case_ : Union[str, Any] = scheduler.step(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,generator=lowerCAmelCase_ ).prev_sample snake_case_ : List[str] = pred_prev_sample snake_case_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) snake_case_ : str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def a__ ( self :Optional[int] ): snake_case_ : Dict = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : Optional[int] = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(2_5 ) snake_case_ : Optional[int] = scheduler.timesteps snake_case_ : List[Any] = self.dummy_model() snake_case_ : int = self.dummy_sample_deter snake_case_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual snake_case_ : List[Any] = model(lowerCAmelCase_ ,lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: snake_case_ : List[Any] = None else: snake_case_ : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 snake_case_ : int = scheduler.step( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,prev_timestep=lowerCAmelCase_ ,generator=lowerCAmelCase_ ).prev_sample snake_case_ : Dict = pred_prev_sample snake_case_ : str = torch.sum(torch.abs(lowerCAmelCase_ ) ) snake_case_ : Dict = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def a__ ( self :Optional[int] ): pass def a__ ( self :Any ): pass
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : int = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __UpperCamelCase ( _lowerCAmelCase ): lowercase : Optional[int] = 'unispeech' def __init__( self :Any ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :List[Any]=1_2 ,_UpperCamelCase :Union[str, Any]=3_0_7_2 ,_UpperCamelCase :Optional[int]="gelu" ,_UpperCamelCase :Union[str, Any]=0.1 ,_UpperCamelCase :Union[str, Any]=0.1 ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :Optional[int]=0.0 ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :Any=0.02 ,_UpperCamelCase :int=1E-5 ,_UpperCamelCase :Any="group" ,_UpperCamelCase :Union[str, Any]="gelu" ,_UpperCamelCase :Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,_UpperCamelCase :Dict=(5, 2, 2, 2, 2, 2, 2) ,_UpperCamelCase :str=(1_0, 3, 3, 3, 3, 2, 2) ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :int=1_2_8 ,_UpperCamelCase :Dict=1_6 ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Tuple=0.05 ,_UpperCamelCase :Any=1_0 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :Union[str, Any]=1_0 ,_UpperCamelCase :str=0 ,_UpperCamelCase :Optional[Any]=3_2_0 ,_UpperCamelCase :str=2 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Dict=1_0_0 ,_UpperCamelCase :List[str]=2_5_6 ,_UpperCamelCase :Optional[int]=2_5_6 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Any="mean" ,_UpperCamelCase :Any=False ,_UpperCamelCase :List[Any]=False ,_UpperCamelCase :Optional[Any]=2_5_6 ,_UpperCamelCase :Tuple=8_0 ,_UpperCamelCase :List[Any]=0 ,_UpperCamelCase :Any=1 ,_UpperCamelCase :Dict=2 ,_UpperCamelCase :Dict=0.5 ,**_UpperCamelCase :Any ,): super().__init__(**SCREAMING_SNAKE_CASE_ ,pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : Optional[Any] = feat_extract_norm snake_case_ : Optional[int] = feat_extract_activation snake_case_ : Dict = list(SCREAMING_SNAKE_CASE_ ) snake_case_ : str = list(SCREAMING_SNAKE_CASE_ ) snake_case_ : Any = list(SCREAMING_SNAKE_CASE_ ) snake_case_ : List[Any] = conv_bias snake_case_ : Tuple = num_conv_pos_embeddings snake_case_ : str = num_conv_pos_embedding_groups snake_case_ : List[Any] = len(self.conv_dim ) snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[int] = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : str = num_attention_heads snake_case_ : Tuple = hidden_dropout snake_case_ : Dict = attention_dropout snake_case_ : Optional[int] = activation_dropout snake_case_ : List[str] = feat_proj_dropout snake_case_ : int = final_dropout snake_case_ : Dict = layerdrop snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Optional[int] = initializer_range snake_case_ : Optional[int] = num_ctc_classes snake_case_ : Any = vocab_size snake_case_ : int = do_stable_layer_norm snake_case_ : Optional[int] = use_weighted_layer_sum snake_case_ : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Any = apply_spec_augment snake_case_ : List[Any] = mask_time_prob snake_case_ : Any = mask_time_length snake_case_ : Any = mask_time_min_masks snake_case_ : Union[str, Any] = mask_feature_prob snake_case_ : List[Any] = mask_feature_length snake_case_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ : int = num_codevectors_per_group snake_case_ : List[Any] = num_codevector_groups snake_case_ : Optional[int] = contrastive_logits_temperature snake_case_ : str = feat_quantizer_dropout snake_case_ : List[str] = num_negatives snake_case_ : Optional[Any] = codevector_dim snake_case_ : Any = proj_codevector_dim snake_case_ : Union[str, Any] = diversity_loss_weight # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : List[Any] = ctc_zero_infinity # pretraining loss snake_case_ : Tuple = replace_prob @property def a__ ( self :List[Any] ): return functools.reduce(operator.mul ,self.conv_stride ,1 )
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(lowerCamelCase_ , """_dynamo""" ): return False return isinstance(lowerCamelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple = True ): '''simple docstring''' snake_case_ : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case_ : Union[str, Any] = is_compiled_module(lowerCamelCase_ ) if is_compiled: snake_case_ : int = model snake_case_ : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : List[Any] = model.module if not keep_fpaa_wrapper: snake_case_ : int = getattr(lowerCamelCase_ , """forward""" ) snake_case_ : Dict = model.__dict__.pop("""_original_forward""" , lowerCamelCase_ ) if original_forward is not None: while hasattr(lowerCamelCase_ , """__wrapped__""" ): snake_case_ : int = forward.__wrapped__ if forward == original_forward: break snake_case_ : List[Any] = forward if getattr(lowerCamelCase_ , """_converted_to_transformer_engine""" , lowerCamelCase_ ): convert_model(lowerCamelCase_ , to_transformer_engine=lowerCamelCase_ ) if is_compiled: snake_case_ : Any = model snake_case_ : Union[str, Any] = compiled_model return model def UpperCAmelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase_ , lowerCamelCase_ ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase_ , lowerCamelCase_ ) @contextmanager def UpperCAmelCase ( **lowerCamelCase_ :Any ): '''simple docstring''' for key, value in kwargs.items(): snake_case_ : List[str] = str(lowerCamelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' if not hasattr(lowerCamelCase_ , """__qualname__""" ) and not hasattr(lowerCamelCase_ , """__name__""" ): snake_case_ : List[str] = getattr(lowerCamelCase_ , """__class__""" , lowerCamelCase_ ) if hasattr(lowerCamelCase_ , """__qualname__""" ): return obj.__qualname__ if hasattr(lowerCamelCase_ , """__name__""" ): return obj.__name__ return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' for key, value in source.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Tuple = destination.setdefault(lowerCamelCase_ , {} ) merge_dicts(lowerCamelCase_ , lowerCamelCase_ ) else: snake_case_ : str = value return destination def UpperCAmelCase ( lowerCamelCase_ :Any = None ): '''simple docstring''' if port is None: snake_case_ : str = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = (boundary[1] - boundary[0]) / steps snake_case_ : Dict = boundary[0] snake_case_ : Optional[int] = boundary[1] snake_case_ : int = make_points(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = 0.0 y += (h / 2.0) * f(__UpperCamelCase ) for i in x_i: # print(i) y += h * f(__UpperCamelCase ) y += (h / 2.0) * f(__UpperCamelCase ) return y def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Tuple = a + h while x < (b - h): yield x snake_case_ : Any = x + h def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): # enter your function here '''simple docstring''' snake_case_ : int = (x - 0) * (x - 0) return y def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = 0.0 # Lower bound of integration snake_case_ : Any = 1.0 # Upper bound of integration snake_case_ : int = 10.0 # define number of steps or resolution snake_case_ : int = [a, b] # define boundary of integration snake_case_ : Any = method_a(__UpperCamelCase , __UpperCamelCase ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionInpaintPipeline lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Optional[int] = frozenset([] ) def a__ ( self :Any ): torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,) snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self :Any ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self :Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a__ ( self :Tuple ): snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" ) snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,) snake_case_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
8
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __A : List[Any] = 'src/diffusers' # Matches is_xxx_available() __A : List[Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla __A : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') __A : List[Any] = '\n{0} = None\n' __A : Optional[int] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' __A : Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : Dict = _re_backend.findall(snake_case_ ) if len(snake_case_ ) == 0: return None return "_and_".join(snake_case_ ) def UpperCAmelCase ( ): '''simple docstring''' with open(os.path.join(snake_case_ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : Any = f.readlines() # Get to the point we do the actual imports for type checking snake_case_ : Optional[Any] = 0 snake_case_ : Optional[int] = {} # Go through the end of the file while line_index < len(snake_case_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case_ : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case_ ) and len(lines[line_index] ) > 1: snake_case_ : int = lines[line_index] snake_case_ : List[Any] = _re_single_line_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case_ ) > 0: snake_case_ : Any = objects else: line_index += 1 return backend_specific_objects def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(snake_case_ ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case_ , snake_case_ ) else: return DUMMY_CLASS.format(snake_case_ , snake_case_ ) def UpperCAmelCase ( lowerCamelCase_ :int=None ): '''simple docstring''' if backend_specific_objects is None: snake_case_ : List[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case_ : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): snake_case_ : Optional[Any] = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" snake_case_ : Any = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case_ , snake_case_ ) for o in objects] ) snake_case_ : List[str] = dummy_file return dummy_files def UpperCAmelCase ( lowerCamelCase_ :Optional[int]=False ): '''simple docstring''' snake_case_ : Optional[int] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case_ : Optional[int] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. snake_case_ : Dict = os.path.join(snake_case_ , """utils""" ) snake_case_ : Tuple = { backend: os.path.join(snake_case_ , F'''dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py''' ) for backend in dummy_files.keys() } snake_case_ : Optional[int] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case_ ): with open(snake_case_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : Union[str, Any] = f.read() else: snake_case_ : Dict = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A : Union[str, Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCAmelCase ( lowerCamelCase_ :str = "laptop" ): '''simple docstring''' snake_case_ : str = F'''https://www.amazon.in/laptop/s?k={product}''' snake_case_ : Union[str, Any] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } snake_case_ : Tuple = BeautifulSoup(requests.get(a__ , headers=a__ ).text ) # Initialize a Pandas dataframe with the column titles snake_case_ : Union[str, Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: snake_case_ : Optional[Any] = item.ha.text snake_case_ : int = """https://www.amazon.in/""" + item.ha.a["""href"""] snake_case_ : List[Any] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: snake_case_ : Union[str, Any] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: snake_case_ : List[Any] = """Not available""" try: snake_case_ : List[Any] = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: snake_case_ : List[Any] = """""" try: snake_case_ : List[str] = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_00 ) except ValueError: snake_case_ : List[str] = float("""nan""" ) except AttributeError: pass snake_case_ : Optional[Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case_ : List[str] = """ """ snake_case_ : List[str] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __A : List[str] = 'headphones' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __A : Dict = '\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n' __A : Union[str, Any] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' __A : Tuple = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def a__ ( self :List[Any] ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""http://www.cs.umd.edu/~snover/tercom/""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" ,id="""sequence""" ) ,id="""references""" ), } ) ,codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] ,reference_urls=[ """https://github.com/jhclark/tercom""", ] ,) def a__ ( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[Any] ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,): snake_case_ : int = len(references[0] ) if any(len(_A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case_ : List[Any] = [[refs[i] for refs in references] for i in range(_A )] snake_case_ : Dict = TER( normalized=_A ,no_punct=_A ,asian_support=_A ,case_sensitive=_A ,) snake_case_ : int = sb_ter.corpus_score(_A ,_A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( _SCREAMING_SNAKE_CASE ): lowercase : str = ['vqvae'] def __init__( self :Dict ,_UpperCamelCase :AutoencoderKL ,_UpperCamelCase :UNetaDConditionModel ,_UpperCamelCase :Mel ,_UpperCamelCase :Union[DDIMScheduler, DDPMScheduler] ,): super().__init__() self.register_modules(unet=_UpperCamelCase ,scheduler=_UpperCamelCase ,mel=_UpperCamelCase ,vqvae=_UpperCamelCase ) def a__ ( self :Any ): return 5_0 if isinstance(self.scheduler ,_UpperCamelCase ) else 1_0_0_0 @torch.no_grad() def __call__( self :int ,_UpperCamelCase :int = 1 ,_UpperCamelCase :str = None ,_UpperCamelCase :np.ndarray = None ,_UpperCamelCase :int = 0 ,_UpperCamelCase :int = 0 ,_UpperCamelCase :int = None ,_UpperCamelCase :torch.Generator = None ,_UpperCamelCase :float = 0 ,_UpperCamelCase :float = 0 ,_UpperCamelCase :torch.Generator = None ,_UpperCamelCase :float = 0 ,_UpperCamelCase :torch.Tensor = None ,_UpperCamelCase :torch.Tensor = None ,_UpperCamelCase :Optional[Any]=True ,): snake_case_ : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCamelCase ) snake_case_ : str = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: snake_case_ : List[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: snake_case_ : List[str] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_UpperCamelCase ,device=self.device ,) snake_case_ : Optional[int] = noise snake_case_ : int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = self.mel.audio_slice_to_image(_UpperCamelCase ) snake_case_ : List[Any] = np.frombuffer(input_image.tobytes() ,dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) snake_case_ : List[str] = (input_image / 2_5_5) * 2 - 1 snake_case_ : Tuple = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: snake_case_ : Optional[Any] = self.vqvae.encode(torch.unsqueeze(_UpperCamelCase ,0 ) ).latent_dist.sample( generator=_UpperCamelCase )[0] snake_case_ : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: snake_case_ : str = self.scheduler.add_noise(_UpperCamelCase ,_UpperCamelCase ,self.scheduler.timesteps[start_step - 1] ) snake_case_ : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) snake_case_ : Optional[int] = int(mask_start_secs * pixels_per_second ) snake_case_ : Optional[Any] = int(mask_end_secs * pixels_per_second ) snake_case_ : Tuple = self.scheduler.add_noise(_UpperCamelCase ,_UpperCamelCase ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_UpperCamelCase ): snake_case_ : List[str] = self.unet(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase )["""sample"""] else: snake_case_ : Dict = self.unet(_UpperCamelCase ,_UpperCamelCase )["""sample"""] if isinstance(self.scheduler ,_UpperCamelCase ): snake_case_ : List[Any] = self.scheduler.step( model_output=_UpperCamelCase ,timestep=_UpperCamelCase ,sample=_UpperCamelCase ,eta=_UpperCamelCase ,generator=_UpperCamelCase ,)["""prev_sample"""] else: snake_case_ : List[str] = self.scheduler.step( model_output=_UpperCamelCase ,timestep=_UpperCamelCase ,sample=_UpperCamelCase ,generator=_UpperCamelCase ,)["""prev_sample"""] if mask is not None: if mask_start > 0: snake_case_ : List[str] = mask[:, step, :, :mask_start] if mask_end > 0: snake_case_ : Optional[int] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance snake_case_ : List[str] = 1 / self.vqvae.config.scaling_factor * images snake_case_ : Optional[int] = self.vqvae.decode(_UpperCamelCase )["""sample"""] snake_case_ : Optional[int] = (images / 2 + 0.5).clamp(0 ,1 ) snake_case_ : Any = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() snake_case_ : Optional[Any] = (images * 2_5_5).round().astype("""uint8""" ) snake_case_ : Optional[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCamelCase ,mode="""RGB""" ).convert("""L""" ) for _ in images) ) snake_case_ : List[str] = [self.mel.image_to_audio(_UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCamelCase )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_UpperCamelCase ) ) @torch.no_grad() def a__ ( self :List[str] ,_UpperCamelCase :List[Image.Image] ,_UpperCamelCase :int = 5_0 ): assert isinstance(self.scheduler ,_UpperCamelCase ) self.scheduler.set_timesteps(_UpperCamelCase ) snake_case_ : str = np.array( [np.frombuffer(image.tobytes() ,dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) snake_case_ : List[Any] = (sample / 2_5_5) * 2 - 1 snake_case_ : Any = torch.Tensor(_UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): snake_case_ : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps snake_case_ : Optional[Any] = self.scheduler.alphas_cumprod[t] snake_case_ : Union[str, Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) snake_case_ : int = 1 - alpha_prod_t snake_case_ : List[str] = self.unet(_UpperCamelCase ,_UpperCamelCase )["""sample"""] snake_case_ : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output snake_case_ : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) snake_case_ : Optional[int] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCamelCase :torch.Tensor ,_UpperCamelCase :torch.Tensor ,_UpperCamelCase :float ): snake_case_ : Union[str, Any] = acos(torch.dot(torch.flatten(_UpperCamelCase ) ,torch.flatten(_UpperCamelCase ) ) / torch.norm(_UpperCamelCase ) / torch.norm(_UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCamelCase ) + sin(alpha * theta ) * xa / sin(_UpperCamelCase )
