code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A : int = 16
__A : Union[str, Any] = 32
def UpperCAmelCase ( lowerCamelCase_ :Accelerator , lowerCamelCase_ :int = 16 ):
'''simple docstring'''
snake_case_ : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case_ : List[Any] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(lowerCamelCase_ :Any ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ : Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case_ : str = datasets.map(
lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case_ : Dict = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCamelCase_ :Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case_ : str = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case_ : str = 16
elif accelerator.mixed_precision != "no":
snake_case_ : List[Any] = 8
else:
snake_case_ : Tuple = None
return tokenizer.pad(
lowerCamelCase_ , padding="""longest""" , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case_ : Any = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
snake_case_ : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A : int = mocked_dataloaders # noqa: F811
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase_ ) == "1":
snake_case_ : List[Any] = 2
# Initialize accelerator
snake_case_ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case_ : Optional[Any] = config["""lr"""]
snake_case_ : List[str] = int(config["""num_epochs"""] )
snake_case_ : Optional[Any] = int(config["""seed"""] )
snake_case_ : int = int(config["""batch_size"""] )
snake_case_ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowerCamelCase_ )
def inner_training_loop(lowerCamelCase_ :Dict ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowerCamelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case_ : List[Any] = model.to(accelerator.device )
# Instantiate optimizer
snake_case_ : int = AdamW(params=model.parameters() , lr=lowerCamelCase_ )
snake_case_ : Union[str, Any] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ )
# Instantiate scheduler
snake_case_ : int = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case_ : List[Any] = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Now we train the model
for epoch in range(lowerCamelCase_ ):
model.train()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case_ : List[Any] = model(**lowerCamelCase_ )
snake_case_ : Dict = outputs.loss
accelerator.backward(lowerCamelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case_ : str = model(**lowerCamelCase_ )
snake_case_ : int = outputs.logits.argmax(dim=-1 )
snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=lowerCamelCase_ , references=lowerCamelCase_ , )
snake_case_ : Dict = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
snake_case_ : Optional[Any] = parser.parse_args()
snake_case_ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main() | 356 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ):
'''simple docstring'''
snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {}
snake_case_ : Union[str, Any] = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ):
'''simple docstring'''
snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,):
super().__init__()
snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" )
snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" )
snake_case_ : Optional[int] = self.get_char_lens(self.src_file )
snake_case_ : List[str] = max_source_length
snake_case_ : str = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
snake_case_ : str = tokenizer
snake_case_ : str = prefix
if n_obs is not None:
snake_case_ : int = self.src_lens[:n_obs]
snake_case_ : Tuple = src_lang
snake_case_ : str = tgt_lang
def __len__( self :Any ):
return len(self.src_lens )
def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ):
snake_case_ : Optional[int] = index + 1 # linecache starts at 1
snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" )
snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer ,_UpperCamelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
snake_case_ : int = (
self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
)
snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" )
snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" )
snake_case_ : int = source_inputs["""input_ids"""].squeeze()
snake_case_ : str = target_inputs["""input_ids"""].squeeze()
snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def a__ ( _UpperCamelCase :str ):
return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()]
def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ):
snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] )
snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] )
snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
snake_case_ : Optional[Any] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Tuple = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase )
snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase )
snake_case_ : Optional[int] = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__A : List[Any] = getLogger(__name__)
def UpperCAmelCase ( lowerCamelCase_ :List[List] ):
'''simple docstring'''
return list(itertools.chain.from_iterable(lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : int = get_git_info()
save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
with open(lowerCamelCase_ , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] ):
'''simple docstring'''
with open(lowerCamelCase_ ) as f:
return json.load(lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ )
snake_case_ : List[str] = {
"""repo_id""": str(lowerCamelCase_ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ):
'''simple docstring'''
return list(map(lowerCamelCase_ , lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , """wb""" ) as f:
return pickle.dump(lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Dict ):
'''simple docstring'''
def remove_articles(lowerCamelCase_ :str ):
return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ )
def white_space_fix(lowerCamelCase_ :Optional[Any] ):
return " ".join(text.split() )
def remove_punc(lowerCamelCase_ :Tuple ):
snake_case_ : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCamelCase_ :Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ )
snake_case_ : Optional[Any] = sum(common.values() )
if num_same == 0:
return 0
snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall)
return fa
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ):
'''simple docstring'''
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
snake_case_ : Optional[int] = 0
for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ):
em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
em /= len(lowerCamelCase_ )
return {"em": em}
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
return model_prefix.startswith("""rag""" )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
snake_case_ : Optional[int] = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
continue
snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p]
setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
return hparams, config | 8 | 0 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
__A : Tuple = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n'
__A : Tuple = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n'
__A : str = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def a__ ( self :Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) ,reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] ,)
def a__ ( self :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :Dict=None ,_UpperCamelCase :Union[str, Any]=1 ,_UpperCamelCase :Any="binary" ,_UpperCamelCase :Dict=None ):
snake_case_ : int = fa_score(
_UpperCamelCase ,_UpperCamelCase ,labels=_UpperCamelCase ,pos_label=_UpperCamelCase ,average=_UpperCamelCase ,sample_weight=_UpperCamelCase )
return {"f1": float(_UpperCamelCase ) if score.size == 1 else score} | 357 |
'''simple docstring'''
import functools
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[str] = len(lowerCamelCase_ )
snake_case_ : Dict = len(lowerCamelCase_ )
@functools.cache
def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__A : Optional[int] = 16
__A : Optional[Any] = 32
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
return int(x / 2**20 )
class __UpperCamelCase :
def __enter__( self :Optional[int] ):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
snake_case_ : Optional[Any] = torch.cuda.memory_allocated()
return self
def __exit__( self :List[Any] ,*_UpperCamelCase :Union[str, Any] ):
gc.collect()
torch.cuda.empty_cache()
snake_case_ : int = torch.cuda.memory_allocated()
snake_case_ : Optional[int] = torch.cuda.max_memory_allocated()
snake_case_ : Dict = bamb(self.end - self.begin )
snake_case_ : List[str] = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def UpperCAmelCase ( lowerCamelCase_ :Accelerator , lowerCamelCase_ :int = 16 , lowerCamelCase_ :str = "bert-base-cased" , lowerCamelCase_ :int = 3_20 , lowerCamelCase_ :int = 1_60 , ):
'''simple docstring'''
snake_case_ : List[Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ )
snake_case_ : str = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''} )
def tokenize_function(lowerCamelCase_ :Any ):
# max_length=None => use the model max length (it's actually the default)
snake_case_ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
snake_case_ : Optional[Any] = datasets.map(
lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case_ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowerCamelCase_ :List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCamelCase_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" )
return tokenizer.pad(lowerCamelCase_ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
snake_case_ : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
snake_case_ : str = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ )
return train_dataloader, eval_dataloader
def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Any ):
'''simple docstring'''
snake_case_ : List[Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case_ : Any = config["""lr"""]
snake_case_ : List[Any] = int(config["""num_epochs"""] )
snake_case_ : str = int(config["""seed"""] )
snake_case_ : Union[str, Any] = int(config["""batch_size"""] )
snake_case_ : Optional[Any] = args.model_name_or_path
set_seed(lowerCamelCase_ )
snake_case_ : Union[str, Any] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ )
# Instantiate optimizer
snake_case_ : List[Any] = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
snake_case_ : Any = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ )
if accelerator.state.deepspeed_plugin is not None:
snake_case_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
snake_case_ : Optional[int] = 1
snake_case_ : Any = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
snake_case_ : List[Any] = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , )
else:
snake_case_ : List[str] = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case_ : Any = accelerator.prepare(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# We need to keep track of how many total steps we have iterated over
snake_case_ : List[Any] = 0
# We also need to keep track of the stating epoch so files are named properly
snake_case_ : List[str] = 0
# Now we train the model
snake_case_ : Tuple = {}
for epoch in range(lowerCamelCase_ , lowerCamelCase_ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowerCamelCase_ ):
snake_case_ : Any = model(**lowerCamelCase_ )
snake_case_ : List[str] = outputs.loss
snake_case_ : Union[str, Any] = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
snake_case_ : Optional[Any] = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=lowerCamelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase_ , )
parser.add_argument(
"""--output_dir""" , type=lowerCamelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=lowerCamelCase_ , default=3_20 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=lowerCamelCase_ , default=1_60 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCamelCase_ , default=1 , help="""Number of train epochs.""" , )
snake_case_ : Any = parser.parse_args()
snake_case_ : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
main()
| 358 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Any = tmp_path / """file.csv"""
snake_case_ : Any = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Optional[int] = tmp_path / """malformed_file.csv"""
snake_case_ : int = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : str = tmp_path / """csv_with_image.csv"""
snake_case_ : int = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
snake_case_ : int = tmp_path / """csv_with_label.csv"""
snake_case_ : Tuple = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv"""
snake_case_ : str = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ):
'''simple docstring'''
snake_case_ : int = Csv()
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(lowerCamelCase_ ) in record.message
for record in caplog.records )
@require_pil
def UpperCAmelCase ( lowerCamelCase_ :Tuple ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : Tuple = f.read().splitlines()[1]
snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] )
snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
snake_case_ : List[str] = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : List[Any] = f.read().splitlines()[1:]
snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] )
snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels]
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] )
snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
snake_case_ : Dict = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | 8 | 0 |
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[int] = ['input_ids', 'attention_mask']
def __init__( self :List[Any] ,_UpperCamelCase :Tuple="</s>" ,_UpperCamelCase :str="<unk>" ,_UpperCamelCase :str="<pad>" ,_UpperCamelCase :List[str]=1_2_5 ,_UpperCamelCase :List[str]=None ,**_UpperCamelCase :str ,):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
snake_case_ : List[str] = [F'''<extra_id_{i}>''' for i in range(_UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
snake_case_ : Optional[int] = len(set(filter(lambda _UpperCamelCase : bool("""extra_id""" in str(_UpperCamelCase ) ) ,_UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
""" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"""
""" extra_ids tokens""" )
snake_case_ : List[str] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else pad_token
snake_case_ : Dict = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else eos_token
snake_case_ : Optional[Any] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else unk_token
super().__init__(
eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,extra_ids=_UpperCamelCase ,additional_special_tokens=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Any = extra_ids
snake_case_ : str = 2**8 # utf is 8 bits
# define special tokens dict
snake_case_ : Dict[int, str] = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
snake_case_ : List[Any] = len(self.special_tokens_encoder )
snake_case_ : List[Any] = len(_UpperCamelCase )
for i, token in enumerate(_UpperCamelCase ):