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __A : str = (720, 1_280) # Height, Width __A : List[str] = (0.4, 0.6) # if height or width lower than this scale, drop it. __A : Optional[int] = 1 / 100 __A : Tuple = '' __A : Optional[Any] = '' __A : str = '' __A : str = 250 def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Any = get_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) for index in range(lowerCAmelCase__ ): snake_case_ : List[Any] = random.sample(range(len(lowerCAmelCase__ ) ) , 4 ) snake_case_ : List[str] = update_image_and_anno( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , filter_scale=lowerCAmelCase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ : List[Any] = random_chars(32 ) snake_case_ : List[str] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] snake_case_ : Dict = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , lowerCAmelCase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) snake_case_ : Dict = [] for anno in new_annos: snake_case_ : List[str] = anno[3] - anno[1] snake_case_ : Tuple = anno[4] - anno[2] snake_case_ : Any = anno[1] + width / 2 snake_case_ : Optional[int] = anno[2] + height / 2 snake_case_ : Optional[Any] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(lowerCAmelCase__ ) with open(F'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = [] snake_case_ : Optional[int] = [] for label_file in glob.glob(os.path.join(lowerCAmelCase__ , """*.txt""" ) ): snake_case_ : List[str] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(lowerCAmelCase__ ) as in_file: snake_case_ : Optional[Any] = in_file.readlines() snake_case_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , F'''{label_name}.jpg''' ) snake_case_ : List[str] = [] for obj_list in obj_lists: snake_case_ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) snake_case_ : int = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ : str = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ : Any = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ : Optional[int] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowerCAmelCase__ ) labels.append(lowerCAmelCase__ ) return img_paths, labels def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :list[int] , lowerCamelCase_ :tuple[int, int] , lowerCamelCase_ :tuple[float, float] , lowerCamelCase_ :float = 0.0 , ): '''simple docstring''' snake_case_ : List[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case_ : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ : str = int(scale_x * output_size[1] ) snake_case_ : Dict = int(scale_y * output_size[0] ) snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] for i, index in enumerate(lowerCAmelCase__ ): snake_case_ : int = all_img_list[index] path_list.append(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = all_annos[index] snake_case_ : Any = cva.imread(lowerCAmelCase__ ) if i == 0: # top-left snake_case_ : Any = cva.resize(lowerCAmelCase__ , (divid_point_x, divid_point_y) ) snake_case_ : List[str] = img for bbox in img_annos: snake_case_ : Union[str, Any] = bbox[1] * scale_x snake_case_ : int = bbox[2] * scale_y snake_case_ : Union[str, Any] = bbox[3] * scale_x snake_case_ : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ : List[Any] = cva.resize(lowerCAmelCase__ , (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ : Optional[int] = img for bbox in img_annos: snake_case_ : int = scale_x + bbox[1] * (1 - scale_x) snake_case_ : Union[str, Any] = bbox[2] * scale_y snake_case_ : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x) snake_case_ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ : List[Any] = cva.resize(lowerCAmelCase__ , (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ : Tuple = img for bbox in img_annos: snake_case_ : List[str] = bbox[1] * scale_x snake_case_ : Tuple = scale_y + bbox[2] * (1 - scale_y) snake_case_ : Any = bbox[3] * scale_x snake_case_ : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ : Optional[int] = cva.resize( lowerCAmelCase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ : str = img for bbox in img_annos: snake_case_ : str = scale_x + bbox[1] * (1 - scale_x) snake_case_ : str = scale_y + bbox[2] * (1 - scale_y) snake_case_ : List[Any] = scale_x + bbox[3] * (1 - scale_x) snake_case_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def a__ ( self :str ): snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case_ : List[str] = self.in_channels if i == 0 else self.out_channels snake_case_ : Optional[Any] = FlaxResnetBlockaD( in_channels=_UpperCamelCase ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_UpperCamelCase ) snake_case_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_UpperCamelCase ) snake_case_ : Any = resnets snake_case_ : str = attentions if self.add_downsample: snake_case_ : str = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Dict ,_UpperCamelCase :List[str]=True ): snake_case_ : Tuple = () for resnet, attn in zip(self.resnets ,self.attentions ): snake_case_ : Tuple = resnet(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) snake_case_ : str = attn(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : str = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def a__ ( self :List[str] ): snake_case_ : List[str] = [] for i in range(self.num_layers ): snake_case_ : Dict = self.in_channels if i == 0 else self.out_channels snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=_UpperCamelCase ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_UpperCamelCase ) snake_case_ : Optional[Any] = resnets if self.add_downsample: snake_case_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Dict ,_UpperCamelCase :List[str]=True ): snake_case_ : int = () for resnet in self.resnets: snake_case_ : Any = resnet(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: snake_case_ : Any = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def a__ ( self :List[str] ): snake_case_ : List[str] = [] snake_case_ : Dict = [] for i in range(self.num_layers ): snake_case_ : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Any = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_UpperCamelCase ) snake_case_ : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_UpperCamelCase ) snake_case_ : int = resnets snake_case_ : Union[str, Any] = attentions if self.add_upsample: snake_case_ : str = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Union[str, Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Any ,_UpperCamelCase :Union[str, Any]=True ): for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states snake_case_ : int = res_hidden_states_tuple[-1] snake_case_ : str = res_hidden_states_tuple[:-1] snake_case_ : Any = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) snake_case_ : Tuple = resnet(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) snake_case_ : List[str] = attn(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) if self.add_upsample: snake_case_ : Tuple = self.upsamplers_a(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def a__ ( self :Optional[int] ): snake_case_ : Dict = [] for i in range(self.num_layers ): snake_case_ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ : Any = self.prev_output_channel if i == 0 else self.out_channels snake_case_ : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_UpperCamelCase ) snake_case_ : str = resnets if self.add_upsample: snake_case_ : Optional[int] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Union[str, Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Dict=True ): for resnet in self.resnets: # pop res hidden states snake_case_ : int = res_hidden_states_tuple[-1] snake_case_ : List[Any] = res_hidden_states_tuple[:-1] snake_case_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) snake_case_ : str = resnet(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) if self.add_upsample: snake_case_ : Union[str, Any] = self.upsamplers_a(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def a__ ( self :int ): snake_case_ : Union[str, Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] snake_case_ : Optional[int] = [] for _ in range(self.num_layers ): snake_case_ : int = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_UpperCamelCase ) snake_case_ : int = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_UpperCamelCase ) snake_case_ : Dict = resnets snake_case_ : List[Any] = attentions def __call__( self :Dict ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Dict ,_UpperCamelCase :Any=True ): snake_case_ : str = self.resnets[0](_UpperCamelCase ,_UpperCamelCase ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): snake_case_ : Tuple = attn(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) snake_case_ : str = resnet(_UpperCamelCase ,_UpperCamelCase ,deterministic=_UpperCamelCase ) return hidden_states
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self :Optional[int] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[Any]=1_3 ,_UpperCamelCase :List[str]=7 ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Dict=9_9 ,_UpperCamelCase :Optional[Any]=3_2 ,_UpperCamelCase :Tuple=5 ,_UpperCamelCase :List[Any]=4 ,_UpperCamelCase :Any=3_7 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :List[Any]=0.1 ,_UpperCamelCase :Optional[int]=5_1_2 ,_UpperCamelCase :int=1_6 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :Dict=0.02 ,_UpperCamelCase :Dict=4 ,): snake_case_ : Any = parent snake_case_ : Optional[int] = batch_size snake_case_ : int = seq_length snake_case_ : int = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : List[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : int = vocab_size snake_case_ : Tuple = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : Dict = num_choices def a__ ( self :Tuple ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : int = None if self.use_attention_mask: snake_case_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Tuple = None if self.use_token_type_ids: snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case_ : Dict = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=a__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def a__ ( self :Any ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Any = True snake_case_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase : Union[str, Any] = True lowercase : int = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self :List[Any] ): snake_case_ : Dict = FlaxBertModelTester(self ) @slow def a__ ( self :Optional[Any] ): snake_case_ : str = FlaxBertModel.from_pretrained("""bert-base-cased""" ) snake_case_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ )
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' __A : List[str] = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} snake_case_ : Any = 0 snake_case_ : Optional[Any] = 0 while place < len(lowerCamelCase_ ): if (place + 1 < len(lowerCamelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((snake_case_) , (snake_case_)) : Tuple = divmod(lowerCamelCase_ , lowerCamelCase_ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Dict=False , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :int=False ): '''simple docstring''' snake_case_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case_ : Optional[Any] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : Dict = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) snake_case_ : Tuple = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Dict = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Tuple = in_proj_bias[: config.hidden_size] snake_case_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : str = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : int = dct.pop(lowerCamelCase_ ) snake_case_ : List[Any] = val @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowerCamelCase_ ) snake_case_ : Optional[Any] = False snake_case_ : Union[str, Any] = False snake_case_ : Dict = False snake_case_ : Any = False if "vqa" in checkpoint_url: snake_case_ : List[Any] = True snake_case_ : List[Any] = 31_29 snake_case_ : List[Any] = '''huggingface/label-files''' snake_case_ : Union[str, Any] = '''vqa2-id2label.json''' snake_case_ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Optional[int] = ViltForQuestionAnswering(lowerCamelCase_ ) elif "nlvr" in checkpoint_url: snake_case_ : str = True snake_case_ : Optional[Any] = 2 snake_case_ : Optional[Any] = {0: '''False''', 1: '''True'''} snake_case_ : Union[str, Any] = {v: k for k, v in config.idalabel.items()} snake_case_ : int = 3 snake_case_ : int = ViltForImagesAndTextClassification(lowerCamelCase_ ) elif "irtr" in checkpoint_url: snake_case_ : str = True snake_case_ : List[str] = ViltForImageAndTextRetrieval(lowerCamelCase_ ) elif "mlm_itm" in checkpoint_url: snake_case_ : Any = True snake_case_ : int = ViltForMaskedLM(lowerCamelCase_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys snake_case_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" )['''state_dict'''] snake_case_ : Tuple = create_rename_keys(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ ) if mlm_model or irtr_model: snake_case_ : int = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ : str = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCamelCase_ ) # Define processor snake_case_ : List[str] = ViltImageProcessor(size=3_84 ) snake_case_ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ : Union[str, Any] = ViltProcessor(lowerCamelCase_ , lowerCamelCase_ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase_ ).raw ) snake_case_ : Union[str, Any] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCamelCase_ ).raw ) snake_case_ : Union[str, Any] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) snake_case_ : Optional[int] = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Tuple = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ : Dict = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCamelCase_ ).raw ) if mlm_model: snake_case_ : int = '''a bunch of [MASK] laying on a [MASK].''' else: snake_case_ : Optional[int] = '''How many cats are there?''' snake_case_ : Optional[int] = processor(lowerCamelCase_ , lowerCamelCase_ , return_tensors="""pt""" ) snake_case_ : Any = model(**lowerCamelCase_ ) # Verify outputs if mlm_model: snake_case_ : Dict = torch.Size([1, 11, 3_05_22] ) snake_case_ : int = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) # verify masked token prediction equals "cats" snake_case_ : Optional[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ : List[Any] = torch.Size([1, 31_29] ) snake_case_ : str = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCamelCase_ , atol=1E-4 ) # verify vqa prediction equals "2" snake_case_ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ : Union[str, Any] = torch.Size([1, 2] ) snake_case_ : Dict = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __A : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __A : str = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = CLIPConfig lowercase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self :List[str] ,_UpperCamelCase :CLIPConfig ): super().__init__(_A ) snake_case_ : int = CLIPVisionModelWithProjection(config.vision_config ) snake_case_ : List[str] = nn.Linear(config.vision_config.projection_dim ,1 ) snake_case_ : List[str] = nn.Linear(config.vision_config.projection_dim ,1 ) @torch.no_grad() def a__ ( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Dict ,_UpperCamelCase :int=0.5 ,_UpperCamelCase :Dict=0.5 ): snake_case_ : Any = self.vision_model(_A )[0] snake_case_ : Any = self.p_head(_A ) snake_case_ : Any = nsfw_detected.flatten() snake_case_ : str = nsfw_detected > p_threshold snake_case_ : Tuple = nsfw_detected.tolist() if any(_A ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(_A ): if nsfw_detected_: snake_case_ : Any = np.zeros(images[idx].shape ) snake_case_ : List[str] = self.w_head(_A ) snake_case_ : Optional[Any] = watermark_detected.flatten() snake_case_ : int = watermark_detected > w_threshold snake_case_ : str = watermark_detected.tolist() if any(_A ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(_A ): if watermark_detected_: snake_case_ : Optional[int] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
356
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ): '''simple docstring''' snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} snake_case_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ): '''simple docstring''' snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,): super().__init__() snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" ) snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : List[str] = max_source_length snake_case_ : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ : str = tokenizer snake_case_ : str = prefix if n_obs is not None: snake_case_ : int = self.src_lens[:n_obs] snake_case_ : Tuple = src_lang snake_case_ : str = tgt_lang def __len__( self :Any ): return len(self.src_lens ) def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[int] = index + 1 # linecache starts at 1 snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" ) snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer ) snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" ) snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" ) snake_case_ : int = source_inputs["""input_ids"""].squeeze() snake_case_ : str = target_inputs["""input_ids"""].squeeze() snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( _UpperCamelCase :str ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : Optional[int] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : List[Any] = getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case_ : List[str] = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' def remove_articles(lowerCamelCase_ :str ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ :Optional[Any] ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ :Tuple ): snake_case_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ :Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case_ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case_ : Optional[int] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
8
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : str = '▁' __A : Union[str, Any] = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} __A : List[str] = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } __A : Union[str, Any] = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } __A : Tuple = { 'ernie-m-base': 514, 'ernie-m-large': 514, } __A : Union[str, Any] = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str = ['input_ids'] lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = RESOURCE_FILES_NAMES def __init__( self :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str]=None ,_UpperCamelCase :str=False ,_UpperCamelCase :str="utf8" ,_UpperCamelCase :Optional[Any]="[UNK]" ,_UpperCamelCase :Tuple="[SEP]" ,_UpperCamelCase :Any="[PAD]" ,_UpperCamelCase :Optional[int]="[CLS]" ,_UpperCamelCase :Any="[MASK]" ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :List[Any] ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,vocab_file=__snake_case ,encoding=__snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**__snake_case ,) snake_case_ : List[str] = do_lower_case snake_case_ : Union[str, Any] = sentencepiece_model_ckpt snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: snake_case_ : Union[str, Any] = self.load_vocab(filepath=__snake_case ) else: snake_case_ : Tuple = {self.sp_model.id_to_piece(__snake_case ): id for id in range(self.sp_model.get_piece_size() )} snake_case_ : Dict = {v: k for k, v in self.vocab.items()} def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ): if text is None: return None snake_case_ : List[Any] = self.tokenize(__snake_case ) snake_case_ : Union[str, Any] = '', [] for i, ch in enumerate(__snake_case ): if ch in self.SP_CHAR_MAPPING: snake_case_ : List[str] = self.SP_CHAR_MAPPING.get(__snake_case ) else: snake_case_ : Tuple = unicodedata.normalize("""NFKC""" ,__snake_case ) if self.is_whitespace(__snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(__snake_case ) ) snake_case_ : Optional[Any] = normalized_text, [], 0 if self.do_lower_case: snake_case_ : List[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": snake_case_ : Tuple = token[1:] snake_case_ : str = text[offset:].index(__snake_case ) + offset snake_case_ : str = start + len(__snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) snake_case_ : Dict = end return token_mapping @property def a__ ( self :int ): return len(self.vocab ) def a__ ( self :Tuple ): return dict(self.vocab ,**self.added_tokens_encoder ) def __getstate__( self :List[Any] ): snake_case_ : Optional[Any] = self.__dict__.copy() snake_case_ : Union[str, Any] = None return state def __setstate__( self :int ,_UpperCamelCase :Dict ): snake_case_ : Optional[int] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : Optional[int] = {} snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def a__ ( self :int ,_UpperCamelCase :Any ): return "".join((self.SP_CHAR_MAPPING.get(__snake_case ,__snake_case ) for c in text) ) def a__ ( self :Any ,_UpperCamelCase :List[Any] ,_UpperCamelCase :int=False ,_UpperCamelCase :Optional[int]=6_4 ,_UpperCamelCase :List[Any]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: snake_case_ : Dict = True if self.sp_model_kwargs.get("""alpha""" ) is not None: snake_case_ : Union[str, Any] = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: snake_case_ : str = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: snake_case_ : Any = self.sp_model.EncodeAsPieces(__snake_case ) else: snake_case_ : List[Any] = self.sp_model.SampleEncodeAsPieces(__snake_case ,__snake_case ,__snake_case ) snake_case_ : str = [] for pi, piece in enumerate(__snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__snake_case ) and pi != 0: new_pieces.append(__snake_case ) continue else: continue snake_case_ : Optional[Any] = 0 for i, chunk in enumerate(__snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__snake_case ) or self.is_punct(__snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__snake_case ) snake_case_ : int = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) snake_case_ : List[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) snake_case_ : int = i if len(__snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def a__ ( self :List[Any] ,_UpperCamelCase :Dict ): snake_case_ : List[Any] = ''.join(__snake_case ).replace(__snake_case ,""" """ ).strip() return out_string def a__ ( self :Any ,_UpperCamelCase :List[str] ): snake_case_ : str = self.convert_ids_to_tokens(__snake_case ) snake_case_ : Dict = ''.join(__snake_case ).replace(__snake_case ,""" """ ).strip() return out_string def a__ ( self :List[str] ,_UpperCamelCase :Tuple ): return self.vocab.get(__snake_case ,self.vocab.get(self.unk_token ) ) def a__ ( self :Optional[int] ,_UpperCamelCase :int ): return self.reverse_vocab.get(__snake_case ,self.unk_token ) def a__ ( self :str ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] snake_case_ : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def a__ ( self :Union[str, Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Dict=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def a__ ( self :Dict ,_UpperCamelCase :List[Any] ,_UpperCamelCase :int=None ,_UpperCamelCase :Any=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def a__ ( self :List[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__snake_case ) + 1) + [1] * (len(__snake_case ) + 3) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def a__ ( self :Dict ,_UpperCamelCase :Union[str, Any] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def a__ ( self :Any ,_UpperCamelCase :List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def a__ ( self :Dict ,_UpperCamelCase :str ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__snake_case ) == 1: snake_case_ : Optional[Any] = unicodedata.category(__snake_case ) if cat == "Zs": return True return False def a__ ( self :Union[str, Any] ,_UpperCamelCase :Optional[Any] ): snake_case_ : str = {} with io.open(__snake_case ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(__snake_case ): snake_case_ : int = line.rstrip("""\n""" ) snake_case_ : Optional[int] = int(__snake_case ) return token_to_idx def a__ ( self :List[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): snake_case_ : Optional[int] = 0 if os.path.isdir(__snake_case ): snake_case_ : Optional[int] = os.path.join( __snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case_ : Any = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(__snake_case ,"""w""" ,encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() ,key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case_ : Optional[int] = token_index writer.write(token + """\n""" ) index += 1 snake_case_ : Any = os.path.join(__snake_case ,"""sentencepiece.bpe.model""" ) with open(__snake_case ,"""wb""" ) as fi: snake_case_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (vocab_file,)