snake_case_ : Optional[int] = self.vocab_size + i - n
snake_case_ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def a__ ( self :Union[str, Any] ):
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ,_UpperCamelCase :bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCamelCase )) + [1]
return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def a__ ( self :int ,_UpperCamelCase :List[int] ):
if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
""" eos tokens being added.""" )
return token_ids
else:
return token_ids + [self.eos_token_id]
def a__ ( self :Optional[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : Union[str, Any] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def a__ ( self :Optional[int] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : List[str] = self._add_eos_if_not_present(_UpperCamelCase )
if token_ids_a is None:
return token_ids_a
else:
snake_case_ : Union[str, Any] = self._add_eos_if_not_present(_UpperCamelCase )
return token_ids_a + token_ids_a
def a__ ( self :Optional[Any] ,_UpperCamelCase :str ):
snake_case_ : List[str] = [chr(_UpperCamelCase ) for i in text.encode("""utf-8""" )]
return tokens
def a__ ( self :List[str] ,_UpperCamelCase :str ):
if token in self.special_tokens_encoder:
snake_case_ : List[str] = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
snake_case_ : Optional[Any] = self.added_tokens_encoder[token]
elif len(_UpperCamelCase ) != 1:
snake_case_ : Any = self.unk_token_id
else:
snake_case_ : int = ord(_UpperCamelCase ) + self._num_special_tokens
return token_id
def a__ ( self :List[str] ,_UpperCamelCase :List[Any] ):
if index in self.special_tokens_decoder:
snake_case_ : str = self.special_tokens_decoder[index]
else:
snake_case_ : Tuple = chr(index - self._num_special_tokens )
return token
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ):
snake_case_ : Optional[int] = B""""""
for token in tokens:
if token in self.special_tokens_decoder:
snake_case_ : Optional[Any] = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.added_tokens_decoder:
snake_case_ : Dict = self.special_tokens_decoder[token].encode("""utf-8""" )
elif token in self.special_tokens_encoder:
snake_case_ : List[Any] = token.encode("""utf-8""" )
elif token in self.added_tokens_encoder:
snake_case_ : Optional[int] = token.encode("""utf-8""" )
else:
snake_case_ : List[Any] = bytes([ord(_UpperCamelCase )] )
bstring += tok_string
snake_case_ : Union[str, Any] = bstring.decode("""utf-8""" ,errors="""ignore""" )
return string
def a__ ( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ):
return () | 359 |
'''simple docstring'''
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ):
'''simple docstring'''
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match'''
snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match'''
snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : Optional[Any] = np.asarray(weights[0] )
snake_case_ : int = np.asarray(weights[1] )
snake_case_ : Any = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : List[Any] = np.asarray(weights[0] )
snake_case_ : Optional[int] = np.asarray(weights[1] )
snake_case_ : Union[str, Any] = np.asarray(weights[2] )
snake_case_ : int = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
# layernorm 1
snake_case_ : str = weights[0][0][0]
snake_case_ : int = np.asarray(layer_norm_a[0] )
snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# lsh weights + output
snake_case_ : Tuple = weights[0][1]
if len(lowerCamelCase_ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
else:
set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
# intermediate weighs
snake_case_ : str = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase_ ) == 4:
snake_case_ : List[Any] = intermediate_weights[2]
# layernorm 2
snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] )
snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# intermediate dense
snake_case_ : Any = np.asarray(intermediate_weights[1][0] )
snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
# intermediate out
snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] )
snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ):
'''simple docstring'''
# reformer model
snake_case_ : Dict = torch_model.reformer
# word embeds
snake_case_ : List[Any] = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , )
if isinstance(weights[3] , lowerCamelCase_ ):
snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'''{position_embeddings[emb_idx]} emb does not match'''
snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) )
snake_case_ : List[Any] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# output layer norm
snake_case_ : Optional[Any] = np.asarray(weights[7][0] )
snake_case_ : List[Any] = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# output embeddings
snake_case_ : Optional[int] = np.asarray(weights[9][0] )
snake_case_ : Any = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# Initialise PyTorch model
snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ )
with open(lowerCamelCase_ , """rb""" ) as f:
snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowerCamelCase_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__A : List[Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path) | 8 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
@slow
def a__ ( self :Optional[Any] ):
snake_case_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ,return_dict=_UpperCamelCase ).to(_UpperCamelCase )
snake_case_ : List[str] = AutoTokenizer.from_pretrained("""google/mt5-small""" )
snake_case_ : Any = tokenizer("""Hello there""" ,return_tensors="""pt""" ).input_ids
snake_case_ : Dict = tokenizer("""Hi I am""" ,return_tensors="""pt""" ).input_ids
snake_case_ : Optional[Any] = model(input_ids.to(_UpperCamelCase ) ,labels=labels.to(_UpperCamelCase ) ).loss
snake_case_ : Any = -(labels.shape[-1] * loss.item())
snake_case_ : Dict = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 ) | 360 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : str = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __UpperCamelCase ( lowercase__ ):
lowercase : List[Any] = 'canine'
def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,):
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : List[str] = max_position_embeddings
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : Dict = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : Tuple = intermediate_size
snake_case_ : str = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : Optional[Any] = initializer_range
snake_case_ : Optional[int] = type_vocab_size
snake_case_ : List[str] = layer_norm_eps
# Character config:
snake_case_ : Any = downsampling_rate
snake_case_ : List[str] = upsampling_kernel_size
snake_case_ : int = num_hash_functions
snake_case_ : Tuple = num_hash_buckets
snake_case_ : Tuple = local_transformer_stride | 8 | 0 |
'''simple docstring'''
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Any = CpmAntTokenizer
lowercase : Tuple = False
def a__ ( self :Optional[int] ):
super().setUp()
snake_case_ : List[Any] = [
"""<d>""",
"""</d>""",
"""<s>""",
"""</s>""",
"""</_>""",
"""<unk>""",
"""<pad>""",
"""</n>""",
"""我""",
"""是""",
"""C""",
"""P""",
"""M""",
"""A""",
"""n""",
"""t""",
]
snake_case_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
@tooslow
def a__ ( self :str ):
snake_case_ : Dict = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" )
snake_case_ : Optional[int] = """今天天气真好!"""
snake_case_ : Optional[int] = ["""今天""", """天气""", """真""", """好""", """!"""]
snake_case_ : Optional[Any] = tokenizer.tokenize(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Optional[Any] = """今天天气真好!"""
snake_case_ : Any = [tokenizer.bos_token] + tokens
snake_case_ : Dict = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase )
snake_case_ : Optional[Any] = tokenizer.decode(_UpperCamelCase )
self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) | 361 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
__A : Tuple = logging.get_logger(__name__)
__A : List[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : str = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
__A : Optional[Any] = {
'facebook/blenderbot_small-90M': 512,
}
class __UpperCamelCase ( lowercase__ ):
lowercase : str = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Dict = BlenderbotSmallTokenizer
def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,):
super().__init__(
ByteLevelBPETokenizer(
vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Any = add_prefix_space
def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ):
snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : int = [self.sep_token_id]
snake_case_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] | 8 | 0 |
'''simple docstring'''
import functools
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[str] = len(lowerCamelCase_ )
snake_case_ : Dict = len(lowerCamelCase_ )
@functools.cache
def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 362 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :list ):
'''simple docstring'''
if len(lowerCamelCase_ ) <= 1:
return lst
snake_case_ : Union[str, Any] = 1
while i < len(lowerCamelCase_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case_ : int = 1
return lst
if __name__ == "__main__":
__A : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
__A : int = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted)) | 8 | 0 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if hor == 1_28:
snake_case_ : Tuple = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
snake_case_ : Tuple = (32, 1_28, 2_56)
snake_case_ : Dict = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
snake_case_ : str = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
snake_case_ : Union[str, Any] = (32, 64, 1_28, 2_56)
snake_case_ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
snake_case_ : Dict = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
snake_case_ : str = model.state_dict()
snake_case_ : int = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_55_36,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
snake_case_ : Optional[Any] = UNetaDModel(**lowerCamelCase_ )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
snake_case_ : str = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case_ : List[Any] = state_dict.pop(lowerCamelCase_ )
hf_value_function.load_state_dict(lowerCamelCase_ )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : str = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 1_28, 2_56),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_55_36,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
snake_case_ : int = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
snake_case_ : int = model
snake_case_ : Dict = UNetaDModel(**lowerCamelCase_ )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
snake_case_ : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case_ : List[str] = state_dict.pop(lowerCamelCase_ )
hf_value_function.load_state_dict(lowerCamelCase_ )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function() | 363 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,):
snake_case_ : str = parent
snake_case_ : int = batch_size
snake_case_ : Union[str, Any] = seq_length
snake_case_ : List[Any] = is_training
snake_case_ : Union[str, Any] = use_input_mask
snake_case_ : List[str] = use_labels
snake_case_ : int = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : List[Any] = projection_dim
snake_case_ : Dict = num_hidden_layers
snake_case_ : Dict = num_attention_heads
snake_case_ : str = intermediate_size
snake_case_ : int = dropout
snake_case_ : int = attention_dropout
snake_case_ : Dict = max_position_embeddings
snake_case_ : Union[str, Any] = initializer_range
snake_case_ : Dict = scope
snake_case_ : Union[str, Any] = bos_token_id
def a__ ( self :Any ):
snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
snake_case_ : Union[str, Any] = None
if self.use_input_mask:
snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
snake_case_ : int = input_mask.numpy()
snake_case_ , snake_case_ : Tuple = input_mask.shape
snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) )
for batch_idx, start_index in enumerate(_UpperCamelCase ):
snake_case_ : Optional[int] = 1
snake_case_ : List[str] = 0
snake_case_ : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(_UpperCamelCase )
def a__ ( self :str ):
return BlipTextConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,)
def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ):
snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase )
snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase )
snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def a__ ( self :List[str] ):
snake_case_ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs
snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else ()
lowercase : int = False
lowercase : List[Any] = False
lowercase : Dict = False
def a__ ( self :List[Any] ):
snake_case_ : List[str] = BlipTextModelTester(self )
snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 )
def a__ ( self :Union[str, Any] ):
self.config_tester.run_common_tests()
def a__ ( self :Union[str, Any] ):
snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def a__ ( self :Tuple ):
pass
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def a__ ( self :Any ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :List[Any] ):
pass
@slow
def a__ ( self :Any ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : int = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['XGLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = ['XGLMTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XGLMForCausalLM',
'XGLMModel',
'XGLMPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = [
'FlaxXGLMForCausalLM',
'FlaxXGLMModel',
'FlaxXGLMPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXGLMForCausalLM',
'TFXGLMModel',
'TFXGLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure) | 364 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : int = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 8 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@slow
def a__ ( self :Dict ):
snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" )
snake_case_ : int = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" )
model.to(_UpperCamelCase )
from datasets import load_dataset
snake_case_ : Union[str, Any] = load_dataset("""nielsr/rvlcdip-demo""" )
snake_case_ : int = dataset["""train"""][0]["""image"""].convert("""RGB""" )
snake_case_ : Any = image_processor(_UpperCamelCase ,return_tensors="""pt""" ).to(_UpperCamelCase )
# forward pass
with torch.no_grad():
snake_case_ : List[str] = model(**_UpperCamelCase )
snake_case_ : List[Any] = outputs.logits
snake_case_ : Any = torch.Size((1, 1_6) )
self.assertEqual(logits.shape ,_UpperCamelCase )
snake_case_ : List[str] = torch.tensor(
[-0.41_58, -0.40_92, -0.43_47] ,device=_UpperCamelCase ,dtype=torch.float ,)
self.assertTrue(torch.allclose(logits[0, :3] ,_UpperCamelCase ,atol=1E-4 ) ) | 365 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__A : Optional[int] = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ):
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,)