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import math def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False snake_case_ : Tuple = range(3 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any]=1 , **lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = factor * value snake_case_ : Any = value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCAmelCase__ ) return value
358
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __UpperCamelCase ( __a ): lowercase : "DiagonalGaussianDistribution" class __UpperCamelCase ( __a , __a ): lowercase : List[Any] = True @register_to_config def __init__( self :str ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 3 ,_UpperCamelCase :Tuple[str] = ("DownEncoderBlock2D",) ,_UpperCamelCase :Tuple[str] = ("UpDecoderBlock2D",) ,_UpperCamelCase :Tuple[int] = (6_4,) ,_UpperCamelCase :int = 1 ,_UpperCamelCase :str = "silu" ,_UpperCamelCase :int = 4 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :float = 0.1_82_15 ,): super().__init__() # pass init params to Encoder snake_case_ : Optional[int] = Encoder( in_channels=a__ ,out_channels=a__ ,down_block_types=a__ ,block_out_channels=a__ ,layers_per_block=a__ ,act_fn=a__ ,norm_num_groups=a__ ,double_z=a__ ,) # pass init params to Decoder snake_case_ : Dict = Decoder( in_channels=a__ ,out_channels=a__ ,up_block_types=a__ ,block_out_channels=a__ ,layers_per_block=a__ ,norm_num_groups=a__ ,act_fn=a__ ,) snake_case_ : List[Any] = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) snake_case_ : Optional[int] = nn.Convad(a__ ,a__ ,1 ) snake_case_ : Dict = False snake_case_ : Union[str, Any] = False # only relevant if vae tiling is enabled snake_case_ : str = self.config.sample_size snake_case_ : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) snake_case_ : Dict = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) snake_case_ : int = 0.25 def a__ ( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :List[Any]=False ): if isinstance(a__ ,(Encoder, Decoder) ): snake_case_ : Any = value def a__ ( self :int ,_UpperCamelCase :bool = True ): snake_case_ : Dict = use_tiling def a__ ( self :Optional[Any] ): self.enable_tiling(a__ ) def a__ ( self :List[Any] ): snake_case_ : int = True def a__ ( self :Optional[int] ): snake_case_ : Tuple = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self :int ): snake_case_ : int = {} def fn_recursive_add_processors(_UpperCamelCase :str ,_UpperCamelCase :torch.nn.Module ,_UpperCamelCase :Dict[str, AttentionProcessor] ): if hasattr(a__ ,"""set_processor""" ): snake_case_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' ,a__ ,a__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ ,a__ ,a__ ) return processors def a__ ( self :List[str] ,_UpperCamelCase :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): snake_case_ : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(a__ ,a__ ) and len(a__ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(a__ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCamelCase :str ,_UpperCamelCase :torch.nn.Module ,_UpperCamelCase :List[Any] ): if hasattr(a__ ,"""set_processor""" ): if not isinstance(a__ ,a__ ): module.set_processor(a__ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' ,a__ ,a__ ) for name, module in self.named_children(): fn_recursive_attn_processor(a__ ,a__ ,a__ ) def a__ ( self :Dict ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self :Optional[Any] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a__ ,return_dict=a__ ) if self.use_slicing and x.shape[0] > 1: snake_case_ : Union[str, Any] = [self.encoder(a__ ) for x_slice in x.split(1 )] snake_case_ : Any = torch.cat(a__ ) else: snake_case_ : Union[str, Any] = self.encoder(a__ ) snake_case_ : Dict = self.quant_conv(a__ ) snake_case_ : Union[str, Any] = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a__ ,return_dict=a__ ) snake_case_ : List[Any] = self.post_quant_conv(a__ ) snake_case_ : Tuple = self.decoder(a__ ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) @apply_forward_hook def a__ ( self :str ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ): if self.use_slicing and z.shape[0] > 1: snake_case_ : Union[str, Any] = [self._decode(a__ ).sample for z_slice in z.split(1 )] snake_case_ : Dict = torch.cat(a__ ) else: snake_case_ : Optional[int] = self._decode(a__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a__ ) def a__ ( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Dict ): snake_case_ : Any = min(a.shape[2] ,b.shape[2] ,a__ ) for y in range(a__ ): snake_case_ : int = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Any ): snake_case_ : str = min(a.shape[3] ,b.shape[3] ,a__ ) for x in range(a__ ): snake_case_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self :int ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ): snake_case_ : List[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) snake_case_ : List[str] = int(self.tile_latent_min_size * self.tile_overlap_factor ) snake_case_ : List[str] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. snake_case_ : Optional[Any] = [] for i in range(0 ,x.shape[2] ,a__ ): snake_case_ : str = [] for j in range(0 ,x.shape[3] ,a__ ): snake_case_ : Tuple = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] snake_case_ : int = self.encoder(a__ ) snake_case_ : Optional[int] = self.quant_conv(a__ ) row.append(a__ ) rows.append(a__ ) snake_case_ : str = [] for i, row in enumerate(a__ ): snake_case_ : List[str] = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case_ : Optional[Any] = self.blend_v(rows[i - 1][j] ,a__ ,a__ ) if j > 0: snake_case_ : str = self.blend_h(row[j - 1] ,a__ ,a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ ,dim=3 ) ) snake_case_ : Union[str, Any] = torch.cat(a__ ,dim=2 ) snake_case_ : int = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ): snake_case_ : Optional[int] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) snake_case_ : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) snake_case_ : Tuple = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. snake_case_ : Union[str, Any] = [] for i in range(0 ,z.shape[2] ,a__ ): snake_case_ : List[str] = [] for j in range(0 ,z.shape[3] ,a__ ): snake_case_ : List[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] snake_case_ : Optional[int] = self.post_quant_conv(a__ ) snake_case_ : Dict = self.decoder(a__ ) row.append(a__ ) rows.append(a__ ) snake_case_ : Any = [] for i, row in enumerate(a__ ): snake_case_ : Any = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case_ : Dict = self.blend_v(rows[i - 1][j] ,a__ ,a__ ) if j > 0: snake_case_ : Optional[int] = self.blend_h(row[j - 1] ,a__ ,a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ ,dim=3 ) ) snake_case_ : Tuple = torch.cat(a__ ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def a__ ( self :Dict ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :Optional[torch.Generator] = None ,): snake_case_ : int = sample snake_case_ : Optional[int] = self.encode(a__ ).latent_dist if sample_posterior: snake_case_ : Optional[Any] = posterior.sample(generator=a__ ) else: snake_case_ : List[str] = posterior.mode() snake_case_ : Optional[Any] = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
359
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def UpperCAmelCase ( lowerCamelCase_ :dict ): '''simple docstring''' return (data["data"], data["target"]) def UpperCAmelCase ( lowerCamelCase_ :np.ndarray , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :np.ndarray ): '''simple docstring''' snake_case_ : List[str] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase_ , lowerCamelCase_ ) # Predict target for test data snake_case_ : Any = xgb.predict(lowerCamelCase_ ) snake_case_ : Dict = predictions.reshape(len(lowerCamelCase_ ) , 1 ) return predictions def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : str = fetch_california_housing() snake_case_ : List[str] = data_handling(lowerCamelCase_ ) snake_case_ : Optional[Any] = train_test_split( lowerCamelCase_ , lowerCamelCase_ , test_size=0.25 , random_state=1 ) snake_case_ : str = xgboost(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCamelCase_ , lowerCamelCase_ )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCamelCase_ , lowerCamelCase_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCamelCase ( lowercase__ ): lowercase : List[Any] = 'canine' def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[str] = layer_norm_eps # Character config: snake_case_ : Any = downsampling_rate snake_case_ : List[str] = upsampling_kernel_size snake_case_ : int = num_hash_functions snake_case_ : Tuple = num_hash_buckets snake_case_ : Tuple = local_transformer_stride
8
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Tuple = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) snake_case_ : Optional[Any] = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case_ : Union[str, Any] = None # the split name of split_dict takes over the name of the split info object snake_case_ : Tuple = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="""my_dataset""" )] ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
361
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
8
0
'''simple docstring''' __A : Tuple = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __A : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __A : int = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): snake_case_ : int = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case_ : Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case_ : Optional[Any] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE_ ) return next_generation def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : int = [] for _ in range(SCREAMING_SNAKE_CASE_ ): # Create output image snake_case_ : List[str] = Image.new("""RGB""" , (len(cells[0] ), len(SCREAMING_SNAKE_CASE_ )) ) snake_case_ : Optional[Any] = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE_ ) ): for y in range(len(cells[0] ) ): snake_case_ : List[Any] = 2_55 - cells[y][x] * 2_55 snake_case_ : str = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE_ ) snake_case_ : Union[str, Any] = new_generation(SCREAMING_SNAKE_CASE_ ) return images if __name__ == "__main__": __A : List[Any] = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
363
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=None , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = [x.strip() for x in open(snake_case__ ).readlines()] snake_case_ : Dict = [x.strip() for x in open(snake_case__ ).readlines()][: len(snake_case__ )] snake_case_ : List[str] = calculate_rouge(snake_case__ , snake_case__ , **snake_case__ ) if save_path is not None: save_json(snake_case__ , snake_case__ , indent=snake_case__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : int = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from __future__ import annotations __A : List[str] = 10 def UpperCAmelCase_ ( lowerCamelCase_ :list[int] ): '''simple docstring''' snake_case_ : Union[str, Any] = 1 snake_case_ : Tuple = max(lowerCAmelCase__ ) while placement <= max_digit: # declare and initialize empty buckets snake_case_ : List[Any] = [[] for _ in range(lowerCAmelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: snake_case_ : Union[str, Any] = int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase__ ) # put each buckets' contents into list_of_ints snake_case_ : Any = 0 for b in range(lowerCAmelCase__ ): for i in buckets[b]: snake_case_ : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A : Any = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A : List[str] = [ord(letter) for letter in string.ascii_lowercase] __A : Any = {ord(char) for char in VALID_CHARS} __A : Union[str, Any] = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : str = "" snake_case_ : int snake_case_ : int snake_case_ : int for keychar, cipherchar in zip(cycle(lowerCamelCase_ ) , lowerCamelCase_ ): snake_case_ : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase_ ) return decoded def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : list[str] = [] for key in product(lowerCamelCase_ , repeat=3 ): snake_case_ : str = try_key(lowerCamelCase_ , lowerCamelCase_ ) if encoded is not None: possibles.append(lowerCamelCase_ ) return possibles def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase ( lowerCamelCase_ :str = "p059_cipher.txt" ): '''simple docstring''' snake_case_ : list[int] snake_case_ : list[str] snake_case_ : str snake_case_ : str snake_case_ : str = Path(lowerCamelCase_ ).parent.joinpath(lowerCamelCase_ ).read_text(encoding="""utf-8""" ) snake_case_ : List[Any] = [int(lowerCamelCase_ ) for number in data.strip().split(""",""" )] snake_case_ : Union[str, Any] = filter_valid_chars(lowerCamelCase_ ) for common_word in COMMON_WORDS: snake_case_ : str = filter_common_word(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: break snake_case_ : Tuple = possibles[0] return sum(ord(lowerCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( UpperCamelCase__ , unittest.TestCase ): lowercase : Tuple = KandinskyInpaintPipeline lowercase : Optional[int] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] lowercase : Dict = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] lowercase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase : Tuple = False @property def a__ ( self :Dict ): return 3_2 @property def a__ ( self :Union[str, Any] ): return 3_2 @property def a__ ( self :List[Any] ): return self.time_input_dim @property def a__ ( self :Tuple ): return self.time_input_dim * 4 @property def a__ ( self :str ): return 1_0_0 @property def a__ ( self :Tuple ): snake_case_ : Tuple = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def a__ ( self :List[Any] ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_0_0_5 ,) snake_case_ : Any = MultilingualCLIP(__a ) snake_case_ : List[Any] = text_encoder.eval() return text_encoder @property def a__ ( self :Tuple ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ : str = UNetaDConditionModel(**__a ) return model @property def a__ ( self :str ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self :int ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self :Optional[int] ): snake_case_ : int = self.dummy_text_encoder snake_case_ : Union[str, Any] = self.dummy_tokenizer snake_case_ : int = self.dummy_unet snake_case_ : List[str] = self.dummy_movq snake_case_ : Any = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""linear""" ,beta_start=0.0_00_85 ,beta_end=0.0_12 ,clip_sample=__a ,set_alpha_to_one=__a ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=__a ,) snake_case_ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self :Union[str, Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :Any=0 ): snake_case_ : str = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(__a ) ).to(__a ) snake_case_ : Any = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(__a ) # create init_image snake_case_ : Any = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(__a ) ).to(__a ) snake_case_ : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask snake_case_ : Tuple = np.ones((6_4, 6_4) ,dtype=np.floataa ) snake_case_ : List[Any] = 0 if str(__a ).startswith("""mps""" ): snake_case_ : List[str] = torch.manual_seed(__a ) else: snake_case_ : List[str] = torch.Generator(device=__a ).manual_seed(__a ) snake_case_ : Any = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def a__ ( self :Optional[Any] ): snake_case_ : Dict = """cpu""" snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : List[Any] = self.pipeline_class(**__a ) snake_case_ : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) snake_case_ : List[Any] = pipe(**self.get_dummy_inputs(__a ) ) snake_case_ : Union[str, Any] = output.images snake_case_ : Any = pipe( **self.get_dummy_inputs(__a ) ,return_dict=__a ,)[0] snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Any = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def a__ ( self :Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ : str = np.ones((7_6_8, 7_6_8) ,dtype=np.floataa ) snake_case_ : Tuple = 0 snake_case_ : Dict = """a hat""" snake_case_ : Dict = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(__a ) snake_case_ : List[str] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) snake_case_ : Union[str, Any] = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) snake_case_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ , snake_case_ : int = pipe_prior( __a ,generator=__a ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() snake_case_ : Optional[Any] = pipeline( __a ,image=__a ,mask_image=__a ,image_embeds=__a ,negative_image_embeds=__a ,generator=__a ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type="""np""" ,) snake_case_ : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__a ,__a )
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : Tuple = sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCamelCase_ : x[0] / x[1] , reverse=lowerCAmelCase_ ) snake_case_ : List[Any] = [i[0] for i in r], [i[1] for i in r] snake_case_ : str = list(accumulate(lowerCAmelCase_ ) ) snake_case_ : List[Any] = bisect(lowerCAmelCase_ , lowerCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionInpaintPipeline lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Optional[int] = frozenset([] ) def a__ ( self :Any ): torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,) snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self :Any ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self :Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a__ ( self :Tuple ): snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" ) snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,) snake_case_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
8
0
'''simple docstring''' from __future__ import annotations from math import pi def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Any ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __A : Optional[int] = { # 1536-bit 5: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), '''generator''': 2, }, } class __UpperCamelCase : def __init__( self :Tuple ,_UpperCamelCase :int = 1_4 ): if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case_ : List[Any] = primes[group]["""prime"""] snake_case_ : Any = primes[group]["""generator"""] snake_case_ : Tuple = int(hexlify(urandom(3_2 ) ) ,base=1_6 ) def a__ ( self :List[str] ): return hex(self.__private_key )[2:] def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = pow(self.generator ,self.__private_key ,self.prime ) return hex(__snake_case )[2:] def a__ ( self :Optional[int] ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__snake_case ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def a__ ( self :Optional[Any] ,_UpperCamelCase :str ): snake_case_ : Dict = int(__snake_case ,base=1_6 ) if not self.is_valid_public_key(__snake_case ): raise ValueError("""Invalid public key""" ) snake_case_ : int = pow(__snake_case ,self.__private_key ,self.prime ) return shaaaa(str(__snake_case ).encode() ).hexdigest() @staticmethod def a__ ( _UpperCamelCase :int ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__snake_case ,(prime - 1) // 2 ,__snake_case ) == 1 ) @staticmethod def a__ ( _UpperCamelCase :str ,_UpperCamelCase :str ,_UpperCamelCase :int = 1_4 ): snake_case_ : Union[str, Any] = int(__snake_case ,base=1_6 ) snake_case_ : Optional[int] = int(__snake_case ,base=1_6 ) snake_case_ : Optional[Any] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__snake_case ,__snake_case ): raise ValueError("""Invalid public key""" ) snake_case_ : Optional[Any] = pow(__snake_case ,__snake_case ,__snake_case ) return shaaaa(str(__snake_case ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int]=1_3 ,_UpperCamelCase :int=7 ,_UpperCamelCase :Optional[Any]=6 ,_UpperCamelCase :Union[str, Any]=1_7 ,_UpperCamelCase :Union[str, Any]=2_3 ,_UpperCamelCase :Optional[int]=1_1 ,_UpperCamelCase :Optional[int]=True ,): snake_case_ : List[str] = parent snake_case_ : str = batch_size snake_case_ : List[str] = seq_length snake_case_ : List[Any] = act_dim snake_case_ : Optional[Any] = state_dim snake_case_ : Union[str, Any] = hidden_size snake_case_ : List[str] = max_length snake_case_ : str = is_training def a__ ( self :List[str] ): snake_case_ : Tuple = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) snake_case_ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) snake_case_ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) snake_case_ : int = floats_tensor((self.batch_size, self.seq_length, 1) ) snake_case_ : Optional[int] = ids_tensor((self.batch_size, self.seq_length) ,vocab_size=1_0_0_0 ) snake_case_ : Optional[Any] = random_attention_mask((self.batch_size, self.seq_length) ) snake_case_ : Dict = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ ( self :Optional[Any] ): return DecisionTransformerConfig( batch_size=self.batch_size ,seq_length=self.seq_length ,act_dim=self.act_dim ,state_dim=self.state_dim ,hidden_size=self.hidden_size ,max_length=self.max_length ,) def a__ ( self :int ,_UpperCamelCase :str ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[str] ,): snake_case_ : Optional[Any] = DecisionTransformerModel(config=A_ ) model.to(A_ ) model.eval() snake_case_ : List[str] = model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) self.parent.assertEqual(result.state_preds.shape ,states.shape ) self.parent.assertEqual(result.action_preds.shape ,actions.shape ) self.parent.assertEqual(result.return_preds.shape ,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ ( self :Optional[Any] ): snake_case_ : Tuple = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : int = config_and_inputs snake_case_ : Any = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase : Tuple = (DecisionTransformerModel,) if is_torch_available() else () lowercase : Dict = () lowercase : int = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : Union[str, Any] = False lowercase : Optional[Any] = False lowercase : Dict = False lowercase : Union[str, Any] = False lowercase : Optional[Any] = False lowercase : int = False lowercase : Any = False def a__ ( self :Tuple ): snake_case_ : Dict = DecisionTransformerModelTester(self ) snake_case_ : Dict = ConfigTester(self ,config_class=A_ ,hidden_size=3_7 ) def a__ ( self :str ): self.config_tester.run_common_tests() def a__ ( self :Tuple ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def a__ ( self :Tuple ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : List[str] = DecisionTransformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self :List[str] ): snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(A_ ) snake_case_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Optional[int] = [*signature.parameters.keys()] snake_case_ : Dict = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(A_ )] ,A_ ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Tuple ): snake_case_ : Dict = 2 # number of steps of autoregressive prediction we will perform snake_case_ : Optional[Any] = 1_0 # defined by the RL environment, may be normalized snake_case_ : Tuple = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) snake_case_ : Dict = model.to(A_ ) snake_case_ : Optional[Any] = model.config torch.manual_seed(0 ) snake_case_ : int = torch.randn(1 ,1 ,config.state_dim ).to(device=A_ ,dtype=torch.floataa ) # env.reset() snake_case_ : str = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] ,device=A_ ) snake_case_ : Tuple = torch.tensor(A_ ,device=A_ ,dtype=torch.floataa ).reshape(1 ,1 ,1 ) snake_case_ : Any = state snake_case_ : List[Any] = torch.zeros(1 ,0 ,config.act_dim ,device=A_ ,dtype=torch.floataa ) snake_case_ : Dict = torch.zeros(1 ,0 ,device=A_ ,dtype=torch.floataa ) snake_case_ : List[Any] = torch.tensor(0 ,device=A_ ,dtype=torch.long ).reshape(1 ,1 ) for step in range(A_ ): snake_case_ : Optional[int] = torch.cat([actions, torch.zeros(1 ,1 ,config.act_dim ,device=A_ )] ,dim=1 ) snake_case_ : str = torch.cat([rewards, torch.zeros(1 ,1 ,device=A_ )] ,dim=1 ) snake_case_ : Tuple = torch.ones(1 ,states.shape[1] ).to(dtype=torch.long ,device=states.device ) with torch.no_grad(): snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = model( states=A_ ,actions=A_ ,rewards=A_ ,returns_to_go=A_ ,timesteps=A_ ,attention_mask=A_ ,return_dict=A_ ,) self.assertEqual(action_pred.shape ,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] ,expected_outputs[step] ,atol=1E-4 ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = ( # env.step(action) torch.randn(1 ,1 ,config.state_dim ).to(device=A_ ,dtype=torch.floataa ), 1.0, False, {}, ) snake_case_ : Any = action_pred[0, -1] snake_case_ : Union[str, Any] = torch.cat([states, state] ,dim=1 ) snake_case_ : Dict = returns_to_go[0, -1] - reward snake_case_ : Any = torch.cat([returns_to_go, pred_return.reshape(1 ,1 ,1 )] ,dim=1 ) snake_case_ : List[str] = torch.cat( [timesteps, torch.ones((1, 1) ,device=A_ ,dtype=torch.long ) * (step + 1)] ,dim=1 )
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __A : Tuple = True from torch.cuda.amp import autocast __A : str = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : Optional[bool] = field( default=lowercase__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase : Optional[bool] = field( default=lowercase__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowercase : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) lowercase : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) lowercase : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCAmelCase ( lowerCamelCase_ :ModelArguments , lowerCamelCase_ :TrainingArguments ): '''simple docstring''' logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case_ : Dict = logging.WARNING if model_args.verbose_logging: snake_case_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case_ : int = logging.INFO logger.setLevel(lowerCamelCase_ ) @dataclass class __UpperCamelCase : lowercase : str = field( default=lowercase__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowercase : bool = field( default=lowercase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowercase : Optional[int] = field( default=lowercase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase : Optional[float] = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __UpperCamelCase : lowercase : WavaVecaForPreTraining lowercase : WavaVecaFeatureExtractor lowercase : Union[bool, str] = "longest" lowercase : Optional[int] = None lowercase : Optional[int] = None def __call__( self :str ,_UpperCamelCase :List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format snake_case_ : int = self.feature_extractor.pad( _UpperCamelCase ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) snake_case_ : Tuple = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) snake_case_ : List[Any] = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case_ : int = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) snake_case_ : List[str] = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case_ : Tuple = 1 snake_case_ : Dict = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=_UpperCamelCase ,min_masks=2 ,) return batch class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,*_UpperCamelCase :List[Any] ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :Optional[Any]=1.0 ,**_UpperCamelCase :Tuple ): super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = 0 snake_case_ : List[str] = max_gumbel_temp snake_case_ : Union[str, Any] = min_gumbel_temp snake_case_ : List[str] = gumbel_temp_decay def a__ ( self :int ,_UpperCamelCase :nn.Module ,_UpperCamelCase :Dict[str, Union[torch.Tensor, Any]] ): model.train() snake_case_ : Any = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): snake_case_ : Tuple = self.compute_loss(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : Optional[int] = self.compute_loss(_UpperCamelCase ,_UpperCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case_ : Dict = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ : Union[str, Any] = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: snake_case_ : Optional[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ : str = parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase_ , lowerCamelCase_ ) # Downloading and loading a dataset from the hub. snake_case_ : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case_ : Tuple = DatasetDict() snake_case_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) snake_case_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case_ : List[Any] = DatasetDict() snake_case_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) snake_case_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase_ ) def prepare_dataset(lowerCamelCase_ :List[Any] ): # check that all files have the correct sampling rate snake_case_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case_ : Union[str, Any] = datasets.map( lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long snake_case_ : Optional[Any] = vectorized_datasets.filter( lambda lowerCamelCase_ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase_ :Dict ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case_ : Optional[Any] = vectorized_datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case_ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) snake_case_ : Optional[Any] = WavaVecaForPreTraining(lowerCamelCase_ ) snake_case_ : List[Any] = DataCollatorForWavaVecaPretraining(model=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) snake_case_ : Optional[int] = WavaVecaPreTrainer( model=lowerCamelCase_ , data_collator=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=lowerCamelCase_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if num < 0: return False snake_case_ : int = num snake_case_ : int = 0 while num > 0: snake_case_ : List[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : int = XLMTokenizer lowercase : Tuple = False def a__ ( self :List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case_ : str = dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) snake_case_ : Optional[int] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] snake_case_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) with open(self.merges_file ,"""w""" ) as fp: fp.write("""\n""".join(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :List[str] ): snake_case_ : Union[str, Any] = """lower newer""" snake_case_ : int = """lower newer""" return input_text, output_text def a__ ( self :str ): snake_case_ : Tuple = XLMTokenizer(self.vocab_file ,self.merges_file ) snake_case_ : str = """lower""" snake_case_ : Union[str, Any] = ["""low""", """er</w>"""] snake_case_ : str = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = tokens + ["""<unk>"""] snake_case_ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) @slow def a__ ( self :Optional[int] ): snake_case_ : str = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) snake_case_ : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=_UpperCamelCase ) snake_case_ : List[Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_UpperCamelCase ) snake_case_ : int = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ,_UpperCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : int = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'vit_msn' def __init__( self :int ,_UpperCamelCase :str=7_6_8 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :Optional[Any]=1_2 ,_UpperCamelCase :str=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Any=0.0 ,_UpperCamelCase :Dict=0.02 ,_UpperCamelCase :Tuple=1E-0_6 ,_UpperCamelCase :List[str]=2_2_4 ,_UpperCamelCase :int=1_6 ,_UpperCamelCase :Any=3 ,_UpperCamelCase :Tuple=True ,**_UpperCamelCase :Optional[Any] ,): super().__init__(**_UpperCamelCase ) snake_case_ : int = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Dict = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Tuple = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : Union[str, Any] = image_size snake_case_ : Dict = patch_size snake_case_ : Tuple = num_channels snake_case_ : str = qkv_bias
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __UpperCamelCase : @property def a__ ( self :Optional[Any] ): return self.get_dummy_input() @property def a__ ( self :int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def a__ ( self :List[Any] ,_UpperCamelCase :str=True ,_UpperCamelCase :int=False ,_UpperCamelCase :Any=False ,_UpperCamelCase :List[str]=False ,): snake_case_ : str = 4 snake_case_ : int = 3_2 snake_case_ : Optional[Any] = (3_2, 3_2) snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Any = torch.device(_UpperCamelCase ) snake_case_ : Optional[Any] = (batch_size, num_channels) + sizes snake_case_ : List[str] = randn_tensor(_UpperCamelCase ,generator=_UpperCamelCase ,device=_UpperCamelCase ) snake_case_ : Union[str, Any] = {"""hidden_states""": hidden_states} if include_temb: snake_case_ : Any = 1_2_8 snake_case_ : Union[str, Any] = randn_tensor((batch_size, temb_channels) ,generator=_UpperCamelCase ,device=_UpperCamelCase ) if include_res_hidden_states_tuple: snake_case_ : Dict = torch.manual_seed(1 ) snake_case_ : List[str] = (randn_tensor(_UpperCamelCase ,generator=_UpperCamelCase ,device=_UpperCamelCase ),) if include_encoder_hidden_states: snake_case_ : Dict = floats_tensor((batch_size, 3_2, 3_2) ).to(_UpperCamelCase ) if include_skip_sample: snake_case_ : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) ,generator=_UpperCamelCase ,device=_UpperCamelCase ) return dummy_input def a__ ( self :Optional[Any] ): snake_case_ : Optional[Any] = { """in_channels""": 3_2, """out_channels""": 3_2, """temb_channels""": 1_2_8, } if self.block_type == "up": snake_case_ : Any = 3_2 if self.block_type == "mid": init_dict.pop("""out_channels""" ) snake_case_ : Tuple = self.dummy_input return init_dict, inputs_dict def a__ ( self :Union[str, Any] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() snake_case_ : List[str] = self.block_class(**_UpperCamelCase ) unet_block.to(_UpperCamelCase ) unet_block.eval() with torch.no_grad(): snake_case_ : Optional[int] = unet_block(**_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : str = output[0] self.assertEqual(output.shape ,self.output_shape ) snake_case_ : Tuple = output[0, -1, -3:, -3:] snake_case_ : Optional[Any] = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) assert torch_all_close(output_slice.flatten() ,_UpperCamelCase ,atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" ,"""Training is not supported in mps""" ) def a__ ( self :Optional[int] ): snake_case_ : List[str] = self.prepare_init_args_and_inputs_for_common() snake_case_ : List[Any] = self.block_class(**_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ : Union[str, Any] = model(**_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Tuple = output[0] snake_case_ : Optional[int] = torch.device(_UpperCamelCase ) snake_case_ : Any = randn_tensor(output.shape ,device=_UpperCamelCase ) snake_case_ : Union[str, Any] = torch.nn.functional.mse_loss(_UpperCamelCase ,_UpperCamelCase ) loss.backward()
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def UpperCAmelCase ( lowerCamelCase_ :np.ndarray ): '''simple docstring''' snake_case_ : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def UpperCAmelCase ( lowerCamelCase_ :np.ndarray ): '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def UpperCAmelCase ( lowerCamelCase_ :np.ndarray , lowerCamelCase_ :np.ndarray ): '''simple docstring''' snake_case_ : Union[str, Any] = np.zeros_like(lowerCamelCase_ ) snake_case_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image snake_case_ : List[str] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): snake_case_ : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() snake_case_ : Dict = int(summation > 0 ) return output if __name__ == "__main__": # read original image __A : Optional[int] = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __A : int = np.array(Image.open(lena_path)) # kernel to be applied __A : Optional[int] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __A : int = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __A : int = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
356
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ): '''simple docstring''' snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} snake_case_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ): '''simple docstring''' snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,): super().__init__() snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" ) snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : List[str] = max_source_length snake_case_ : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ : str = tokenizer snake_case_ : str = prefix if n_obs is not None: snake_case_ : int = self.src_lens[:n_obs] snake_case_ : Tuple = src_lang snake_case_ : str = tgt_lang def __len__( self :Any ): return len(self.src_lens ) def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[int] = index + 1 # linecache starts at 1 snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" ) snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer ) snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" ) snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" ) snake_case_ : int = source_inputs["""input_ids"""].squeeze() snake_case_ : str = target_inputs["""input_ids"""].squeeze() snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( _UpperCamelCase :str ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : Optional[int] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : List[Any] = getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case_ : List[str] = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' def remove_articles(lowerCamelCase_ :str ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ :Optional[Any] ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ :Tuple ): snake_case_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ :Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case_ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case_ : Optional[int] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
8
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __UpperCamelCase ( lowercase__ ): lowercase : List[str] = 'Wav2Vec2FeatureExtractor' lowercase : Union[str, Any] = 'AutoTokenizer' def __init__( self :Optional[Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :List[Any] ): super().__init__(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = self.feature_extractor snake_case_ : Dict = False @classmethod def a__ ( cls :Optional[int] ,_UpperCamelCase :str ,**_UpperCamelCase :List[str] ): try: return super().from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,_UpperCamelCase ,) snake_case_ : Dict = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) return cls(feature_extractor=_UpperCamelCase ,tokenizer=_UpperCamelCase ) def __call__( self :Optional[Any] ,*_UpperCamelCase :Any ,**_UpperCamelCase :Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase ,**_UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) snake_case_ : Optional[Any] = kwargs.pop("""raw_speech""" ) else: snake_case_ : Any = kwargs.pop("""audio""" ,_UpperCamelCase ) snake_case_ : str = kwargs.pop("""sampling_rate""" ,_UpperCamelCase ) snake_case_ : Optional[Any] = kwargs.pop("""text""" ,_UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ : Tuple = args[0] snake_case_ : int = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case_ : Optional[Any] = self.feature_extractor(_UpperCamelCase ,*_UpperCamelCase ,sampling_rate=_UpperCamelCase ,**_UpperCamelCase ) if text is not None: snake_case_ : Any = self.tokenizer(_UpperCamelCase ,**_UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case_ : str = encodings["""input_ids"""] return inputs def a__ ( self :Dict ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Any = kwargs.pop("""input_features""" ,_UpperCamelCase ) snake_case_ : List[Any] = kwargs.pop("""labels""" ,_UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ : Any = args[0] snake_case_ : List[str] = args[1:] if input_features is not None: snake_case_ : int = self.feature_extractor.pad(_UpperCamelCase ,*_UpperCamelCase ,**_UpperCamelCase ) if labels is not None: snake_case_ : Optional[int] = self.tokenizer.pad(_UpperCamelCase ,**_UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: snake_case_ : List[Any] = labels["""input_ids"""] return input_features def a__ ( self :List[Any] ,*_UpperCamelCase :Any ,**_UpperCamelCase :int ): return self.tokenizer.batch_decode(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Optional[Any] ,*_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Optional[int] ): return self.tokenizer.decode(*_UpperCamelCase ,**_UpperCamelCase ) @contextmanager def a__ ( self :List[str] ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) snake_case_ : str = True snake_case_ : Optional[int] = self.tokenizer yield snake_case_ : Any = self.feature_extractor snake_case_ : str = False
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Any ): snake_case_ : Any = data snake_case_ : Node | None = None class __UpperCamelCase : def __init__( self :List[Any] ): snake_case_ : Dict = None snake_case_ : Dict = None def __iter__( self :Any ): snake_case_ : Dict = self.head while self.head: yield node.data snake_case_ : Tuple = node.next if node == self.head: break def __len__( self :int ): return sum(1 for _ in self ) def __repr__( self :List[str] ): return "->".join(str(_UpperCamelCase ) for item in iter(self ) ) def a__ ( self :str ,_UpperCamelCase :Any ): self.insert_nth(len(self ) ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Any ): self.insert_nth(0 ,_UpperCamelCase ) def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Any ): if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Any = Node(_UpperCamelCase ) if self.head is None: snake_case_ : str = new_node # first node points itself snake_case_ : Union[str, Any] = new_node elif index == 0: # insert at head snake_case_ : List[str] = self.head snake_case_ : Any = new_node else: snake_case_ : int = self.head for _ in range(index - 1 ): snake_case_ : Optional[Any] = temp.next snake_case_ : Optional[int] = temp.next snake_case_ : Tuple = new_node if index == len(self ) - 1: # insert at tail snake_case_ : Union[str, Any] = new_node def a__ ( self :Tuple ): return self.delete_nth(0 ) def a__ ( self :List[str] ): return self.delete_nth(len(self ) - 1 ) def a__ ( self :int ,_UpperCamelCase :int = 0 ): if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Optional[int] = self.head if self.head == self.tail: # just one node snake_case_ : Any = None elif index == 0: # delete head node snake_case_ : int = self.tail.next.next snake_case_ : Optional[int] = self.head.next else: snake_case_ : Optional[int] = self.head for _ in range(index - 1 ): snake_case_ : Optional[int] = temp.next snake_case_ : List[str] = temp.next snake_case_ : Any = temp.next.next if index == len(self ) - 1: # delete at tail snake_case_ : List[Any] = temp return delete_node.data def a__ ( self :List[Any] ): return len(self ) == 0 def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = CircularLinkedList() assert len(lowerCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCamelCase_ ) == i circular_linked_list.insert_nth(lowerCamelCase_ , i + 1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionLatentUpscalePipeline lowercase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } lowercase : str = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} lowercase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : str = frozenset([] ) lowercase : Optional[int] = True @property def a__ ( self :int ): snake_case_ : List[str] = 1 snake_case_ : int = 4 snake_case_ : Optional[Any] = (1_6, 1_6) snake_case_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def a__ ( self :Tuple ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = UNetaDConditionModel( act_fn="""gelu""" ,attention_head_dim=8 ,norm_num_groups=_UpperCamelCase ,block_out_channels=[3_2, 3_2, 6_4, 6_4] ,time_cond_proj_dim=1_6_0 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=3_2 ,down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) ,in_channels=8 ,mid_block_type=_UpperCamelCase ,only_cross_attention=_UpperCamelCase ,out_channels=5 ,resnet_time_scale_shift="""scale_shift""" ,time_embedding_type="""fourier""" ,timestep_post_act="""gelu""" ,up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") ,) snake_case_ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) snake_case_ : List[Any] = EulerDiscreteScheduler(prediction_type="""sample""" ) snake_case_ : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""quick_gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Any = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : Optional[int] = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int=0 ): if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def a__ ( self :List[str] ): snake_case_ : Any = """cpu""" snake_case_ : str = self.get_dummy_components() snake_case_ : str = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : List[Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Optional[Any] = pipe(**_UpperCamelCase ).images snake_case_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 2_5_6, 2_5_6, 3) ) snake_case_ : int = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) snake_case_ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase ,1E-3 ) def a__ ( self :int ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def a__ ( self :Optional[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def a__ ( self :List[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a__ ( self :List[str] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def a__ ( self :int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def a__ ( self :int ): super().test_save_load_local(expected_max_difference=3E-3 ) def a__ ( self :List[str] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] snake_case_ : Dict = self.get_dummy_components() snake_case_ : Optional[Any] = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Any = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Any = 2 snake_case_ : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case_ : Union[str, Any] = getattr(_UpperCamelCase ,scheduler_enum.name ) snake_case_ : str = scheduler_cls.from_config(pipe.scheduler.config ) snake_case_ : Any = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Optional[Any] ): snake_case_ : Tuple = torch.manual_seed(3_3 ) snake_case_ : Optional[int] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ,torch_dtype=torch.floataa ) pipe.to("""cuda""" ) snake_case_ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" ,torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case_ : Dict = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" snake_case_ : str = pipe(_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""latent""" ).images snake_case_ : Union[str, Any] = upscaler( prompt=_UpperCamelCase ,image=_UpperCamelCase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=_UpperCamelCase ,output_type="""np""" ,).images[0] snake_case_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def a__ ( self :Dict ): snake_case_ : Union[str, Any] = torch.manual_seed(3_3 ) snake_case_ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" ,torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) snake_case_ : Tuple = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) snake_case_ : List[str] = upscaler( prompt=_UpperCamelCase ,image=_UpperCamelCase ,num_inference_steps=2_0 ,guidance_scale=0 ,generator=_UpperCamelCase ,output_type="""np""" ,).images[0] snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
359
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __UpperCamelCase : lowercase : int lowercase : int class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :int ): snake_case_ : list[list[Edge]] = [[] for _ in range(_UpperCamelCase )] snake_case_ : List[str] = size def __getitem__( self :Optional[Any] ,_UpperCamelCase :int ): return iter(self._graph[vertex] ) @property def a__ ( self :int ): return self._size def a__ ( self :Union[str, Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): snake_case_ : Optional[int] = deque([start_vertex] ) snake_case_ : list[int | None] = [None] * self.size snake_case_ : int = 0 while queue: snake_case_ : Optional[Any] = queue.popleft() snake_case_ : str = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case_ : int = current_distance + edge.weight snake_case_ : str = distances[edge.destination_vertex] if ( isinstance(_UpperCamelCase ,_UpperCamelCase ) and new_distance >= dest_vertex_distance ): continue snake_case_ : Union[str, Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCamelCase ( lowercase__ ): lowercase : List[Any] = 'canine' def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[str] = layer_norm_eps # Character config: snake_case_ : Any = downsampling_rate snake_case_ : List[str] = upsampling_kernel_size snake_case_ : int = num_hash_functions snake_case_ : Tuple = num_hash_buckets snake_case_ : Tuple = local_transformer_stride
8
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden snake_case_ : List[str] = deepcopy(_UpperCamelCase ) elif os.path.exists(_UpperCamelCase ): with io.open(_UpperCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: snake_case_ : List[Any] = json.load(_UpperCamelCase ) else: try: snake_case_ : int = baseaa.urlsafe_baadecode(_UpperCamelCase ).decode("""utf-8""" ) snake_case_ : List[str] = json.loads(_UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) snake_case_ : int = config self.set_stage_and_offload() def a__ ( self :Tuple ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. snake_case_ : List[Any] = self.get_value("""zero_optimization.stage""" ,-1 ) # offload snake_case_ : List[Any] = False if self.is_zeroa() or self.is_zeroa(): snake_case_ : Tuple = set(["""cpu""", """nvme"""] ) snake_case_ : Optional[int] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: snake_case_ : Tuple = True def a__ ( self :int ,_UpperCamelCase :List[Any] ): snake_case_ : str = self.config # find the config node of interest if it exists snake_case_ : List[str] = ds_key_long.split(""".""" ) snake_case_ : str = nodes.pop() for node in nodes: snake_case_ : Optional[Any] = config.get(_UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str]=None ): snake_case_ : Union[str, Any] = self.find_config_node(_UpperCamelCase ) if config is None: return default return config.get(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :str ,_UpperCamelCase :Any=False ): snake_case_ : int = self.config # find the config node of interest if it exists snake_case_ : List[str] = ds_key_long.split(""".""" ) for node in nodes: snake_case_ : Optional[Any] = config snake_case_ : Tuple = config.get(_UpperCamelCase ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCamelCase ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : Optional[int] = self.get_value(_UpperCamelCase ) return False if value is None else bool(_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :List[Any] ): snake_case_ : Optional[int] = self.get_value(_UpperCamelCase ) return False if value is None else not bool(_UpperCamelCase ) def a__ ( self :Dict ): return self._stage == 2 def a__ ( self :List[str] ): return self._stage == 3 def a__ ( self :List[str] ): return self._offload class __UpperCamelCase : def __init__( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Any = engine def a__ ( self :Optional[Any] ,_UpperCamelCase :Any ,**_UpperCamelCase :Dict ): # runs backpropagation and handles mixed precision self.engine.backward(_UpperCamelCase ,**_UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __UpperCamelCase ( lowercase__ ): def __init__( self :str ,_UpperCamelCase :Optional[Any] ): super().__init__(_UpperCamelCase ,device_placement=_UpperCamelCase ,scaler=_UpperCamelCase ) snake_case_ : int = hasattr(self.optimizer ,"""overflow""" ) def a__ ( self :int ,_UpperCamelCase :Any=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def a__ ( self :str ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def a__ ( self :int ): if self.__has_overflow__: return self.optimizer.overflow return False class __UpperCamelCase ( lowercase__ ): def __init__( self :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int ): super().__init__(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __UpperCamelCase : def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :str=0.0_01 ,_UpperCamelCase :str=0 ,**_UpperCamelCase :str ): snake_case_ : Any = params snake_case_ : Dict = lr snake_case_ : Union[str, Any] = weight_decay snake_case_ : Any = kwargs class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any=None ,_UpperCamelCase :Optional[Any]=0 ,**_UpperCamelCase :Any ): snake_case_ : Dict = optimizer snake_case_ : Tuple = total_num_steps snake_case_ : Optional[int] = warmup_num_steps snake_case_ : Union[str, Any] = kwargs
361
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
8
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Any ): snake_case_ : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() snake_case_ : Optional[int] = dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) snake_case_ : int = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } snake_case_ : int = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : str = os.path.join(self.tmpdirname ,_UpperCamelCase ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + """\n""" ) with open(self.feature_extraction_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + """\n""" ) # load decoder from hub snake_case_ : Union[str, Any] = """hf-internal-testing/ngram-beam-search-decoder""" def a__ ( self :Any ,**_UpperCamelCase :Optional[int] ): snake_case_ : Optional[int] = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def a__ ( self :Tuple ,**_UpperCamelCase :Union[str, Any] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def a__ ( self :Optional[Any] ,**_UpperCamelCase :Any ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_UpperCamelCase ) def a__ ( self :Optional[int] ): shutil.rmtree(self.tmpdirname ) def a__ ( self :str ): snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_feature_extractor() snake_case_ : Any = self.get_decoder() snake_case_ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_UpperCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_UpperCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_UpperCamelCase ) def a__ ( self :str ): snake_case_ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case_ : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def a__ ( self :Union[str, Any] ): snake_case_ : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_UpperCamelCase ,"""include""" ): WavaVecaProcessorWithLM( tokenizer=_UpperCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def a__ ( self :Optional[int] ): snake_case_ : Any = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Dict = self.get_decoder() snake_case_ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : List[Any] = floats_list((3, 1_0_0_0) ) snake_case_ : str = feature_extractor(_UpperCamelCase ,return_tensors="""np""" ) snake_case_ : Optional[int] = processor(_UpperCamelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def a__ ( self :Dict ): snake_case_ : int = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = self.get_decoder() snake_case_ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : Any = """This is a test string""" snake_case_ : Union[str, Any] = processor(text=_UpperCamelCase ) snake_case_ : Optional[Any] = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self :Tuple ,_UpperCamelCase :Dict=(2, 1_0, 1_6) ,_UpperCamelCase :Dict=7_7 ): np.random.seed(_UpperCamelCase ) return np.random.rand(*_UpperCamelCase ) def a__ ( self :Dict ): snake_case_ : Any = self.get_feature_extractor() snake_case_ : Any = self.get_tokenizer() snake_case_ : List[str] = self.get_decoder() snake_case_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : List[Any] = self._get_dummy_logits(shape=(1_0, 1_6) ,seed=1_3 ) snake_case_ : Optional[int] = processor.decode(_UpperCamelCase ) snake_case_ : List[Any] = decoder.decode_beams(_UpperCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def a__ ( self :Any ,_UpperCamelCase :List[str] ): snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Optional[Any] = self.get_decoder() snake_case_ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case_ : str = processor.batch_decode(_UpperCamelCase ) else: with get_context(_UpperCamelCase ).Pool() as pool: snake_case_ : Tuple = processor.batch_decode(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = list(_UpperCamelCase ) with get_context("""fork""" ).Pool() as p: snake_case_ : List[Any] = decoder.decode_beams_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCamelCase ,decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] ,decoded_processor.text ) self.assertListEqual(_UpperCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_UpperCamelCase ,decoded_processor.lm_score ) def a__ ( self :int ): snake_case_ : Optional[int] = self.get_feature_extractor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Tuple = self.get_decoder() snake_case_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : Any = self._get_dummy_logits() snake_case_ : Dict = 1_5 snake_case_ : Union[str, Any] = -20.0 snake_case_ : Optional[Any] = -4.0 snake_case_ : List[str] = processor.batch_decode( _UpperCamelCase ,beam_width=_UpperCamelCase ,beam_prune_logp=_UpperCamelCase ,token_min_logp=_UpperCamelCase ,) snake_case_ : List[str] = decoded_processor_out.text snake_case_ : Tuple = list(_UpperCamelCase ) with get_context("""fork""" ).Pool() as pool: snake_case_ : Any = decoder.decode_beams_batch( _UpperCamelCase ,_UpperCamelCase ,beam_width=_UpperCamelCase ,beam_prune_logp=_UpperCamelCase ,token_min_logp=_UpperCamelCase ,) snake_case_ : List[str] = [d[0][0] for d in decoded_decoder_out] snake_case_ : List[Any] = [d[0][2] for d in decoded_decoder_out] snake_case_ : Optional[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] ,_UpperCamelCase ) self.assertTrue(np.array_equal(_UpperCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,_UpperCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_UpperCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,_UpperCamelCase ,atol=1E-3 ) ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_feature_extractor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : int = self.get_decoder() snake_case_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) snake_case_ : List[Any] = self._get_dummy_logits() snake_case_ : Dict = 2.0 snake_case_ : Any = 5.0 snake_case_ : Dict = -20.0 snake_case_ : Any = True snake_case_ : Optional[Any] = processor.batch_decode( _UpperCamelCase ,alpha=_UpperCamelCase ,beta=_UpperCamelCase ,unk_score_offset=_UpperCamelCase ,lm_score_boundary=_UpperCamelCase ,) snake_case_ : List[str] = decoded_processor_out.text snake_case_ : str = list(_UpperCamelCase ) decoder.reset_params( alpha=_UpperCamelCase ,beta=_UpperCamelCase ,unk_score_offset=_UpperCamelCase ,lm_score_boundary=_UpperCamelCase ,) with get_context("""fork""" ).Pool() as pool: snake_case_ : Tuple = decoder.decode_beams_batch( _UpperCamelCase ,_UpperCamelCase ,) snake_case_ : Tuple = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] ,_UpperCamelCase ) snake_case_ : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,_UpperCamelCase ) def a__ ( self :int ): snake_case_ : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) snake_case_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() snake_case_ : Dict = os.listdir(_UpperCamelCase ) snake_case_ : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :str ): snake_case_ : Any = snapshot_download("""hf-internal-testing/processor_with_lm""" ) snake_case_ : List[str] = WavaVecaProcessorWithLM.from_pretrained(_UpperCamelCase ) snake_case_ : List[str] = processor.decoder.model_container[processor.decoder._model_key] snake_case_ : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() snake_case_ : Dict = os.listdir(_UpperCamelCase ) snake_case_ : Optional[int] = os.listdir(_UpperCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Any ): snake_case_ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) snake_case_ : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) snake_case_ : List[str] = floats_list((3, 1_0_0_0) ) snake_case_ : Optional[Any] = processor_wavaveca(_UpperCamelCase ,return_tensors="""np""" ) snake_case_ : Union[str, Any] = processor_auto(_UpperCamelCase ,return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) snake_case_ : List[str] = self._get_dummy_logits() snake_case_ : Any = processor_wavaveca.batch_decode(_UpperCamelCase ) snake_case_ : Dict = processor_auto.batch_decode(_UpperCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def a__ ( self :List[str] ): snake_case_ : Optional[Any] = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = self.get_decoder() snake_case_ : Tuple = WavaVecaProcessorWithLM(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,decoder=_UpperCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,) @staticmethod def a__ ( _UpperCamelCase :Optional[int] ,_UpperCamelCase :Tuple ): snake_case_ : Any = [d[key] for d in offsets] return retrieved_list def a__ ( self :Dict ): snake_case_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) snake_case_ : Optional[int] = self._get_dummy_logits()[0] snake_case_ : Dict = processor.decode(_UpperCamelCase ,output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_UpperCamelCase ,_UpperCamelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""end_offset""" ) ,[1, 3, 5] ) def a__ ( self :Union[str, Any] ): snake_case_ : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) snake_case_ : Dict = self._get_dummy_logits() snake_case_ : List[Any] = processor.batch_decode(_UpperCamelCase ,output_word_offsets=_UpperCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_UpperCamelCase ,_UpperCamelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_UpperCamelCase ,"""word""" ) ) for o in outputs["""word_offsets"""]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""end_offset""" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self :Any ): import torch snake_case_ : Dict = load_dataset("""common_voice""" ,"""en""" ,split="""train""" ,streaming=_UpperCamelCase ) snake_case_ : Tuple = ds.cast_column("""audio""" ,datasets.Audio(sampling_rate=1_6_0_0_0 ) ) snake_case_ : List[Any] = iter(_UpperCamelCase ) snake_case_ : int = next(_UpperCamelCase ) snake_case_ : Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) snake_case_ : Optional[int] = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case_ : List[str] = processor(sample["""audio"""]["""array"""] ,return_tensors="""pt""" ).input_values with torch.no_grad(): snake_case_ : int = model(_UpperCamelCase ).logits.cpu().numpy() snake_case_ : Optional[int] = processor.decode(logits[0] ,output_word_offsets=_UpperCamelCase ) snake_case_ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case_ : List[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] snake_case_ : Optional[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_UpperCamelCase ,"""word""" ) ) ,_UpperCamelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_UpperCamelCase ,"""word""" ) ) ,output.text ) # output times snake_case_ : Optional[int] = torch.tensor(self.get_from_offsets(_UpperCamelCase ,"""start_time""" ) ) snake_case_ : List[str] = torch.tensor(self.get_from_offsets(_UpperCamelCase ,"""end_time""" ) ) # fmt: off snake_case_ : Optional[int] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) snake_case_ : Dict = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ,atol=0.01 ) )
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
363
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
0
'''simple docstring''' import datasets from .evaluate import evaluate __A : Any = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __A : str = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def a__ ( self :int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) ,codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] ,) def a__ ( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ): snake_case_ : List[str] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case_ : Union[str, Any] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case_ : Optional[int] = evaluate(dataset=_UpperCamelCase ,predictions=_UpperCamelCase ) return score
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : int = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase_ ( lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] = None , ): '''simple docstring''' snake_case_ : Any = {} if train_file is not None: snake_case_ : Union[str, Any] = [train_file] if eval_file is not None: snake_case_ : Any = [eval_file] if test_file is not None: snake_case_ : List[Any] = [test_file] snake_case_ : str = datasets.load_dataset("""csv""" , data_files=lowerCamelCase_ ) snake_case_ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) snake_case_ : int = features_name.pop(lowerCamelCase_ ) snake_case_ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} snake_case_ : List[str] = tokenizer.model_input_names snake_case_ : List[str] = {} if len(lowerCamelCase_ ) == 1: for k in files.keys(): snake_case_ : Any = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) , batched=lowerCamelCase_ , ) elif len(lowerCamelCase_ ) == 2: for k in files.keys(): snake_case_ : int = ds[k].map( lambda lowerCamelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) , batched=lowerCamelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case_ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case_ : Dict = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case_ : Optional[int] = {k: v for k, v in ex.items() if k in input_names} snake_case_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) snake_case_ : Tuple = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case_ : Tuple = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case_ : Optional[Any] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case_ : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case_ : Optional[int] = ( tf.data.Dataset.from_generator( lowerCamelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A : Dict = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : int = field(metadata={'help': 'Which column contains the label'} ) lowercase : str = field(default=lowercase__ , metadata={'help': 'The path of the training file'} ) lowercase : Optional[str] = field(default=lowercase__ , metadata={'help': 'The path of the development file'} ) lowercase : Optional[str] = field(default=lowercase__ , metadata={'help': 'The path of the test file'} ) lowercase : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : bool = field( default=lowercase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __UpperCamelCase : lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase : bool = field(default=lowercase__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase_ ( ): '''simple docstring''' snake_case_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case_ : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCamelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case_ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase_ :EvalPrediction ) -> Dict: snake_case_ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case_ : Optional[Any] = TFTrainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : Optional[Any] = trainer.evaluate() snake_case_ : List[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(lowerCamelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(lowerCamelCase_ ) return results if __name__ == "__main__": main()