super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
from statistics import mean
import numpy as np
def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Optional[Any] = 0
# Number of processes finished
snake_case_ : Dict = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
snake_case_ : List[str] = [0] * no_of_process
# List to include calculation results
snake_case_ : int = [0] * no_of_process
# Sort by arrival time.
snake_case_ : Any = [burst_time[i] for i in np.argsort(lowerCamelCase_ )]
snake_case_ : Tuple = [process_name[i] for i in np.argsort(lowerCamelCase_ )]
arrival_time.sort()
while no_of_process > finished_process_count:
snake_case_ : Tuple = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
snake_case_ : List[str] = arrival_time[i]
snake_case_ : Optional[int] = 0
# Index showing the location of the process being performed
snake_case_ : Union[str, Any] = 0
# Saves the current response ratio.
snake_case_ : Union[str, Any] = 0
for i in range(0 , lowerCamelCase_ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
snake_case_ : Any = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
snake_case_ : Tuple = temp
snake_case_ : Optional[Any] = i
# Calculate the turn around time
snake_case_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
snake_case_ : Any = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :list , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [0] * no_of_process
for i in range(0 , lowerCamelCase_ ):
snake_case_ : Any = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
__A : Tuple = 5
__A : Dict = ['A', 'B', 'C', 'D', 'E']
__A : Dict = [1, 2, 3, 4, 5]
__A : Dict = [1, 2, 3, 4, 5]
__A : str = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
__A : int = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time')
for i in range(0, no_of_process):
print(
F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
F'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(F'average waiting time : {mean(waiting_time):.5f}')
print(F'average turn around time : {mean(turn_around_time):.5f}') | 366 |
'''simple docstring'''
import re
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[Any] = re.compile(
R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" )
return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) )
if __name__ == "__main__":
__A : int = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 8 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Optional[Any] = {
'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[Any] = 'biogpt'
def __init__( self :List[str] ,_UpperCamelCase :Any=4_2_3_8_4 ,_UpperCamelCase :int=1_0_2_4 ,_UpperCamelCase :List[str]=2_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :str=4_0_9_6 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :int=1_0_2_4 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :List[str]=1E-1_2 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :int=True ,_UpperCamelCase :Optional[Any]=0.0 ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :str=1 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :Optional[Any]=2 ,**_UpperCamelCase :Dict ,):
snake_case_ : Tuple = vocab_size
snake_case_ : Dict = max_position_embeddings
snake_case_ : int = hidden_size
snake_case_ : List[Any] = num_hidden_layers
snake_case_ : Any = num_attention_heads
snake_case_ : str = intermediate_size
snake_case_ : Optional[int] = hidden_act
snake_case_ : Optional[Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = layer_norm_eps
snake_case_ : Optional[Any] = scale_embedding
snake_case_ : Union[str, Any] = use_cache
snake_case_ : List[str] = layerdrop
snake_case_ : Tuple = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) | 367 |
'''simple docstring'''
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class __UpperCamelCase ( lowercase__ ):
lowercase : Union[List[PIL.Image.Image], np.ndarray]
lowercase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline | 8 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def a__ ( self :Dict ):
snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Dict = torch.tensor(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
@slow
def a__ ( self :Union[str, Any] ):
snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Any = torch.tensor(
[[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) | 368 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
lowercase : Dict = StableDiffusionInpaintPipeline
lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase : Dict = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowercase : Optional[int] = frozenset([] )
def a__ ( self :Any ):
torch.manual_seed(0 )
snake_case_ : Optional[int] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,)
snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ : List[str] = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
snake_case_ : Optional[int] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,)
snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase )
snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
snake_case_ : str = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase )
snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0]
snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) )
snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) )
if str(_UpperCamelCase ).startswith("""mps""" ):
snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self :Any ):
snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[Any] = self.get_dummy_components()
snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase )
snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images
snake_case_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a__ ( self :Any ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def a__ ( self :List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self :Tuple ):
snake_case_ : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[str] = torch.manual_seed(0 )
snake_case_ : Dict = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def a__ ( self :Tuple ):
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[Any] = torch.manual_seed(0 )
snake_case_ : Any = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def a__ ( self :Union[str, Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case_ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" )
snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : Optional[int] = torch.manual_seed(0 )
snake_case_ : Tuple = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,)
snake_case_ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9 | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :list ):
'''simple docstring'''
if len(lowerCamelCase_ ) <= 1:
return lst
snake_case_ : Union[str, Any] = 1
while i < len(lowerCamelCase_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case_ : Union[str, Any] = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case_ : int = 1
return lst
if __name__ == "__main__":
__A : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
__A : int = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted))
| 369 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
__A : Dict = 'src/transformers'
# Matches is_xxx_available()
__A : Dict = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__A : int = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__A : List[Any] = re.compile(r'^\s*try:')
# Catches a line with else:
__A : Any = re.compile(r'^\s*else:')
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
if _re_test_backend.search(lowerCamelCase_ ) is None:
return None
snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )]
backends.sort()
return "_and_".join(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : str = f.readlines()
snake_case_ : List[Any] = 0
while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ : Union[str, Any] = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ : str = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCamelCase_ ):
snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0]
snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ )
if single_line_import_search is not None:
snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ : Union[str, Any] = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ : List[str] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : Tuple = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ : List[Any] = lines[line_index]
if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None:
snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_between_brackets.search(lowerCamelCase_ ) is not None:
snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_quote_object.search(lowerCamelCase_ ) is not None:
objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ : List[Any] = []
while (
line_index < len(lowerCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ : Union[str, Any] = lines[line_index]
snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ : Dict = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : str = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ : Dict = lines[line_index]
snake_case_ : Any = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ :Union[str, Any] ):
return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ : Optional[int] = []
for key in import_dict_objects.keys():
snake_case_ : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
snake_case_ : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Tuple = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" )
snake_case_ : Dict = parse_init(lowerCamelCase_ )
if objects is not None:
snake_case_ : Any = analyze_results(*lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(lowerCamelCase_ ) )
if len(lowerCamelCase_ ) > 0:
raise ValueError("""\n\n""".join(lowerCamelCase_ ) )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = []
for path, directories, files in os.walk(lowerCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(lowerCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" )
submodules.append(lowerCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(lowerCamelCase_ )
return submodules
__A : List[Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def UpperCAmelCase ( ):
'''simple docstring'''
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ )
snake_case_ : List[str] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f:
snake_case_ : str = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) )
snake_case_ : Dict = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCamelCase_ ) > 0:
snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules() | 8 | 0 |
'''simple docstring'''
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__A : str = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__A : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__A : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__A : Optional[int] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
__A : Optional[Any] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__A : str = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
__A : Any = tf.keras.preprocessing.image.img_to_array(test_image)
__A : int = np.expand_dims(test_image, axis=0)
__A : Union[str, Any] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__A : Optional[Any] = 'Normal'
if result[0][0] == 1:
__A : List[str] = 'Abnormality detected' | 370 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,):
snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case_ : Union[str, Any] = parent
snake_case_ : str = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Tuple = image_size
snake_case_ : int = min_resolution
snake_case_ : int = max_resolution
snake_case_ : Union[str, Any] = do_resize
snake_case_ : Optional[Any] = size
snake_case_ : Any = apply_ocr
def a__ ( self :Union[str, Any] ):
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self :List[Any] ):
snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self :int ):
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self :Any ):
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) )
def a__ ( self :int ):
snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} )
snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 )
self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} )
def a__ ( self :Optional[Any] ):
pass
def a__ ( self :Union[str, Any] ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,Image.Image )
# Test not batched input
snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
self.assertIsInstance(encoding.words ,_UpperCamelCase )
self.assertIsInstance(encoding.boxes ,_UpperCamelCase )
# Test batched
snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Tuple ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,np.ndarray )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Optional[Any] ):
# Initialize image_processing
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,torch.Tensor )
# Test not batched input
snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :List[Any] ):
# with apply_OCR = True
snake_case_ : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" )
snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words ,_UpperCamelCase )
self.assertListEqual(encoding.boxes ,_UpperCamelCase )
# with apply_OCR = False
snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase )
snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : str = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4)) | 371 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ )
for row_idx in range(lowerCamelCase_ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = []
for current_row_idx in range(lowerCamelCase_ ):
snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ )
triangle.append(lowerCamelCase_ )
return triangle
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
snake_case_ , snake_case_ : Optional[Any] = 1, 1
for current_col_idx in range(1 , lowerCamelCase_ ):
calculate_current_element(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return current_row
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ):
'''simple docstring'''
snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx]
snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = [[1]]
for row_index in range(1 , lowerCamelCase_ ):
snake_case_ : Optional[Any] = [0] + result[-1] + [0]
snake_case_ : Dict = row_index + 1
# Calculate the number of distinct elements in a row
snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) )
snake_case_ : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
snake_case_ : str = row_first_half + row_second_half
result.append(lowerCamelCase_ )
return result
def UpperCAmelCase ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None:
snake_case_ : Dict = F'''{func.__name__}({value})'''
snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Optional[int] = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 350 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def a__ ( self :Dict ):
snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Dict = torch.tensor(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
@slow
def a__ ( self :Union[str, Any] ):
snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Any = torch.tensor(
[[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Any = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['MBartTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['MBartTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'MBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'MBartForCausalLM',
'MBartForConditionalGeneration',
'MBartForQuestionAnswering',
'MBartForSequenceClassification',
'MBartModel',
'MBartPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'TFMBartForConditionalGeneration',
'TFMBartModel',
'TFMBartPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = [
'FlaxMBartForConditionalGeneration',
'FlaxMBartForQuestionAnswering',
'FlaxMBartForSequenceClassification',
'FlaxMBartModel',
'FlaxMBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 351 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ):
'''simple docstring'''
snake_case_ : Tuple = x_start
snake_case_ : Optional[int] = fnc(lowerCamelCase_ )
snake_case_ : Optional[int] = 0.0
for _ in range(lowerCamelCase_ ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
snake_case_ : int = (x_end - x_start) / steps + xa
snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
snake_case_ : Any = xa
snake_case_ : str = fxa
return area
if __name__ == "__main__":
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
return x**3 + x**2
print('f(x) = x^3 + x^2')
print('The area between the curve, x = -5, x = 5 and the x axis is:')
__A : List[str] = 10
while i <= 100_000:
print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}')
i *= 10 | 8 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : Optional[Any] = logging.get_logger(__name__)
__A : Tuple = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Any = 'imagegpt'
lowercase : List[str] = ['past_key_values']
lowercase : str = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self :Tuple ,_UpperCamelCase :Optional[int]=5_1_2 + 1 ,_UpperCamelCase :Tuple=3_2 * 3_2 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :List[Any]=2_4 ,_UpperCamelCase :Any=8 ,_UpperCamelCase :int=None ,_UpperCamelCase :int="quick_gelu" ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Any=1E-5 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :List[str]=True ,_UpperCamelCase :Dict=False ,_UpperCamelCase :int=False ,_UpperCamelCase :Optional[int]=False ,**_UpperCamelCase :Any ,):
snake_case_ : List[str] = vocab_size
snake_case_ : Optional[int] = n_positions
snake_case_ : Any = n_embd
snake_case_ : Optional[int] = n_layer
snake_case_ : Optional[int] = n_head
snake_case_ : Tuple = n_inner
snake_case_ : List[str] = activation_function
snake_case_ : str = resid_pdrop
snake_case_ : Optional[int] = embd_pdrop
snake_case_ : Optional[Any] = attn_pdrop
snake_case_ : Tuple = layer_norm_epsilon
snake_case_ : Optional[Any] = initializer_range
snake_case_ : List[Any] = scale_attn_weights
snake_case_ : Tuple = use_cache
snake_case_ : Dict = scale_attn_by_inverse_layer_idx
snake_case_ : List[str] = reorder_and_upcast_attn
snake_case_ : str = tie_word_embeddings
super().__init__(tie_word_embeddings=_UpperCamelCase ,**_UpperCamelCase )
class __UpperCamelCase ( lowercase__ ):
@property
def a__ ( self :int ):
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
] )
def a__ ( self :Tuple ,_UpperCamelCase :"FeatureExtractionMixin" ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = -1 ,_UpperCamelCase :bool = False ,_UpperCamelCase :Optional["TensorType"] = None ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :int = 3_2 ,):
snake_case_ : Dict = self._generate_dummy_images(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase )
snake_case_ : List[str] = dict(preprocessor(images=_UpperCamelCase ,return_tensors=_UpperCamelCase ) )
return inputs | 352 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
__A : int = logging.getLogger()
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
snake_case_ : int = parser.parse_args()
return args.f
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Optional[Any] = {}
snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" )
if os.path.exists(lowerCamelCase_ ):
with open(lowerCamelCase_ , """r""" ) as f:
snake_case_ : str = json.load(lowerCamelCase_ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda"""
return is_using_cuda and is_apex_available()
__A : Any = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __UpperCamelCase ( lowercase__ ):
@classmethod
def a__ ( cls :Dict ):
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
snake_case_ : Optional[int] = tempfile.mkdtemp()
snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" )
write_basic_config(save_location=cls.configPath )
snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def a__ ( cls :int ):
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Optional[int] ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[str] = F'''
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
'''.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
snake_case_ : Dict = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Tuple ):
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
'''.split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
snake_case_ : Optional[int] = get_results(_UpperCamelCase )
self.assertLess(result["""perplexity"""] ,1_0_0 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Tuple ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[str] = F'''
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
self.assertLess(result["""perplexity"""] ,4_2 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[Any] ):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : str = F'''
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Optional[int] = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 )
self.assertLess(result["""train_loss"""] ,0.5 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) )
@unittest.skip(reason="""Fix me @muellerzr""" )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[str] ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : Optional[int] = F'''
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result["""eval_f1"""] ,2_8 )
self.assertGreaterEqual(result["""eval_exact"""] ,2_8 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[Any] ):
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : Union[str, Any] = F'''
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Union[str, Any] = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :int ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[Any] = F'''
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : int = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 )
self.assertGreaterEqual(result["""eval_rouge2"""] ,2 )
self.assertGreaterEqual(result["""eval_rougeL"""] ,7 )
self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :int ):
snake_case_ : Tuple = self.get_auto_remove_tmp_dir()
snake_case_ : Optional[Any] = F'''
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Any = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) )
@slow
def a__ ( self :Optional[Any] ):
snake_case_ : List[str] = logging.StreamHandler(sys.stdout )
logger.addHandler(_UpperCamelCase )
snake_case_ : Dict = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Any ):
snake_case_ : Dict = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
'''.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
# The base model scores a 25%
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) ) | 8 | 0 |
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def UpperCAmelCase ( lowerCamelCase_ :List[str] ):
'''simple docstring'''
snake_case_ : List[Any] = SwinConfig()
snake_case_ : Union[str, Any] = swin_name.split("""_""" )
snake_case_ : Tuple = name_split[1]
snake_case_ : int = int(name_split[4] )
snake_case_ : Optional[Any] = int(name_split[3][-1] )
if model_size == "tiny":
snake_case_ : Optional[Any] = 96
snake_case_ : Tuple = (2, 2, 6, 2)
snake_case_ : str = (3, 6, 12, 24)
elif model_size == "small":
snake_case_ : Optional[Any] = 96
snake_case_ : Optional[Any] = (2, 2, 18, 2)
snake_case_ : Any = (3, 6, 12, 24)
elif model_size == "base":
snake_case_ : List[Any] = 1_28
snake_case_ : str = (2, 2, 18, 2)
snake_case_ : List[str] = (4, 8, 16, 32)
else:
snake_case_ : Union[str, Any] = 1_92
snake_case_ : Optional[int] = (2, 2, 18, 2)
snake_case_ : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
snake_case_ : List[str] = 2_18_41
else:
snake_case_ : Any = 10_00
snake_case_ : Optional[Any] = """huggingface/label-files"""
snake_case_ : Optional[Any] = """imagenet-1k-id2label.json"""
snake_case_ : Tuple = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) )
snake_case_ : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()}
snake_case_ : Dict = idalabel
snake_case_ : int = {v: k for k, v in idalabel.items()}
snake_case_ : Union[str, Any] = img_size
snake_case_ : Union[str, Any] = num_classes
snake_case_ : List[Any] = embed_dim
snake_case_ : str = depths
snake_case_ : int = num_heads
snake_case_ : List[str] = window_size
return config
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
if "patch_embed.proj" in name:
snake_case_ : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
snake_case_ : Tuple = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
snake_case_ : str = """encoder.""" + name
if "attn.proj" in name:
snake_case_ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
snake_case_ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
snake_case_ : Dict = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
snake_case_ : Dict = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
snake_case_ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
snake_case_ : int = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "norm.weight":
snake_case_ : List[str] = """layernorm.weight"""
if name == "norm.bias":
snake_case_ : Any = """layernorm.bias"""
if "head" in name:
snake_case_ : List[Any] = name.replace("""head""" , """classifier""" )
else:
snake_case_ : str = """swin.""" + name
return name
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
snake_case_ : Optional[int] = orig_state_dict.pop(lowerCamelCase_ )
if "mask" in key:
continue
elif "qkv" in key:
snake_case_ : Union[str, Any] = key.split(""".""" )
snake_case_ : str = int(key_split[1] )
snake_case_ : Optional[int] = int(key_split[3] )
snake_case_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
snake_case_ : List[Any] = val[:dim, :]
snake_case_ : List[str] = val[
dim : dim * 2, :
]
snake_case_ : int = val[-dim:, :]
else:
snake_case_ : Dict = val[
:dim
]
snake_case_ : List[str] = val[
dim : dim * 2
]
snake_case_ : str = val[
-dim:
]
else:
snake_case_ : Optional[Any] = val
return orig_state_dict
def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ):
'''simple docstring'''
snake_case_ : int = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ )
timm_model.eval()
snake_case_ : Any = get_swin_config(lowerCamelCase_ )
snake_case_ : Any = SwinForImageClassification(lowerCamelCase_ )
model.eval()
snake_case_ : Dict = convert_state_dict(timm_model.state_dict() , lowerCamelCase_ )
model.load_state_dict(lowerCamelCase_ )
snake_case_ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case_ : str = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) )
snake_case_ : int = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw )
snake_case_ : Any = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" )
snake_case_ : List[str] = timm_model(inputs["""pixel_values"""] )
snake_case_ : List[str] = model(**lowerCamelCase_ ).logits
assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 )
print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__A : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path) | 353 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__A : Tuple = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
lowercase : str = ['input_values', 'padding_mask']
def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,):
super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Dict = chunk_length_s
snake_case_ : str = overlap
@property
def a__ ( self :Any ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def a__ ( self :List[str] ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
snake_case_ : Tuple = True
snake_case_ : str = bool(
isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ):
snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa )
elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
snake_case_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(_UpperCamelCase ):
if example.ndim > 2:
raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' )
snake_case_ : Tuple = None
snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio )
snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) )
snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
snake_case_ : Any = max(array.shape[0] for array in raw_audio )
snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) )
snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length
snake_case_ : Union[str, Any] = """max_length"""
else:
snake_case_ : int = input_values
# normal padding on batch
if padded_inputs is None:
snake_case_ : Optional[int] = self.pad(
_UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,)
if padding:
snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" )
snake_case_ : Optional[int] = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
snake_case_ : Dict = example[..., None]
input_values.append(example.T )
snake_case_ : List[Any] = input_values
if return_tensors is not None:
snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase )
return padded_inputs | 8 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
__A : Any = trt.Logger(trt.Logger.WARNING)
__A : List[Any] = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
__A : str = logging.getLogger(__name__)
__A : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--onnx_model_path',
default=None,
type=str,
required=True,
help='Path to ONNX model: ',
)
parser.add_argument(
'--output_dir',
default=None,
type=str,
required=True,
help='The output directory where the model checkpoints and predictions will be written.',
)
# Other parameters
parser.add_argument(
'--tokenizer_name',
default='',
type=str,
required=True,
help='Pretrained tokenizer name or path if not the same as model_name',
)
parser.add_argument(
'--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.',
)
parser.add_argument(
'--null_score_diff_threshold',
type=float,
default=0.0,
help='If null_score - best_non_null is greater than the threshold predict null.',
)
parser.add_argument(
'--max_seq_length',
default=384,
type=int,
help=(
'The maximum total input sequence length after WordPiece tokenization. Sequences '
'longer than this will be truncated, and sequences shorter than this will be padded.'