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __A : str = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class __UpperCamelCase ( lowercase__ ): def __init__( self :int ,*_UpperCamelCase :Any ,**_UpperCamelCase :str ): super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :Any=None ,_UpperCamelCase :Optional[Any]=None ,**_UpperCamelCase :str ): snake_case_ : int = {}, {} if padding is not None: snake_case_ : Optional[int] = padding if truncation is not None: snake_case_ : Tuple = truncation if top_k is not None: snake_case_ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self :Tuple ,_UpperCamelCase :Union["Image.Image", str] ,_UpperCamelCase :str = None ,**_UpperCamelCase :Optional[int] ): if isinstance(_UpperCamelCase ,(Image.Image, str) ) and isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Tuple = {"""image""": image, """question""": question} else: snake_case_ : List[Any] = image snake_case_ : Optional[Any] = super().__call__(_UpperCamelCase ,**_UpperCamelCase ) return results def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :List[Any]=False ,_UpperCamelCase :List[Any]=False ): snake_case_ : Union[str, Any] = load_image(inputs["""image"""] ) snake_case_ : Any = self.tokenizer( inputs["""question"""] ,return_tensors=self.framework ,padding=_UpperCamelCase ,truncation=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.image_processor(images=_UpperCamelCase ,return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def a__ ( self :Tuple ,_UpperCamelCase :List[Any] ): snake_case_ : Union[str, Any] = self.model(**_UpperCamelCase ) return model_outputs def a__ ( self :Dict ,_UpperCamelCase :List[str] ,_UpperCamelCase :List[Any]=5 ): if top_k > self.model.config.num_labels: snake_case_ : Dict = self.model.config.num_labels if self.framework == "pt": snake_case_ : str = model_outputs.logits.sigmoid()[0] snake_case_ : Dict = probs.topk(_UpperCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case_ : Union[str, Any] = scores.tolist() snake_case_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase ,_UpperCamelCase )]
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Union[str, Any] = FlaxAutoencoderKL @property def a__ ( self :Optional[Any] ): snake_case_ : List[str] = 4 snake_case_ : Optional[int] = 3 snake_case_ : Optional[int] = (3_2, 3_2) snake_case_ : Union[str, Any] = jax.random.PRNGKey(0 ) snake_case_ : Optional[int] = jax.random.uniform(_UpperCamelCase ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self :Any ): snake_case_ : Optional[int] = { """block_out_channels""": [3_2, 6_4], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } snake_case_ : Tuple = self.dummy_input return init_dict, inputs_dict
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ): '''simple docstring''' while second != 0: snake_case_ : List[str] = first & second first ^= second snake_case_ : List[str] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A : List[Any] = int(input('Enter the first number: ').strip()) __A : Optional[Any] = int(input('Enter the second number: ').strip()) print(F'{add(first, second) = }')
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionInpaintPipeline lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Optional[int] = frozenset([] ) def a__ ( self :Any ): torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,) snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self :Any ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self :Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a__ ( self :Tuple ): snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" ) snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,) snake_case_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
8
0
'''simple docstring''' from math import factorial def UpperCAmelCase ( lowerCamelCase_ :int = 1_00 ): '''simple docstring''' return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __A : List[str] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :int = 1_4 ): if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case_ : Optional[int] = primes[group]["""prime"""] snake_case_ : Union[str, Any] = primes[group]["""generator"""] snake_case_ : str = int(hexlify(urandom(3_2 ) ) ,base=1_6 ) def a__ ( self :Dict ): return hex(self.__private_key )[2:] def a__ ( self :Dict ): snake_case_ : Union[str, Any] = pow(self.generator ,self.__private_key ,self.prime ) return hex(_UpperCamelCase )[2:] def a__ ( self :Any ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def a__ ( self :Optional[Any] ,_UpperCamelCase :str ): snake_case_ : Union[str, Any] = int(_UpperCamelCase ,base=1_6 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError("""Invalid public key""" ) snake_case_ : str = pow(_UpperCamelCase ,self.__private_key ,self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def a__ ( _UpperCamelCase :int ,_UpperCamelCase :int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase ,(prime - 1) // 2 ,_UpperCamelCase ) == 1 ) @staticmethod def a__ ( _UpperCamelCase :str ,_UpperCamelCase :str ,_UpperCamelCase :int = 1_4 ): snake_case_ : str = int(_UpperCamelCase ,base=1_6 ) snake_case_ : str = int(_UpperCamelCase ,base=1_6 ) snake_case_ : Dict = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase ,_UpperCamelCase ): raise ValueError("""Invalid public key""" ) snake_case_ : Any = pow(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :str ): snake_case_ : Union[str, Any] = """hf-internal-testing/tiny-random-t5""" snake_case_ : Any = AutoTokenizer.from_pretrained(_UpperCamelCase ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) snake_case_ : str = tokenizer("""This is me""" ,return_tensors="""pt""" ) snake_case_ : Optional[int] = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Union[str, Any] = model.generate(**_UpperCamelCase ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) snake_case_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : List[Any] = model_reloaded.generate(**_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( self :int ): snake_case_ : Optional[int] = """hf-internal-testing/tiny-random-t5""" snake_case_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) snake_case_ : Optional[int] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_UpperCamelCase ): model.save_pretrained(_UpperCamelCase ) snake_case_ : List[str] = model.reverse_bettertransformer() model.save_pretrained(_UpperCamelCase )
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
0
'''simple docstring''' __A : List[str] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : Optional[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[int] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } __A : Tuple = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = EfficientNetConfig() snake_case_ : List[Any] = CONFIG_MAP[model_name]["""hidden_dim"""] snake_case_ : Dict = CONFIG_MAP[model_name]["""width_coef"""] snake_case_ : List[str] = CONFIG_MAP[model_name]["""depth_coef"""] snake_case_ : Union[str, Any] = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : Optional[int] = CONFIG_MAP[model_name]["""dropout_rate"""] snake_case_ : Tuple = CONFIG_MAP[model_name]["""dw_padding"""] snake_case_ : Optional[Any] = """huggingface/label-files""" snake_case_ : Any = """imagenet-1k-id2label.json""" snake_case_ : Optional[int] = 10_00 snake_case_ : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : List[str] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Optional[int] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : Tuple = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=lowerCamelCase_ , ) return preprocessor def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : int = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] snake_case_ : Tuple = sorted(set(lowerCamelCase_ ) ) snake_case_ : Union[str, Any] = len(lowerCamelCase_ ) snake_case_ : str = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} snake_case_ : Optional[int] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: snake_case_ : str = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) snake_case_ : int = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ : str = """efficientnet.""" + item[1] snake_case_ : Optional[Any] = """classifier.weight""" snake_case_ : str = """classifier.bias""" return key_mapping def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Tuple ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ : Union[str, Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ : Any = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: snake_case_ : Any = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : str = model_classes[model_name]( include_top=lowerCamelCase_ , weights="""imagenet""" , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=10_00 , classifier_activation="""softmax""" , ) snake_case_ : List[Any] = original_model.trainable_variables snake_case_ : Any = original_model.non_trainable_variables snake_case_ : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ : Tuple = param.numpy() snake_case_ : List[Any] = list(tf_params.keys() ) # Load HuggingFace model snake_case_ : List[str] = get_efficientnet_config(lowerCamelCase_ ) snake_case_ : List[Any] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() snake_case_ : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) snake_case_ : Any = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image snake_case_ : str = convert_image_processor(lowerCamelCase_ ) snake_case_ : Optional[int] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ : Union[str, Any] = hf_model(**lowerCamelCase_ ) snake_case_ : Tuple = outputs.logits.detach().numpy() # Original model inference snake_case_ : Union[str, Any] = False snake_case_ : Dict = CONFIG_MAP[model_name]["""image_size"""] snake_case_ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ : int = image.img_to_array(lowerCamelCase_ ) snake_case_ : Optional[Any] = np.expand_dims(lowerCamelCase_ , axis=0 ) snake_case_ : Tuple = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) snake_case_ : str = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') __A : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Optional[int] = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
356
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ): '''simple docstring''' snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {} snake_case_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ): '''simple docstring''' snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,): super().__init__() snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" ) snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" ) snake_case_ : Optional[int] = self.get_char_lens(self.src_file ) snake_case_ : List[str] = max_source_length snake_case_ : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' snake_case_ : str = tokenizer snake_case_ : str = prefix if n_obs is not None: snake_case_ : int = self.src_lens[:n_obs] snake_case_ : Tuple = src_lang snake_case_ : str = tgt_lang def __len__( self :Any ): return len(self.src_lens ) def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[int] = index + 1 # linecache starts at 1 snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" ) snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer ) snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" ) snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" ) snake_case_ : int = source_inputs["""input_ids"""].squeeze() snake_case_ : str = target_inputs["""input_ids"""].squeeze() snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a__ ( _UpperCamelCase :str ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ): snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase ) snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase ) snake_case_ : Optional[int] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : List[Any] = getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case_ : List[str] = { """repo_id""": str(lowerCamelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ): '''simple docstring''' return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , """wb""" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' def remove_articles(lowerCamelCase_ :str ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ ) def white_space_fix(lowerCamelCase_ :Optional[Any] ): return " ".join(text.split() ) def remove_punc(lowerCamelCase_ :Tuple ): snake_case_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase_ :Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split() snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case_ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case_ : Optional[int] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ : Optional[int] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __A : Any = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['DPTFeatureExtractor'] __A : Any = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'roformer' def __init__( self :Dict ,_UpperCamelCase :str=5_0_0_0_0 ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Any=7_6_8 ,_UpperCamelCase :List[Any]=1_2 ,_UpperCamelCase :List[str]=1_2 ,_UpperCamelCase :Dict=3_0_7_2 ,_UpperCamelCase :Dict="gelu" ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :Union[str, Any]=1_5_3_6 ,_UpperCamelCase :Tuple=2 ,_UpperCamelCase :Optional[Any]=0.02 ,_UpperCamelCase :Optional[Any]=1E-1_2 ,_UpperCamelCase :int=0 ,_UpperCamelCase :Tuple=False ,_UpperCamelCase :Tuple=True ,**_UpperCamelCase :Any ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : List[str] = hidden_size if embedding_size is None else embedding_size snake_case_ : Optional[int] = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : List[Any] = initializer_range snake_case_ : Dict = layer_norm_eps snake_case_ : List[str] = rotary_value snake_case_ : int = use_cache class __UpperCamelCase ( lowercase__ ): @property def a__ ( self :int ): if self.task == "multiple-choice": snake_case_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} snake_case_ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
358
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Any = tmp_path / """file.csv""" snake_case_ : Any = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """malformed_file.csv""" snake_case_ : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : str = tmp_path / """csv_with_image.csv""" snake_case_ : int = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = tmp_path / """csv_with_label.csv""" snake_case_ : Tuple = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) @pytest.fixture def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv""" snake_case_ : str = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : int = Csv() snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase_ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : Tuple = f.read().splitlines()[1] snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] ) snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() snake_case_ : List[str] = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.read().splitlines()[1:] snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} ) snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) snake_case_ : Dict = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
8
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : int = {'vocab_file': 'spiece.model'} __A : Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __A : List[Any] = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = ['input_ids', 'attention_mask'] lowercase : List[int] = [] def __init__( self :List[str] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any="<unk>" ,_UpperCamelCase :Tuple="<s>" ,_UpperCamelCase :int="</s>" ,_UpperCamelCase :Optional[Any]="<pad>" ,_UpperCamelCase :List[str]="[SEP]" ,_UpperCamelCase :str="[MASK]" ,_UpperCamelCase :int="[CLS]" ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :Optional[Any] ,): snake_case_ : Dict = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else bos_token snake_case_ : List[Any] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else eos_token snake_case_ : str = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else unk_token snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else pad_token snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else cls_token snake_case_ : int = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token snake_case_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) snake_case_ : Union[str, Any] = vocab_file snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def a__ ( self :Union[str, Any] ): return self.sp_model.get_piece_size() def a__ ( self :List[str] ): snake_case_ : Any = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[Any] ): snake_case_ : str = self.__dict__.copy() snake_case_ : Tuple = None return state def __setstate__( self :Tuple ,_UpperCamelCase :Tuple ): snake_case_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self :int ,_UpperCamelCase :str ): return self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :Union[str, Any] ): return self.sp_model.piece_to_id(_UpperCamelCase ) def a__ ( self :str ,_UpperCamelCase :Tuple ): snake_case_ : List[str] = self.sp_model.IdToPiece(_UpperCamelCase ) return token def a__ ( self :Any ,_UpperCamelCase :List[Any] ): snake_case_ : Union[str, Any] = [] snake_case_ : Optional[Any] = """""" snake_case_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ : Optional[int] = True snake_case_ : int = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ : Any = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def a__ ( self :Optional[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = None ,_UpperCamelCase :bool = True ,**_UpperCamelCase :str ,): snake_case_ : Optional[Any] = kwargs.pop("""use_source_tokenizer""" ,_UpperCamelCase ) snake_case_ : Optional[Any] = self.convert_ids_to_tokens(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ : List[str] = [] snake_case_ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ : List[Any] = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ : List[Any] = re.sub(R""" (\[(MASK|SEP)\])""" ,R"""\1""" ,""" """.join(_UpperCamelCase ) ) else: snake_case_ : str = """""".join(_UpperCamelCase ) snake_case_ : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ : Tuple = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def a__ ( self :str ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Any = os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: snake_case_ : int = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def a__ ( self :Tuple ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] snake_case_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self :List[str] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def a__ ( self :Any ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
359
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int = 2_00 ): '''simple docstring''' snake_case_ : Dict = [1, 2, 5, 10, 20, 50, 1_00, 2_00] snake_case_ : Optional[Any] = [0] * (pence + 1) snake_case_ : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCamelCase ( lowercase__ ): lowercase : List[Any] = 'canine' def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[str] = layer_norm_eps # Character config: snake_case_ : Any = downsampling_rate snake_case_ : List[str] = upsampling_kernel_size snake_case_ : int = num_hash_functions snake_case_ : Tuple = num_hash_buckets snake_case_ : Tuple = local_transformer_stride
8
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = (DPMSolverSDEScheduler,) lowercase : Dict = 1_0 def a__ ( self :Union[str, Any] ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Union[str, Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_UpperCamelCase ) return config def a__ ( self :int ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def a__ ( self :Tuple ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] ,[0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase ,beta_end=_UpperCamelCase ) def a__ ( self :Optional[int] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def a__ ( self :Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def a__ ( self :Optional[Any] ): snake_case_ : Any = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : str = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Dict = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Any = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[Any] = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Tuple = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Any = output.prev_sample snake_case_ : Tuple = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : List[str] = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def a__ ( self :str ): snake_case_ : str = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : Tuple = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : int = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[str] = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Tuple = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : str = output.prev_sample snake_case_ : Dict = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1E-3 def a__ ( self :Any ): snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=_UpperCamelCase ) snake_case_ : Optional[Any] = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ : Dict = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : str = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[str] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[str] = output.prev_sample snake_case_ : Dict = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : str = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def a__ ( self :Optional[Any] ): snake_case_ : Dict = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_UpperCamelCase ,use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=_UpperCamelCase ) snake_case_ : Dict = self.dummy_model() snake_case_ : Tuple = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma snake_case_ : List[Any] = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: snake_case_ : Any = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Any = output.prev_sample snake_case_ : Optional[Any] = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : Dict = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2
361
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __A : Tuple = logging.get_logger(__name__) __A : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : str = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : Optional[Any] = { 'facebook/blenderbot_small-90M': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = BlenderbotSmallTokenizer def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Any = add_prefix_space def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ): snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
8
0
'''simple docstring''' import numpy as np from transformers import Pipeline def UpperCAmelCase ( lowerCamelCase_ :Tuple ): '''simple docstring''' snake_case_ : List[str] = np.max(lowerCamelCase_ , axis=-1 , keepdims=lowerCamelCase_ ) snake_case_ : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase_ ) class __UpperCamelCase ( lowercase__ ): def a__ ( self :List[str] ,**_UpperCamelCase :Tuple ): snake_case_ : Any = {} if "second_text" in kwargs: snake_case_ : Tuple = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def a__ ( self :int ,_UpperCamelCase :Dict ,_UpperCamelCase :str=None ): return self.tokenizer(_UpperCamelCase ,text_pair=_UpperCamelCase ,return_tensors=self.framework ) def a__ ( self :Any ,_UpperCamelCase :str ): return self.model(**_UpperCamelCase ) def a__ ( self :Any ,_UpperCamelCase :Optional[int] ): snake_case_ : Dict = model_outputs.logits[0].numpy() snake_case_ : Optional[int] = softmax(_UpperCamelCase ) snake_case_ : Dict = np.argmax(_UpperCamelCase ) snake_case_ : Any = self.model.config.idalabel[best_class] snake_case_ : Tuple = probabilities[best_class].item() snake_case_ : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
'''simple docstring''' __A : Tuple = 65_521 def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = 1 snake_case_ : List[Any] = 0 for plain_chr in plain_text: snake_case_ : Union[str, Any] = (a + ord(lowerCamelCase_ )) % MOD_ADLER snake_case_ : Any = (b + a) % MOD_ADLER return (b << 16) | a
363
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,): snake_case_ : str = parent snake_case_ : int = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[Any] = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : List[str] = use_labels snake_case_ : int = vocab_size snake_case_ : Any = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : int = dropout snake_case_ : int = attention_dropout snake_case_ : Dict = max_position_embeddings snake_case_ : Union[str, Any] = initializer_range snake_case_ : Dict = scope snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :Any ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : int = input_mask.numpy() snake_case_ , snake_case_ : Tuple = input_mask.shape snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): snake_case_ : Optional[int] = 1 snake_case_ : List[str] = 0 snake_case_ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def a__ ( self :str ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase ) snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () lowercase : int = False lowercase : List[Any] = False lowercase : Dict = False def a__ ( self :List[Any] ): snake_case_ : List[str] = BlipTextModelTester(self ) snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :Union[str, Any] ): self.config_tester.run_common_tests() def a__ ( self :Union[str, Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :Tuple ): pass def a__ ( self :Tuple ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def a__ ( self :Any ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :Tuple ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :Any ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
8
0
'''simple docstring''' import math from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[float], float] , lowerCamelCase_ :float , lowerCamelCase_ :float ): '''simple docstring''' snake_case_ : float = xa snake_case_ : float = xa while True: if x_n == x_na or function(lowerCamelCase_ ) == function(lowerCamelCase_ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) snake_case_ : float = x_na - ( function(lowerCamelCase_ ) / ((function(lowerCamelCase_ ) - function(lowerCamelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ : Optional[Any] = x_na snake_case_ : Dict = x_na def UpperCAmelCase ( lowerCamelCase_ :float ): '''simple docstring''' return math.pow(lowerCamelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : int = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import math def UpperCAmelCase_ ( lowerCamelCase_ :int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( lowerCamelCase_ :int = 1_00_01 ): '''simple docstring''' try: snake_case_ : List[Any] = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) snake_case_ : list[int] = [] snake_case_ : Union[str, Any] = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
366
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[Any] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": __A : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
8
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A : str = logging.get_logger(__name__) __A : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = 'detr' lowercase : Dict = ['past_key_values'] lowercase : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self :List[Any] ,_UpperCamelCase :int=True ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :str=3 ,_UpperCamelCase :Tuple=1_0_0 ,_UpperCamelCase :Union[str, Any]=6 ,_UpperCamelCase :Union[str, Any]=2_0_4_8 ,_UpperCamelCase :int=8 ,_UpperCamelCase :List[Any]=6 ,_UpperCamelCase :Union[str, Any]=2_0_4_8 ,_UpperCamelCase :int=8 ,_UpperCamelCase :List[Any]=0.0 ,_UpperCamelCase :Optional[int]=0.0 ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Union[str, Any]="relu" ,_UpperCamelCase :Optional[Any]=2_5_6 ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :Optional[Any]=0.0 ,_UpperCamelCase :Union[str, Any]=0.02 ,_UpperCamelCase :Tuple=1.0 ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Any="sine" ,_UpperCamelCase :Tuple="resnet50" ,_UpperCamelCase :int=True ,_UpperCamelCase :Any=False ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :Union[str, Any]=5 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :List[Any]=1 ,_UpperCamelCase :Optional[int]=1 ,_UpperCamelCase :Dict=5 ,_UpperCamelCase :List[Any]=2 ,_UpperCamelCase :List[Any]=0.1 ,**_UpperCamelCase :Dict ,): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : Any = backbone_config.get("""model_type""" ) snake_case_ : Tuple = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(_UpperCamelCase ) # set timm attributes to None snake_case_ : List[str] = None, None, None snake_case_ : Optional[int] = use_timm_backbone snake_case_ : Optional[int] = backbone_config snake_case_ : Dict = num_channels snake_case_ : Optional[int] = num_queries snake_case_ : Union[str, Any] = d_model snake_case_ : int = encoder_ffn_dim snake_case_ : Optional[int] = encoder_layers snake_case_ : List[Any] = encoder_attention_heads snake_case_ : List[Any] = decoder_ffn_dim snake_case_ : Optional[int] = decoder_layers snake_case_ : List[Any] = decoder_attention_heads snake_case_ : Optional[int] = dropout snake_case_ : List[str] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : List[str] = activation_function snake_case_ : Any = init_std snake_case_ : int = init_xavier_std snake_case_ : Dict = encoder_layerdrop snake_case_ : Tuple = decoder_layerdrop snake_case_ : Optional[int] = encoder_layers snake_case_ : Union[str, Any] = auxiliary_loss snake_case_ : List[str] = position_embedding_type snake_case_ : str = backbone snake_case_ : int = use_pretrained_backbone snake_case_ : Dict = dilation # Hungarian matcher snake_case_ : List[Any] = class_cost snake_case_ : Any = bbox_cost snake_case_ : Tuple = giou_cost # Loss coefficients snake_case_ : Optional[int] = mask_loss_coefficient snake_case_ : str = dice_loss_coefficient snake_case_ : List[Any] = bbox_loss_coefficient snake_case_ : Tuple = giou_loss_coefficient snake_case_ : Any = eos_coefficient super().__init__(is_encoder_decoder=_UpperCamelCase ,**_UpperCamelCase ) @property def a__ ( self :Union[str, Any] ): return self.encoder_attention_heads @property def a__ ( self :int ): return self.d_model @classmethod def a__ ( cls :int ,_UpperCamelCase :PretrainedConfig ,**_UpperCamelCase :Any ): return cls(backbone_config=_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :int ): snake_case_ : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ : Optional[Any] = self.backbone_config.to_dict() snake_case_ : Dict = self.__class__.model_type return output class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = version.parse('1.11' ) @property def a__ ( self :int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def a__ ( self :Union[str, Any] ): return 1E-5 @property def a__ ( self :Optional[int] ): return 1_2
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __A : Union[str, Any] = TypeVar('T') class __UpperCamelCase ( Generic[T] ): lowercase : deque[T] # Cache store of keys lowercase : set[T] # References of the keys in cache lowercase : int = 1_0 # Maximum capacity of cache def __init__( self :int ,_UpperCamelCase :int ): snake_case_ : List[str] = deque() snake_case_ : Union[str, Any] = set() if not n: snake_case_ : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case_ : Tuple = n def a__ ( self :int ,_UpperCamelCase :T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ : Union[str, Any] = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def a__ ( self :Optional[int] ): for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self :Any ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() __A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
368
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Dict = StableDiffusionInpaintPipeline lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Optional[int] = frozenset([] ) def a__ ( self :Any ): torch.manual_seed(0 ) snake_case_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,) snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,) snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase ) snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self :Any ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase ) snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self :Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a__ ( self :Tuple ): snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case_ : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a__ ( self :Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" ) snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[int] = torch.manual_seed(0 ) snake_case_ : Tuple = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,) snake_case_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
8
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Any=None , **lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : int = [x.strip() for x in open(lowerCamelCase_ ).readlines()] snake_case_ : Dict = [x.strip() for x in open(lowerCamelCase_ ).readlines()][: len(lowerCamelCase_ )] snake_case_ : List[str] = calculate_rouge(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) if save_path is not None: save_json(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
369
'''simple docstring''' import collections import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : Dict = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : List[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Any = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' if _re_test_backend.search(lowerCamelCase_ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )] backends.sort() return "_and_".join(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() snake_case_ : List[Any] = 0 while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase_ ): snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0] snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ ) if single_line_import_search is not None: snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None: snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_between_brackets.search(lowerCamelCase_ ) is not None: snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0] objects.extend(lowerCamelCase_ ) elif _re_quote_object.search(lowerCamelCase_ ) is not None: objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : List[Any] = [] while ( line_index < len(lowerCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Dict = lines[line_index] snake_case_ : Any = _re_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Union[str, Any] ): return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Optional[int] = [] for key in import_dict_objects.keys(): snake_case_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = [] for root, _, files in os.walk(lowerCamelCase_ ): if "__init__.py" in files: snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" ) snake_case_ : Dict = parse_init(lowerCamelCase_ ) if objects is not None: snake_case_ : Any = analyze_results(*lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase_ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = [] for path, directories, files in os.walk(lowerCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase_ ) for fname in files: if fname == "__init__.py": continue snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) ) snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase_ ) return submodules __A : List[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ ) snake_case_ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f: snake_case_ : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) ) snake_case_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase_ ) > 0: snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
8
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
370
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,): snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : Union[str, Any] = parent snake_case_ : str = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : int = min_resolution snake_case_ : int = max_resolution snake_case_ : Union[str, Any] = do_resize snake_case_ : Optional[Any] = size snake_case_ : Any = apply_ocr def a__ ( self :Union[str, Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self :List[Any] ): snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self :int ): return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self :Any ): snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ) self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} ) def a__ ( self :Optional[Any] ): pass def a__ ( self :Union[str, Any] ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,Image.Image ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,_UpperCamelCase ) self.assertIsInstance(encoding.boxes ,_UpperCamelCase ) # Test batched snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Tuple ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :Optional[Any] ): # Initialize image_processing snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def a__ ( self :List[Any] ): # with apply_OCR = True snake_case_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,_UpperCamelCase ) self.assertListEqual(encoding.boxes ,_UpperCamelCase ) # with apply_OCR = False snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
8
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' __A : Tuple = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __A : Optional[int] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :str ): snake_case_ : List[str] = cached_file(_UpperCamelCase ,_UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase ,_UpperCamelCase ) ) ) with open(os.path.join(_UpperCamelCase ,"""refs""" ,"""main""" ) ) as f: snake_case_ : Union[str, Any] = f.read() self.assertEqual(_UpperCamelCase ,os.path.join(_UpperCamelCase ,"""snapshots""" ,_UpperCamelCase ,_UpperCamelCase ) ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # File is cached at the same place the second time. snake_case_ : int = cached_file(_UpperCamelCase ,_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) # Using a specific revision to test the full commit hash. snake_case_ : Union[str, Any] = cached_file(_UpperCamelCase ,_UpperCamelCase ,revision="""9b8c223""" ) self.assertEqual(_UpperCamelCase ,os.path.join(_UpperCamelCase ,"""snapshots""" ,_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( self :List[str] ): with self.assertRaisesRegex(_UpperCamelCase ,"""is not a valid model identifier""" ): snake_case_ : Optional[int] = cached_file("""tiny-random-bert""" ,_UpperCamelCase ) with self.assertRaisesRegex(_UpperCamelCase ,"""is not a valid git identifier""" ): snake_case_ : Tuple = cached_file(_UpperCamelCase ,_UpperCamelCase ,revision="""aaaa""" ) with self.assertRaisesRegex(_UpperCamelCase ,"""does not appear to have a file named""" ): snake_case_ : Dict = cached_file(_UpperCamelCase ,"""conf""" ) def a__ ( self :int ): with self.assertRaisesRegex(_UpperCamelCase ,"""does not appear to have a file named""" ): snake_case_ : List[str] = cached_file(_UpperCamelCase ,"""conf""" ) with open(os.path.join(_UpperCamelCase ,"""refs""" ,"""main""" ) ) as f: snake_case_ : str = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase ,""".no_exist""" ,_UpperCamelCase ,"""conf""" ) ) ) snake_case_ : Dict = cached_file(_UpperCamelCase ,"""conf""" ,_raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case_ : List[Any] = cached_file(_UpperCamelCase ,"""conf""" ,local_files_only=_UpperCamelCase ,_raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case_ : Union[str, Any] = mock.Mock() snake_case_ : List[Any] = 5_0_0 snake_case_ : List[Any] = {} snake_case_ : Union[str, Any] = HTTPError snake_case_ : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=_UpperCamelCase ) as mock_head: snake_case_ : Tuple = cached_file(_UpperCamelCase ,"""conf""" ,_raise_exceptions_for_connection_errors=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self :Tuple ): self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" ,_UpperCamelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" ,_UpperCamelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" ,_UpperCamelCase ) ) def a__ ( self :List[Any] ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" ,"""ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCamelCase ,"""is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" ,_UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCamelCase ,"""is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" ,_UpperCamelCase ,revision="""ahaha""" ) snake_case_ : Dict = get_file_from_repo("""bert-base-cased""" ,_UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ : int = json.loads(open(_UpperCamelCase ,"""r""" ).read() ) self.assertEqual(config["""hidden_size"""] ,7_6_8 ) def a__ ( self :Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = Path(_UpperCamelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCamelCase ,"""a.txt""" ) ,str(_UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCamelCase ,"""b.txt""" ) )
371
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [] for current_row_idx in range(lowerCamelCase_ ): snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ , snake_case_ : Optional[Any] = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ): '''simple docstring''' snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case_ : list[list[int]] = [[1]] for row_index in range(1 , lowerCamelCase_ ): snake_case_ : Optional[Any] = [0] + result[-1] + [0] snake_case_ : Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) ) snake_case_ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ : str = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None: snake_case_ : Dict = F'''{func.__name__}({value})''' snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
8