),
)
parser.add_argument(
'--doc_stride',
default=128,
type=int,
help='When splitting up a long document into chunks, how much stride to take between chunks.',
)
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.')
parser.add_argument(
'--n_best_size',
default=20,
type=int,
help='The total number of n-best predictions to generate in the nbest_predictions.json output file.',
)
parser.add_argument(
'--max_answer_length',
default=30,
type=int,
help=(
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
),
)
parser.add_argument('--seed', type=int, default=42, help='random seed for initialization')
parser.add_argument(
'--dataset_name',
type=str,
default=None,
required=True,
help='The name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--dataset_config_name',
type=str,
default=None,
help='The configuration name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.'
)
parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets')
parser.add_argument(
'--fp16',
action='store_true',
help='Whether to use 16-bit (mixed) precision instead of 32-bit',
)
parser.add_argument(
'--int8',
action='store_true',
help='Whether to use INT8',
)
__A : List[str] = parser.parse_args()
if args.tokenizer_name:
__A : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.'
)
logger.info('Training/evaluation parameters %s', args)
__A : Union[str, Any] = args.per_device_eval_batch_size
__A : Any = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
__A : List[Any] = True
__A : Dict = 'temp_engine/bert-fp32.engine'
if args.fpaa:
__A : Any = 'temp_engine/bert-fp16.engine'
if args.inta:
__A : Union[str, Any] = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists('temp_engine'):
os.makedirs('temp_engine')
__A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
__A : int = [network.get_input(i) for i in range(network.num_inputs)]
__A : Optional[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
__A : Tuple = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
__A : List[Any] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
__A : str = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, 'wb') as f:
f.write(engine.serialize())
def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ):
'''simple docstring'''
snake_case_ : Tuple = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
snake_case_ : List[str] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
snake_case_ : Optional[Any] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase_ )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase_ )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase_ )
# start time
snake_case_ : int = time.time()
# Run inference
context.execute_async(
bindings=[int(lowerCamelCase_ ) for d_inp in d_inputs] + [int(lowerCamelCase_ ), int(lowerCamelCase_ )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
cuda.memcpy_dtoh_async(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# Synchronize the stream and take time
stream.synchronize()
# end time
snake_case_ : Dict = time.time()
snake_case_ : List[Any] = end_time - start_time
snake_case_ : Tuple = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
__A : int = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__A : Dict = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('Evaluation requires a dataset name')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
__A : str = raw_datasets['validation'].column_names
__A : Optional[Any] = 'question' if 'question' in column_names else column_names[0]
__A : Any = 'context' if 'context' in column_names else column_names[1]
__A : str = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
__A : Optional[Any] = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'
)
__A : List[Any] = min(args.max_seq_length, tokenizer.model_max_length)
def UpperCAmelCase ( lowerCamelCase_ :Tuple ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
snake_case_ : List[str] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
snake_case_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
snake_case_ : Dict = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
snake_case_ : int = tokenized_examples.sequence_ids(lowerCamelCase_ )
snake_case_ : Any = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
snake_case_ : Union[str, Any] = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
snake_case_ : Optional[int] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
__A : List[Any] = raw_datasets['validation']
# Validation Feature Creation
__A : Tuple = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='Running tokenizer on validation dataset',
)
__A : Dict = default_data_collator
__A : List[str] = eval_dataset.remove_columns(['example_id', 'offset_mapping'])
__A : Optional[int] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Any="eval" ):
'''simple docstring'''
snake_case_ : int = postprocess_qa_predictions(
examples=lowerCamelCase_ , features=lowerCamelCase_ , predictions=lowerCamelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase_ , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
snake_case_ : Any = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
snake_case_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
snake_case_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=lowerCamelCase_ , label_ids=lowerCamelCase_ )
__A : Any = load_metric('squad_v2' if args.version_2_with_negative else 'squad')
# Evaluation!
logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path)
with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] ):
'''simple docstring'''
return trt.volume(engine.get_binding_shape(lowerCamelCase_ ) ) * engine.get_binding_dtype(lowerCamelCase_ ).itemsize
# Allocate device memory for inputs and outputs.
__A : Optional[Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
__A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
__A : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
__A : Optional[int] = cuda.mem_alloc(h_outputa.nbytes)
__A : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
__A : Any = cuda.Stream()
# Evaluation
logger.info('***** Running Evaluation *****')
logger.info(F' Num examples = {len(eval_dataset)}')
logger.info(F' Batch size = {args.per_device_eval_batch_size}')
__A : Union[str, Any] = 0.0
__A : Tuple = 0
__A : str = timeit.default_timer()
__A : Any = None
for step, batch in enumerate(eval_dataloader):
__A : Any = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
__A : Dict = outputs
__A : Union[str, Any] = torch.tensor(start_logits)
__A : Optional[Any] = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
__A : Any = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
__A : List[Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
__A : Optional[int] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
__A : List[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
__A : str = nested_truncate(all_preds, len(eval_dataset))
__A : int = timeit.default_timer() - start_time
logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter))
logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000))
logger.info('Total Number of Inference = %d', niter)
__A : Any = post_processing_function(eval_examples, eval_dataset, all_preds)
__A : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'Evaluation metrics: {eval_metric}')
| 354 |
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
__A : Dict = {
'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json',
'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json',
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[int] = 'ernie_m'
lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,):
super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Optional[int] = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : Union[str, Any] = num_attention_heads
snake_case_ : Any = intermediate_size
snake_case_ : Any = hidden_act
snake_case_ : Tuple = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : str = max_position_embeddings
snake_case_ : int = initializer_range
snake_case_ : Optional[Any] = layer_norm_eps
snake_case_ : Union[str, Any] = classifier_dropout
snake_case_ : Tuple = is_decoder
snake_case_ : int = act_dropout | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
if height >= 1:
move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
move_disk(lowerCamelCase_ , lowerCamelCase_ )
move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
print("""moving disk from""" , lowerCamelCase_ , """to""" , lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : str = int(input("""Height of hanoi: """ ).strip() )
move_tower(lowerCamelCase_ , """A""" , """B""" , """C""" )
if __name__ == "__main__":
main() | 355 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __UpperCamelCase ( nn.Module ):
def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Any = only_cross_attention
snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase )
else:
snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
snake_case_ : str = (
AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
)
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none
else:
snake_case_ : Any = None
snake_case_ : Optional[Any] = None
# 3. Feed-forward
snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase )
# let chunk size default to None
snake_case_ : Optional[int] = None
snake_case_ : Dict = 0
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ):
# Sets chunk feed-forward
snake_case_ : Optional[Any] = chunk_size
snake_case_ : Optional[Any] = dim
def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma(
_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype )
else:
snake_case_ : Optional[int] = self.norma(_UpperCamelCase )
snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {}
snake_case_ : Union[str, Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output
snake_case_ : Union[str, Any] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
snake_case_ : Any = (
self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase )
)
snake_case_ : List[Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Tuple = attn_output + hidden_states
# 3. Feed-forward
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
snake_case_ : int = torch.cat(
[self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,)
else:
snake_case_ : List[str] = self.ff(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output
snake_case_ : Any = ff_output + hidden_states
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Tuple = int(dim * mult )
snake_case_ : Optional[int] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase )
if activation_fn == "gelu-approximate":
snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" )
elif activation_fn == "geglu":
snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase )
elif activation_fn == "geglu-approximate":
snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Dict = nn.ModuleList([] )
# project in
self.net.append(_UpperCamelCase )
# project dropout
self.net.append(nn.Dropout(_UpperCamelCase ) )
# project out
self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(_UpperCamelCase ) )
def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ):
for module in self.net:
snake_case_ : Tuple = module(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ):
super().__init__()
snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Optional[Any] = approximate
def a__ ( self :str ,_UpperCamelCase :int ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase ,approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ):
snake_case_ : Optional[Any] = self.proj(_UpperCamelCase )
snake_case_ : int = self.gelu(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 )
def a__ ( self :Dict ,_UpperCamelCase :List[str] ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ):
snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 )
return hidden_states * self.gelu(_UpperCamelCase )
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ):
snake_case_ : int = self.proj(_UpperCamelCase )
return x * torch.sigmoid(1.7_02 * x )
class __UpperCamelCase ( nn.Module ):
def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ):
super().__init__()
snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Union[str, Any] = nn.SiLU()
snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 )
snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) )
snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 )
snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift
return x
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : int = nn.SiLU()
snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase )
snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 )
def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) )
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 )
snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ):
super().__init__()
snake_case_ : Optional[int] = num_groups
snake_case_ : List[Any] = eps
if act_fn is None:
snake_case_ : int = None
else:
snake_case_ : Dict = get_activation(_UpperCamelCase )
snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 )
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ):
if self.act:
snake_case_ : Any = self.act(_UpperCamelCase )
snake_case_ : Optional[int] = self.linear(_UpperCamelCase )
snake_case_ : Dict = emb[:, :, None, None]
snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 )
snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps )
snake_case_ : List[str] = x * (1 + scale) + shift
return x | 8 | 0 |
'''simple docstring'''
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__A : List[str] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__A : Tuple = [0, 25, 50]
__A : Any = [25, 50, 75]
__A : List[Any] = fuzz.membership.trimf(X, abca)
__A : Optional[Any] = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__A : Tuple = np.ones(75)
__A : Dict = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
__A : List[str] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__A : List[str] = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__A : Union[str, Any] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__A : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__A : int = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__A : List[Any] = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__A : str = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__A : Union[str, Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show() | 356 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ):
'''simple docstring'''
snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {}
snake_case_ : Union[str, Any] = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ):
'''simple docstring'''
snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,):
super().__init__()
snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" )
snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" )
snake_case_ : Optional[int] = self.get_char_lens(self.src_file )
snake_case_ : List[str] = max_source_length
snake_case_ : str = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
snake_case_ : str = tokenizer
snake_case_ : str = prefix
if n_obs is not None:
snake_case_ : int = self.src_lens[:n_obs]
snake_case_ : Tuple = src_lang
snake_case_ : str = tgt_lang
def __len__( self :Any ):
return len(self.src_lens )
def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ):
snake_case_ : Optional[int] = index + 1 # linecache starts at 1
snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" )
snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer ,_UpperCamelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
snake_case_ : int = (
self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
)
snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" )
snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" )
snake_case_ : int = source_inputs["""input_ids"""].squeeze()
snake_case_ : str = target_inputs["""input_ids"""].squeeze()
snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def a__ ( _UpperCamelCase :str ):
return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()]
def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ):
snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] )
snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] )
snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
snake_case_ : Optional[Any] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Tuple = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase )
snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase )
snake_case_ : Optional[int] = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__A : List[Any] = getLogger(__name__)
def UpperCAmelCase ( lowerCamelCase_ :List[List] ):
'''simple docstring'''
return list(itertools.chain.from_iterable(lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : int = get_git_info()
save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
with open(lowerCamelCase_ , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] ):
'''simple docstring'''
with open(lowerCamelCase_ ) as f:
return json.load(lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ )
snake_case_ : List[str] = {
"""repo_id""": str(lowerCamelCase_ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ):
'''simple docstring'''
return list(map(lowerCamelCase_ , lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , """wb""" ) as f:
return pickle.dump(lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Dict ):
'''simple docstring'''
def remove_articles(lowerCamelCase_ :str ):
return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ )
def white_space_fix(lowerCamelCase_ :Optional[Any] ):
return " ".join(text.split() )
def remove_punc(lowerCamelCase_ :Tuple ):
snake_case_ : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCamelCase_ :Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ )
snake_case_ : Optional[Any] = sum(common.values() )
if num_same == 0:
return 0
snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall)
return fa
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ):
'''simple docstring'''
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
snake_case_ : Optional[int] = 0
for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ):
em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
em /= len(lowerCamelCase_ )
return {"em": em}
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
return model_prefix.startswith("""rag""" )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
snake_case_ : Optional[int] = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
continue
snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p]
setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
return hparams, config | 8 | 0 |
'''simple docstring'''
from math import pi
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ):
'''simple docstring'''
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10)) | 357 |
'''simple docstring'''
import functools
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[str] = len(lowerCamelCase_ )
snake_case_ : Dict = len(lowerCamelCase_ )
@functools.cache
def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def UpperCAmelCase ( lowerCamelCase_ :str = "" , ):
'''simple docstring'''
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def UpperCAmelCase ( lowerCamelCase_ :str = "" ):
'''simple docstring'''
if len(lowerCamelCase_ ) == 0:
return True
snake_case_ : List[Any] = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
snake_case_ : dict[str, int] = {}
for character in lower_case_input_str:
snake_case_ : Dict = character_freq_dict.get(lowerCamelCase_ , 0 ) + 1
snake_case_ : List[Any] = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def UpperCAmelCase ( lowerCamelCase_ :str = "" ):
'''simple docstring'''
print("""\nFor string = """ , lowerCamelCase_ , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase_ ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowerCamelCase_ ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
__A : str = input(
'Enter string to determine if it can be rearranged as a palindrome or not: '
).strip()
benchmark(check_str)
__A : int = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 358 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Any = tmp_path / """file.csv"""
snake_case_ : Any = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Optional[int] = tmp_path / """malformed_file.csv"""
snake_case_ : int = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : str = tmp_path / """csv_with_image.csv"""
snake_case_ : int = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
snake_case_ : int = tmp_path / """csv_with_label.csv"""
snake_case_ : Tuple = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv"""
snake_case_ : str = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ):
'''simple docstring'''
snake_case_ : int = Csv()
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(lowerCamelCase_ ) in record.message
for record in caplog.records )
@require_pil
def UpperCAmelCase ( lowerCamelCase_ :Tuple ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : Tuple = f.read().splitlines()[1]
snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] )
snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
snake_case_ : List[str] = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : List[Any] = f.read().splitlines()[1:]
snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] )
snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels]
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] )
snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
snake_case_ : Dict = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | 8 | 0 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class __UpperCamelCase ( lowercase__ ):
lowercase : Union[List[PIL.Image.Image], np.ndarray]
lowercase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline | 359 |
'''simple docstring'''
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ):
'''simple docstring'''
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match'''
snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match'''
snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : Optional[Any] = np.asarray(weights[0] )
snake_case_ : int = np.asarray(weights[1] )
snake_case_ : Any = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : List[Any] = np.asarray(weights[0] )
snake_case_ : Optional[int] = np.asarray(weights[1] )
snake_case_ : Union[str, Any] = np.asarray(weights[2] )
snake_case_ : int = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
# layernorm 1
snake_case_ : str = weights[0][0][0]
snake_case_ : int = np.asarray(layer_norm_a[0] )
snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# lsh weights + output
snake_case_ : Tuple = weights[0][1]
if len(lowerCamelCase_ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
else:
set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
# intermediate weighs
snake_case_ : str = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase_ ) == 4:
snake_case_ : List[Any] = intermediate_weights[2]
# layernorm 2
snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] )
snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# intermediate dense
snake_case_ : Any = np.asarray(intermediate_weights[1][0] )
snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
# intermediate out
snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] )
snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ):
'''simple docstring'''
# reformer model
snake_case_ : Dict = torch_model.reformer
# word embeds
snake_case_ : List[Any] = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , )
if isinstance(weights[3] , lowerCamelCase_ ):
snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'''{position_embeddings[emb_idx]} emb does not match'''
snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) )
snake_case_ : List[Any] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# output layer norm
snake_case_ : Optional[Any] = np.asarray(weights[7][0] )
snake_case_ : List[Any] = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# output embeddings
snake_case_ : Optional[int] = np.asarray(weights[9][0] )
snake_case_ : Any = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# Initialise PyTorch model
snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ )
with open(lowerCamelCase_ , """rb""" ) as f:
snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowerCamelCase_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__A : List[Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path) | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def UpperCAmelCase ( lowerCamelCase_ :float , lowerCamelCase_ :float ):
'''simple docstring'''
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 360 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : str = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __UpperCamelCase ( lowercase__ ):
lowercase : List[Any] = 'canine'
def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,):
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : List[str] = max_position_embeddings
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : Dict = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : Tuple = intermediate_size
snake_case_ : str = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : Optional[Any] = initializer_range
snake_case_ : Optional[int] = type_vocab_size
snake_case_ : List[str] = layer_norm_eps
# Character config:
snake_case_ : Any = downsampling_rate
snake_case_ : List[str] = upsampling_kernel_size
snake_case_ : int = num_hash_functions
snake_case_ : Tuple = num_hash_buckets
snake_case_ : Tuple = local_transformer_stride | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Tuple = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[int] = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 361 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
__A : Tuple = logging.get_logger(__name__)
__A : List[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : str = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
__A : Optional[Any] = {
'facebook/blenderbot_small-90M': 512,
}
class __UpperCamelCase ( lowercase__ ):
lowercase : str = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Dict = BlenderbotSmallTokenizer
def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,):
super().__init__(
ByteLevelBPETokenizer(
vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Any = add_prefix_space
def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ):
snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : int = [self.sep_token_id]
snake_case_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[str] = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 362 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :list ):
'''simple docstring'''
if len(lowerCamelCase_ ) <= 1:
return lst
snake_case_ : Union[str, Any] = 1
while i < len(lowerCamelCase_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case_ : int = 1
return lst
if __name__ == "__main__":
__A : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
__A : int = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted)) | 8 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class __UpperCamelCase ( lowercase__ ):
def a__ ( self :str ):
snake_case_ : Any = tempfile.mkdtemp()
snake_case_ : Tuple = 8
# DPR tok
snake_case_ : Optional[int] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
snake_case_ : List[str] = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" )
os.makedirs(_UpperCamelCase ,exist_ok=_UpperCamelCase )
snake_case_ : List[Any] = os.path.join(_UpperCamelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
snake_case_ : Dict = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
snake_case_ : Tuple = dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) )
snake_case_ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
snake_case_ : Union[str, Any] = {"""unk_token""": """<unk>"""}
snake_case_ : List[Any] = os.path.join(self.tmpdirname ,"""bart_tokenizer""" )
os.makedirs(_UpperCamelCase ,exist_ok=_UpperCamelCase )
snake_case_ : List[str] = os.path.join(_UpperCamelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ : Tuple = os.path.join(_UpperCamelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCamelCase ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_UpperCamelCase ) )