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Dict = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCamelCase ( lowercase__ ): lowercase : Dict = 'gpt_neo' lowercase : Optional[Any] = ['past_key_values'] lowercase : List[Any] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self :List[str] ,_UpperCamelCase :List[Any]=5_0_2_5_7 ,_UpperCamelCase :Union[str, Any]=2_0_4_8 ,_UpperCamelCase :List[str]=2_0_4_8 ,_UpperCamelCase :str=2_4 ,_UpperCamelCase :Dict=[[["global", "local"], 1_2]] ,_UpperCamelCase :Union[str, Any]=1_6 ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :Dict=2_5_6 ,_UpperCamelCase :Any="gelu_new" ,_UpperCamelCase :List[str]=0.0 ,_UpperCamelCase :Dict=0.0 ,_UpperCamelCase :Any=0.0 ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :str=1E-5 ,_UpperCamelCase :str=0.02 ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Any=5_0_2_5_6 ,_UpperCamelCase :Any=5_0_2_5_6 ,**_UpperCamelCase :int ,): snake_case_ : str = vocab_size snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Optional[Any] = hidden_size snake_case_ : List[Any] = num_layers snake_case_ : Optional[int] = num_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[int] = window_size snake_case_ : Tuple = activation_function snake_case_ : Union[str, Any] = resid_dropout snake_case_ : Optional[Any] = embed_dropout snake_case_ : List[str] = attention_dropout snake_case_ : Optional[int] = classifier_dropout snake_case_ : Optional[Any] = layer_norm_epsilon snake_case_ : Optional[int] = initializer_range snake_case_ : List[str] = use_cache snake_case_ : int = bos_token_id snake_case_ : Dict = eos_token_id snake_case_ : List[str] = attention_types snake_case_ : Any = self.expand_attention_types_params(_UpperCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) @staticmethod def a__ ( _UpperCamelCase :List[Any] ): snake_case_ : Union[str, Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] ): '''simple docstring''' import torch snake_case_ : str = input.size() snake_case_ : int = len(lowerCamelCase_ ) snake_case_ : int = shape[dimension] snake_case_ : Dict = torch.arange(0 , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : List[str] = torch.div(sizedim - size , lowerCamelCase_ , rounding_mode="""floor""" ) + 1 snake_case_ : str = torch.arange(lowerCamelCase_ ) + low_indices[:min_length][:, None] snake_case_ : List[Any] = [slice(lowerCamelCase_ )] * rank snake_case_ : List[Any] = indices snake_case_ : str = input[s] snake_case_ : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' import torch snake_case_ : Tuple = torch.arange(1 , lowerCamelCase_ ) snake_case_ : List[Any] = torch.remainder(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Union[str, Any] = remainders == 0 snake_case_ : Union[str, Any] = candidates[divisor_indices] snake_case_ : Optional[Any] = torch.max(lowerCamelCase_ ) return largest_divisor, torch.div(lowerCamelCase_ , lowerCamelCase_ , rounding_mode="""floor""" ) class __UpperCamelCase ( lowercase__ ): @property def a__ ( self :Tuple ): snake_case_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase ,direction="""inputs""" ) snake_case_ : int = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} return common_inputs @property def a__ ( self :Optional[Any] ): return self._config.num_heads def a__ ( self :Optional[Any] ,_UpperCamelCase :PreTrainedTokenizer ,_UpperCamelCase :int = -1 ,_UpperCamelCase :int = -1 ,_UpperCamelCase :bool = False ,_UpperCamelCase :Optional[TensorType] = None ,): snake_case_ : List[str] = super(_UpperCamelCase ,self ).generate_dummy_inputs( _UpperCamelCase ,batch_size=_UpperCamelCase ,seq_length=_UpperCamelCase ,is_pair=_UpperCamelCase ,framework=_UpperCamelCase ) # We need to order the input in the way they appears in the forward() snake_case_ : int = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ : Any = seqlen + 2 snake_case_ : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ : Optional[Any] = [ (torch.zeros(_UpperCamelCase ), torch.zeros(_UpperCamelCase )) for _ in range(self.num_layers ) ] snake_case_ : List[str] = common_inputs["""attention_mask"""] if self.use_past: snake_case_ : List[Any] = ordered_inputs["""attention_mask"""].dtype snake_case_ : Tuple = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_UpperCamelCase ,_UpperCamelCase ,dtype=_UpperCamelCase )] ,dim=1 ) return ordered_inputs @property def a__ ( self :List[str] ): return 1_3
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' import random class __UpperCamelCase : @staticmethod def a__ ( _UpperCamelCase :str ): snake_case_ : Any = [ord(_UpperCamelCase ) for i in text] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] for i in plain: snake_case_ : Dict = random.randint(1 ,3_0_0 ) snake_case_ : List[Any] = (i + k) * k cipher.append(_UpperCamelCase ) key.append(_UpperCamelCase ) return cipher, key @staticmethod def a__ ( _UpperCamelCase :list[int] ,_UpperCamelCase :list[int] ): snake_case_ : str = [] for i in range(len(_UpperCamelCase ) ): snake_case_ : Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_UpperCamelCase ) ) return "".join(_UpperCamelCase ) if __name__ == "__main__": __A : Dict = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
351
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = '▁' __A : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} __A : Optional[int] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __A : Any = { 'facebook/xglm-564M': 2_048, } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : str = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Optional[Any]="<s>" ,_UpperCamelCase :List[Any]="</s>" ,_UpperCamelCase :List[Any]="</s>" ,_UpperCamelCase :Optional[Any]="<s>" ,_UpperCamelCase :List[Any]="<unk>" ,_UpperCamelCase :Optional[int]="<pad>" ,_UpperCamelCase :Optional[Dict[str, Any]] = None ,**_UpperCamelCase :List[Any] ,): snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case_ : Union[str, Any] = 7 snake_case_ : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] snake_case_ : List[Any] = kwargs.get("""additional_special_tokens""" ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCamelCase ,) snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ : Optional[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} snake_case_ : Dict = len(self.sp_model ) snake_case_ : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) snake_case_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :str ): snake_case_ : Optional[int] = self.__dict__.copy() snake_case_ : int = None snake_case_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self :List[str] ,_UpperCamelCase :int ): snake_case_ : int = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): snake_case_ : List[str] = {} snake_case_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ ( self :Optional[int] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case_ : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def a__ ( self :Dict ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def a__ ( self :List[str] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : Tuple = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def a__ ( self :Any ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def a__ ( self :Dict ): snake_case_ : List[Any] = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self :int ,_UpperCamelCase :str ): return self.sp_model.encode(_UpperCamelCase ,out_type=_UpperCamelCase ) def a__ ( self :Dict ,_UpperCamelCase :Any ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : Tuple = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self :Optional[int] ,_UpperCamelCase :int ): snake_case_ : Dict = """""".join(_UpperCamelCase ).replace(_UpperCamelCase ,""" """ ).strip() return out_string def a__ ( self :Optional[int] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Any = os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase ,"""wb""" ) as fi: snake_case_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
352
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' return x + 2 class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[Any] ): snake_case_ : Union[str, Any] = """x = 3""" snake_case_ : str = {} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3} ) snake_case_ : List[Any] = """x = y""" snake_case_ : Optional[Any] = {"""y""": 5} snake_case_ : Tuple = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 5, """y""": 5} ) def a__ ( self :Union[str, Any] ): snake_case_ : Union[str, Any] = """y = add_two(x)""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : List[str] = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def a__ ( self :Optional[int] ): snake_case_ : Union[str, Any] = """x = 3""" snake_case_ : Optional[int] = {} snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3} ) def a__ ( self :Optional[int] ): snake_case_ : Optional[Any] = """test_dict = {'x': x, 'y': add_two(x)}""" snake_case_ : Dict = {"""x""": 3} snake_case_ : Tuple = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a__ ( self :Optional[Any] ): snake_case_ : Any = """x = 3\ny = 5""" snake_case_ : Tuple = {} snake_case_ : List[Any] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 5} ) def a__ ( self :Optional[Any] ): snake_case_ : Dict = """text = f'This is x: {x}.'""" snake_case_ : int = {"""x""": 3} snake_case_ : Dict = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """text""": """This is x: 3."""} ) def a__ ( self :List[Any] ): snake_case_ : Optional[int] = """if x <= 3:\n y = 2\nelse:\n y = 5""" snake_case_ : int = {"""x""": 3} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 2} ) snake_case_ : Dict = {"""x""": 8} snake_case_ : Any = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 8, """y""": 5} ) def a__ ( self :Dict ): snake_case_ : Union[str, Any] = """test_list = [x, add_two(x)]""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : Any = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,[3, 5] ) self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) def a__ ( self :Any ): snake_case_ : int = """y = x""" snake_case_ : int = {"""x""": 3} snake_case_ : Optional[int] = evaluate(_UpperCamelCase ,{} ,state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """y""": 3} ) def a__ ( self :Any ): snake_case_ : str = """test_list = [x, add_two(x)]\ntest_list[1]""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : Union[str, Any] = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_list""": [3, 5]} ) snake_case_ : List[Any] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" snake_case_ : Tuple = {"""x""": 3} snake_case_ : str = evaluate(_UpperCamelCase ,{"""add_two""": add_two} ,state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def a__ ( self :Dict ): snake_case_ : List[Any] = """x = 0\nfor i in range(3):\n x = i""" snake_case_ : Dict = {} snake_case_ : Dict = evaluate(_UpperCamelCase ,{"""range""": range} ,state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase ,{"""x""": 2, """i""": 2} )
353
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): lowercase : str = ['input_values', 'padding_mask'] def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,): super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = chunk_length_s snake_case_ : str = overlap @property def a__ ( self :Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self :List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs snake_case_ : Tuple = True snake_case_ : str = bool( isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ): snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa ) elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): snake_case_ : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(_UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) snake_case_ : Tuple = None snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio ) snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) ) snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: snake_case_ : Any = max(array.shape[0] for array in raw_audio ) snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length snake_case_ : Union[str, Any] = """max_length""" else: snake_case_ : int = input_values # normal padding on batch if padded_inputs is None: snake_case_ : Optional[int] = self.pad( _UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,) if padding: snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" ) snake_case_ : Optional[int] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: snake_case_ : Dict = example[..., None] input_values.append(example.T ) snake_case_ : List[Any] = input_values if return_tensors is not None: snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs
8
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A : List[Any] = logging.getLogger(__name__) def UpperCAmelCase ( lowerCamelCase_ :torch.nn.Module , lowerCamelCase_ :BnbQuantizationConfig , lowerCamelCase_ :Union[str, os.PathLike] = None , lowerCamelCase_ :Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCamelCase_ :Optional[List[str]] = None , lowerCamelCase_ :Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCamelCase_ :Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ :bool = False , ): '''simple docstring''' snake_case_ : int = bnb_quantization_config.load_in_abit snake_case_ : Tuple = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) snake_case_ : Any = [] # custom device map if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(device_map.keys() ) > 1: snake_case_ : List[str] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ : List[str] = get_keys_to_not_convert(lowerCamelCase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCamelCase_ ) snake_case_ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ : Optional[Any] = [] snake_case_ : Optional[int] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCamelCase_ ) # compatibility with peft snake_case_ : int = load_in_abit snake_case_ : List[str] = load_in_abit snake_case_ : Optional[int] = get_parameter_device(lowerCamelCase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) snake_case_ : Dict = replace_with_bnb_layers(lowerCamelCase_ , lowerCamelCase_ , modules_to_not_convert=lowerCamelCase_ ) # convert param to the right dtype snake_case_ : Union[str, Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ : int = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) snake_case_ : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCamelCase_ ): param.to(lowerCamelCase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): snake_case_ : Any = replace_with_bnb_layers( lowerCamelCase_ , lowerCamelCase_ , modules_to_not_convert=lowerCamelCase_ ) snake_case_ : int = get_quantized_model_device_map( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , max_memory=lowerCamelCase_ , no_split_module_classes=lowerCamelCase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ : int = True snake_case_ : List[str] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCamelCase_ , offload_state_dict=lowerCamelCase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCamelCase_ , device_map=lowerCamelCase_ , offload_dir=lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :List[Any]=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): snake_case_ : List[str] = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) snake_case_ : Optional[int] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ : Optional[int] = {} snake_case_ : List[str] = special_dtypes snake_case_ : str = no_split_module_classes snake_case_ : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ : Tuple = get_balanced_memory( lowerCamelCase_ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCamelCase_ , **lowerCamelCase_ , ) snake_case_ : Optional[int] = max_memory snake_case_ : Union[str, Any] = infer_auto_device_map(lowerCamelCase_ , **lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # check if don't have any quantized module on the cpu snake_case_ : int = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ : List[str] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[Any]=None ): '''simple docstring''' if modules_to_not_convert is None: snake_case_ : Union[str, Any] = [] snake_case_ : Union[str, Any] = _replace_with_bnb_layers( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=None , ): '''simple docstring''' snake_case_ : Dict = False for name, module in model.named_children(): if current_key_name is None: snake_case_ : Optional[Any] = [] current_key_name.append(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ : Tuple = """.""".join(lowerCamelCase_ ) snake_case_ : int = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCamelCase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) snake_case_ : str = module.weight.data if module.bias is not None: snake_case_ : Any = module.bias.data bnb_module.requires_grad_(lowerCamelCase_ ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Optional[Any] = True if len(list(module.children() ) ) > 0: snake_case_ : Union[str, Any] = _replace_with_bnb_layers( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : List[str] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' # Create a copy of the model with init_empty_weights(): snake_case_ : Optional[int] = deepcopy(lowerCamelCase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ : Optional[Any] = find_tied_parameters(lowerCamelCase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ : Optional[int] = sum(lowerCamelCase_ , [] ) snake_case_ : Tuple = len(lowerCamelCase_ ) > 0 # Check if it is a base model snake_case_ : Any = False if hasattr(lowerCamelCase_ , """base_model_prefix""" ): snake_case_ : Any = not hasattr(lowerCamelCase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ : List[str] = list(model.named_children() ) snake_case_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights snake_case_ : Optional[Any] = set(lowerCamelCase_ ) - set(lowerCamelCase_ ) snake_case_ : List[str] = list(set(lowerCamelCase_ ) ) + list(lowerCamelCase_ ) # remove ".weight" from the keys snake_case_ : Any = [""".weight""", """.bias"""] snake_case_ : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ : Any = name.replace(lowerCamelCase_ , """""" ) filtered_module_names.append(lowerCamelCase_ ) return filtered_module_names def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' for m in model.modules(): if isinstance(lowerCamelCase_ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase ( lowerCamelCase_ :nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Dict ): '''simple docstring''' # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowerCamelCase_ , lowerCamelCase_ , 0 , dtype=lowerCamelCase_ , value=lowerCamelCase_ ) snake_case_ : str = param_name snake_case_ : Union[str, Any] = model if "." in tensor_name: snake_case_ : str = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case_ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) snake_case_ : Union[str, Any] = new_module snake_case_ : Optional[Any] = splits[-1] # offload weights snake_case_ : List[Any] = False offload_weight(module._parameters[tensor_name] , lowerCamelCase_ , lowerCamelCase_ , index=lowerCamelCase_ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCamelCase_ , index=lowerCamelCase_ , ) else: offload_weight(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , index=lowerCamelCase_ ) offload_weight(lowerCamelCase_ , param_name.replace("""weight""" , """SCB""" ) , lowerCamelCase_ , index=lowerCamelCase_ ) set_module_tensor_to_device(lowerCamelCase_ , lowerCamelCase_ , """meta""" , dtype=lowerCamelCase_ , value=torch.empty(*param.size() ) )
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
355
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Any = only_cross_attention snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase ) else: snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case_ : str = ( AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) ) snake_case_ : List[str] = Attention( query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none else: snake_case_ : Any = None snake_case_ : Optional[Any] = None # 3. Feed-forward snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase ) # let chunk size default to None snake_case_ : Optional[int] = None snake_case_ : Dict = 0 def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ): # Sets chunk feed-forward snake_case_ : Optional[Any] = chunk_size snake_case_ : Optional[Any] = dim def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase ) elif self.use_ada_layer_norm_zero: snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype ) else: snake_case_ : Optional[int] = self.norma(_UpperCamelCase ) snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case_ : Union[str, Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case_ : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case_ : Any = ( self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) snake_case_ : List[Any] = self.attna( _UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Tuple = attn_output + hidden_states # 3. Feed-forward snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case_ : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case_ : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case_ : Any = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,): super().__init__() snake_case_ : Tuple = int(dim * mult ) snake_case_ : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase ) if activation_fn == "gelu-approximate": snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase ) elif activation_fn == "geglu-approximate": snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ): for module in self.net: snake_case_ : Tuple = module(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Optional[Any] = approximate def a__ ( self :str ,_UpperCamelCase :int ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Optional[Any] = self.proj(_UpperCamelCase ) snake_case_ : int = self.gelu(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 ) def a__ ( self :Dict ,_UpperCamelCase :List[str] ): if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.7_02 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): super().__init__() snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Union[str, Any] = nn.SiLU() snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 ) snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 ) snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ): super().__init__() snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = nn.SiLU() snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase ) snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ): snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 ) snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ): super().__init__() snake_case_ : Optional[int] = num_groups snake_case_ : List[Any] = eps if act_fn is None: snake_case_ : int = None else: snake_case_ : Dict = get_activation(_UpperCamelCase ) snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ): if self.act: snake_case_ : Any = self.act(_UpperCamelCase ) snake_case_ : Optional[int] = self.linear(_UpperCamelCase ) snake_case_ : Dict = emb[:, :, None, None] snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 ) snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps ) snake_case_ : List[str] = x * (1 + scale) + shift return x
8
0