def a__ ( self :Tuple ):
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) )
def a__ ( self :Dict ):
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) )
def a__ ( self :Optional[Any] ):
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def a__ ( self :str ):
snake_case_ : Tuple = os.path.join(self.tmpdirname ,"""rag_tokenizer""" )
snake_case_ : Optional[int] = RagConfig(question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() )
snake_case_ : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() ,generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(_UpperCamelCase )
rag_tokenizer.save_pretrained(_UpperCamelCase )
snake_case_ : Union[str, Any] = RagTokenizer.from_pretrained(_UpperCamelCase ,config=_UpperCamelCase )
self.assertIsInstance(new_rag_tokenizer.question_encoder ,_UpperCamelCase )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() ,rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator ,_UpperCamelCase )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() ,rag_tokenizer.generator.get_vocab() )
@slow
def a__ ( self :Any ):
snake_case_ : List[Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" )
snake_case_ : Union[str, Any] = [
"""who got the first nobel prize in physics""",
"""when is the next deadpool movie being released""",
"""which mode is used for short wave broadcast service""",
"""who is the owner of reading football club""",
"""when is the next scandal episode coming out""",
"""when is the last time the philadelphia won the superbowl""",
"""what is the most current adobe flash player version""",
"""how many episodes are there in dragon ball z""",
"""what is the first step in the evolution of the eye""",
"""where is gall bladder situated in human body""",
"""what is the main mineral in lithium batteries""",
"""who is the president of usa right now""",
"""where do the greasers live in the outsiders""",
"""panda is a national animal of which country""",
"""what is the name of manchester united stadium""",
]
snake_case_ : Tuple = tokenizer(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@slow
def a__ ( self :Dict ):
snake_case_ : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" )
snake_case_ : Optional[Any] = [
"""who got the first nobel prize in physics""",
"""when is the next deadpool movie being released""",
"""which mode is used for short wave broadcast service""",
"""who is the owner of reading football club""",
"""when is the next scandal episode coming out""",
"""when is the last time the philadelphia won the superbowl""",
"""what is the most current adobe flash player version""",
"""how many episodes are there in dragon ball z""",
"""what is the first step in the evolution of the eye""",
"""where is gall bladder situated in human body""",
"""what is the main mineral in lithium batteries""",
"""who is the president of usa right now""",
"""where do the greasers live in the outsiders""",
"""panda is a national animal of which country""",
"""what is the name of manchester united stadium""",
]
snake_case_ : str = tokenizer(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 363 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,):
snake_case_ : str = parent
snake_case_ : int = batch_size
snake_case_ : Union[str, Any] = seq_length
snake_case_ : List[Any] = is_training
snake_case_ : Union[str, Any] = use_input_mask
snake_case_ : List[str] = use_labels
snake_case_ : int = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : List[Any] = projection_dim
snake_case_ : Dict = num_hidden_layers
snake_case_ : Dict = num_attention_heads
snake_case_ : str = intermediate_size
snake_case_ : int = dropout
snake_case_ : int = attention_dropout
snake_case_ : Dict = max_position_embeddings
snake_case_ : Union[str, Any] = initializer_range
snake_case_ : Dict = scope
snake_case_ : Union[str, Any] = bos_token_id
def a__ ( self :Any ):
snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
snake_case_ : Union[str, Any] = None
if self.use_input_mask:
snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
snake_case_ : int = input_mask.numpy()
snake_case_ , snake_case_ : Tuple = input_mask.shape
snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) )
for batch_idx, start_index in enumerate(_UpperCamelCase ):
snake_case_ : Optional[int] = 1
snake_case_ : List[str] = 0
snake_case_ : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(_UpperCamelCase )
def a__ ( self :str ):
return BlipTextConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,)
def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ):
snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase )
snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase )
snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def a__ ( self :List[str] ):
snake_case_ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs
snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else ()
lowercase : int = False
lowercase : List[Any] = False
lowercase : Dict = False
def a__ ( self :List[Any] ):
snake_case_ : List[str] = BlipTextModelTester(self )
snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 )
def a__ ( self :Union[str, Any] ):
self.config_tester.run_common_tests()
def a__ ( self :Union[str, Any] ):
snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def a__ ( self :Tuple ):
pass
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def a__ ( self :Any ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :List[Any] ):
pass
@slow
def a__ ( self :Any ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class __UpperCamelCase ( lowercase__ ):
lowercase : Tuple = 'philschmid/bart-large-cnn-samsum'
lowercase : Tuple = (
'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '
'and returns a summary of the text.'
)
lowercase : Union[str, Any] = 'summarizer'
lowercase : List[str] = AutoTokenizer
lowercase : List[Any] = AutoModelForSeqaSeqLM
lowercase : Union[str, Any] = ['text']
lowercase : Tuple = ['text']
def a__ ( self :str ,_UpperCamelCase :Optional[int] ):
return self.pre_processor(_UpperCamelCase ,return_tensors="""pt""" ,truncation=_UpperCamelCase )
def a__ ( self :Optional[Any] ,_UpperCamelCase :str ):
return self.model.generate(**_UpperCamelCase )[0]
def a__ ( self :str ,_UpperCamelCase :str ):
return self.pre_processor.decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase ) | 364 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : int = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 8 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
__A : Any = None
__A : List[Any] = logging.get_logger(__name__)
__A : Any = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__A : List[Any] = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
},
'tokenizer_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json',
},
}
__A : Optional[int] = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
__A : List[str] = '▁'
class __UpperCamelCase ( lowercase__ ):
lowercase : Tuple = VOCAB_FILES_NAMES
lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Optional[Any] = AlbertTokenizer
def __init__( self :Optional[int] ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Dict=None ,_UpperCamelCase :List[str]=True ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :int=False ,_UpperCamelCase :int="[CLS]" ,_UpperCamelCase :Optional[Any]="[SEP]" ,_UpperCamelCase :str="<unk>" ,_UpperCamelCase :int="[SEP]" ,_UpperCamelCase :Optional[int]="<pad>" ,_UpperCamelCase :Any="[CLS]" ,_UpperCamelCase :Union[str, Any]="[MASK]" ,**_UpperCamelCase :List[Any] ,):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
snake_case_ : List[str] = (
AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ,normalized=_UpperCamelCase )
if isinstance(_UpperCamelCase ,_UpperCamelCase )
else mask_token
)
super().__init__(
_UpperCamelCase ,tokenizer_file=_UpperCamelCase ,do_lower_case=_UpperCamelCase ,remove_space=_UpperCamelCase ,keep_accents=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Tuple = do_lower_case
snake_case_ : str = remove_space
snake_case_ : Dict = keep_accents
snake_case_ : Optional[int] = vocab_file
snake_case_ : Union[str, Any] = False if not self.vocab_file else True
def a__ ( self :Dict ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : Optional[Any] = [self.sep_token_id]
snake_case_ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self :Union[str, Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : Optional[Any] = [self.sep_token_id]
snake_case_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self :Tuple ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCamelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case_ : Dict = os.path.join(
_UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ):
copyfile(self.vocab_file ,_UpperCamelCase )
return (out_vocab_file,) | 365 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__A : Optional[int] = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ):
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,)
super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int ):
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
snake_case_ : str = _modexpt(lowerCamelCase_ , exponent // 2 , lowerCamelCase_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowerCamelCase_ , exponent - 1 , lowerCamelCase_ )) % modulo_value
def UpperCAmelCase ( lowerCamelCase_ :int = 17_77 , lowerCamelCase_ :int = 18_55 , lowerCamelCase_ :int = 8 ):
'''simple docstring'''
snake_case_ : str = base
for _ in range(1 , lowerCamelCase_ ):
snake_case_ : List[str] = _modexpt(lowerCamelCase_ , lowerCamelCase_ , 10**digits )
return result
if __name__ == "__main__":
print(F'{solution() = }') | 366 |
'''simple docstring'''
import re
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[Any] = re.compile(
R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" )
return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) )
if __name__ == "__main__":
__A : int = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 8 | 0 |
'''simple docstring'''
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def UpperCAmelCase ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
snake_case_ : Optional[int] = [1, 2, 3]
with pytest.raises(lowerCamelCase_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=2 )
with pytest.raises(lowerCamelCase_ ):
with parallel_backend("""unsupported backend""" ):
map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" , [2, -1] )
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] ):
'''simple docstring'''
snake_case_ : Optional[Any] = [1, 2]
snake_case_ : str = {"""a""": 1, """b""": 2}
snake_case_ : List[str] = {"""a""": [1, 2], """b""": [3, 4]}
snake_case_ : Union[str, Any] = {"""a""": {"""1""": 1}, """b""": 2}
snake_case_ : Union[str, Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
snake_case_ : Optional[int] = [2, 3]
snake_case_ : Dict = {"""a""": 2, """b""": 3}
snake_case_ : Optional[Any] = {"""a""": [2, 3], """b""": [4, 5]}
snake_case_ : Dict = {"""a""": {"""1""": 2}, """b""": 3}
snake_case_ : str = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa | 367 |
'''simple docstring'''
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class __UpperCamelCase ( lowercase__ ):
lowercase : Union[List[PIL.Image.Image], np.ndarray]
lowercase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline | 8 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Optional[Any] = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Any = 'vivit'
def __init__( self :Any ,_UpperCamelCase :Optional[Any]=2_2_4 ,_UpperCamelCase :List[Any]=3_2 ,_UpperCamelCase :List[str]=[2, 1_6, 1_6] ,_UpperCamelCase :Tuple=3 ,_UpperCamelCase :Optional[int]=7_6_8 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Optional[int]=3_0_7_2 ,_UpperCamelCase :List[Any]="gelu_fast" ,_UpperCamelCase :Optional[Any]=0.0 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :str=0.02 ,_UpperCamelCase :Tuple=1E-0_6 ,_UpperCamelCase :Optional[int]=True ,**_UpperCamelCase :Tuple ,):
snake_case_ : Dict = hidden_size
snake_case_ : List[str] = num_hidden_layers
snake_case_ : Any = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : Tuple = hidden_act
snake_case_ : str = hidden_dropout_prob
snake_case_ : str = attention_probs_dropout_prob
snake_case_ : int = initializer_range
snake_case_ : Dict = layer_norm_eps
snake_case_ : Dict = image_size
snake_case_ : Union[str, Any] = num_frames
snake_case_ : Union[str, Any] = tubelet_size
snake_case_ : Optional[int] = num_channels
snake_case_ : Optional[Any] = qkv_bias
super().__init__(**_UpperCamelCase ) | 368 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
lowercase : Dict = StableDiffusionInpaintPipeline
lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase : Dict = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowercase : Optional[int] = frozenset([] )
def a__ ( self :Any ):
torch.manual_seed(0 )
snake_case_ : Optional[int] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,)
snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ : List[str] = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
snake_case_ : Optional[int] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,)
snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase )
snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
snake_case_ : str = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase )
snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0]
snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) )
snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) )
if str(_UpperCamelCase ).startswith("""mps""" ):
snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self :Any ):
snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[Any] = self.get_dummy_components()
snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase )
snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images
snake_case_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a__ ( self :Any ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def a__ ( self :List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self :Tuple ):
snake_case_ : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[str] = torch.manual_seed(0 )
snake_case_ : Dict = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def a__ ( self :Tuple ):
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[Any] = torch.manual_seed(0 )
snake_case_ : Any = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def a__ ( self :Union[str, Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case_ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" )
snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : Optional[int] = torch.manual_seed(0 )
snake_case_ : Tuple = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,)
snake_case_ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9 | 8 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
__A : Any = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[Any] = 'albert'
def __init__( self :int ,_UpperCamelCase :Tuple=3_0_0_0_0 ,_UpperCamelCase :Optional[int]=1_2_8 ,_UpperCamelCase :Dict=4_0_9_6 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :List[str]=1 ,_UpperCamelCase :Dict=6_4 ,_UpperCamelCase :List[str]=1_6_3_8_4 ,_UpperCamelCase :Any=1 ,_UpperCamelCase :List[str]="gelu_new" ,_UpperCamelCase :int=0 ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :Dict=2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Dict=1E-1_2 ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :str="absolute" ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :List[str]=2 ,_UpperCamelCase :str=3 ,**_UpperCamelCase :Dict ,):
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Union[str, Any] = vocab_size
snake_case_ : Optional[Any] = embedding_size
snake_case_ : int = hidden_size
snake_case_ : Tuple = num_hidden_layers
snake_case_ : Optional[int] = num_hidden_groups
snake_case_ : Dict = num_attention_heads
snake_case_ : Any = inner_group_num
snake_case_ : Union[str, Any] = hidden_act
snake_case_ : Any = intermediate_size
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : List[str] = attention_probs_dropout_prob
snake_case_ : List[Any] = max_position_embeddings
snake_case_ : Union[str, Any] = type_vocab_size
snake_case_ : Any = initializer_range
snake_case_ : Dict = layer_norm_eps
snake_case_ : Optional[int] = classifier_dropout_prob
snake_case_ : Optional[int] = position_embedding_type
class __UpperCamelCase ( lowercase__ ):
@property
def a__ ( self :List[Any] ):
if self.task == "multiple-choice":
snake_case_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case_ : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 369 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
__A : Dict = 'src/transformers'
# Matches is_xxx_available()
__A : Dict = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__A : int = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__A : List[Any] = re.compile(r'^\s*try:')
# Catches a line with else:
__A : Any = re.compile(r'^\s*else:')
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
if _re_test_backend.search(lowerCamelCase_ ) is None:
return None
snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )]
backends.sort()
return "_and_".join(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : str = f.readlines()
snake_case_ : List[Any] = 0
while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ : Union[str, Any] = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ : str = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCamelCase_ ):
snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0]
snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ )
if single_line_import_search is not None:
snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ : Union[str, Any] = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ : List[str] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : Tuple = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ : List[Any] = lines[line_index]
if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None:
snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_between_brackets.search(lowerCamelCase_ ) is not None:
snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_quote_object.search(lowerCamelCase_ ) is not None:
objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ : List[Any] = []
while (
line_index < len(lowerCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ : Union[str, Any] = lines[line_index]
snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ : Dict = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : str = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ : Dict = lines[line_index]
snake_case_ : Any = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ :Union[str, Any] ):
return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ : Optional[int] = []
for key in import_dict_objects.keys():
snake_case_ : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
snake_case_ : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Tuple = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" )
snake_case_ : Dict = parse_init(lowerCamelCase_ )
if objects is not None:
snake_case_ : Any = analyze_results(*lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(lowerCamelCase_ ) )
if len(lowerCamelCase_ ) > 0:
raise ValueError("""\n\n""".join(lowerCamelCase_ ) )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = []
for path, directories, files in os.walk(lowerCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(lowerCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" )
submodules.append(lowerCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(lowerCamelCase_ )
return submodules
__A : List[Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def UpperCAmelCase ( ):
'''simple docstring'''
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ )
snake_case_ : List[str] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f:
snake_case_ : str = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) )
snake_case_ : Dict = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCamelCase_ ) > 0:
snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules() | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
__A : Tuple = list[list[int]]
# assigning initial values to the grid
__A : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
__A : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def UpperCAmelCase ( lowerCamelCase_ :Matrix , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :int ):
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def UpperCAmelCase ( lowerCamelCase_ :Matrix ):
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def UpperCAmelCase ( lowerCamelCase_ :Matrix ):
'''simple docstring'''
if location := find_empty_location(lowerCamelCase_ ):
snake_case_ : str = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
snake_case_ : str = digit
if sudoku(lowerCamelCase_ ) is not None:
return grid
snake_case_ : Any = 0
return None
def UpperCAmelCase ( lowerCamelCase_ :Matrix ):
'''simple docstring'''
for row in grid:
for cell in row:
print(lowerCamelCase_ , end=""" """ )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('\nExample grid:\n' + '=' * 20)
print_solution(example_grid)
print('\nExample grid solution:')
__A : Tuple = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('Cannot find a solution.') | 370 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,):
snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case_ : Union[str, Any] = parent
snake_case_ : str = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Tuple = image_size
snake_case_ : int = min_resolution
snake_case_ : int = max_resolution
snake_case_ : Union[str, Any] = do_resize
snake_case_ : Optional[Any] = size
snake_case_ : Any = apply_ocr
def a__ ( self :Union[str, Any] ):
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self :List[Any] ):
snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self :int ):
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self :Any ):
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) )
def a__ ( self :int ):
snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} )
snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 )
self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} )
def a__ ( self :Optional[Any] ):
pass
def a__ ( self :Union[str, Any] ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,Image.Image )
# Test not batched input
snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
self.assertIsInstance(encoding.words ,_UpperCamelCase )
self.assertIsInstance(encoding.boxes ,_UpperCamelCase )
# Test batched
snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Tuple ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,np.ndarray )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Optional[Any] ):
# Initialize image_processing
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,torch.Tensor )
# Test not batched input
snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :List[Any] ):
# with apply_OCR = True
snake_case_ : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" )
snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words ,_UpperCamelCase )
self.assertListEqual(encoding.boxes ,_UpperCamelCase )
# with apply_OCR = False
snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase )
snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) | 8 | 0 |
'''simple docstring'''
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"""kwargs, expected""" , [
({"""num_shards""": 0, """max_num_jobs""": 1}, []),
({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]),
({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowerCamelCase_ , i + 1 ) for i in range(10 )]),
({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]),
({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
snake_case_ : List[Any] = _distribute_shards(**lowerCamelCase_ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, max_num_jobs, expected""" , [
({"""foo""": 0}, 10, [{"""foo""": 0}]),
({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]),
({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]),
({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]),
({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]),
] , )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Tuple = _split_gen_kwargs(lowerCamelCase_ , lowerCamelCase_ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, expected""" , [
({"""foo""": 0}, 1),
({"""shards""": [0]}, 1),
({"""shards""": [0, 1, 2, 3]}, 4),
({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4),
({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4),
({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError),
] , )
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
if expected is RuntimeError:
with pytest.raises(lowerCamelCase_ ):
_number_of_shards_in_gen_kwargs(lowerCamelCase_ )
else:
snake_case_ : Dict = _number_of_shards_in_gen_kwargs(lowerCamelCase_ )
assert out == expected | 371 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ )
for row_idx in range(lowerCamelCase_ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = []
for current_row_idx in range(lowerCamelCase_ ):
snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ )
triangle.append(lowerCamelCase_ )
return triangle
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
snake_case_ , snake_case_ : Optional[Any] = 1, 1
for current_col_idx in range(1 , lowerCamelCase_ ):
calculate_current_element(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return current_row
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ):
'''simple docstring'''
snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx]
snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = [[1]]
for row_index in range(1 , lowerCamelCase_ ):
snake_case_ : Optional[Any] = [0] + result[-1] + [0]
snake_case_ : Dict = row_index + 1
# Calculate the number of distinct elements in a row
snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) )
snake_case_ : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
snake_case_ : str = row_first_half + row_second_half
result.append(lowerCamelCase_ )
return result
def UpperCAmelCase ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None:
snake_case_ : Dict = F'''{func.__name__}({value})'''
snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 8 | 0 |
'''simple docstring'''
import math
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Any ):
'''simple docstring'''
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(lowerCamelCase_ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("""This should never happen""" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
__A : Optional[Any] = 'Enter the base and the power separated by a comma: '
__A : int = map(int, input(prompt).split(','))
__A : str = map(int, input(prompt).split(','))
# We find the log of each number, using the function res(), which takes two
# arguments.
__A : int = res(xa, ya)
__A : str = res(xa, ya)
# We check for the largest number
if resa > resa:
print('Largest number is', xa, '^', ya)
elif resa > resa:
print('Largest number is', xa, '^', ya)
else:
print('Both are equal') | 350 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def a__ ( self :Dict ):
snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Dict = torch.tensor(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
@slow
def a__ ( self :Union[str, Any] ):
snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] )
# The dog is cute and lives in the garden house
snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim
snake_case_ : Any = torch.tensor(
[[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach()
self.assertEqual(output.shape ,_UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if length <= 0 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError("""Length must be a positive integer.""" )
return [n * (2 * n - 1) for n in range(lowerCamelCase_ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10)) | 351 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ):
'''simple docstring'''
snake_case_ : Tuple = x_start
snake_case_ : Optional[int] = fnc(lowerCamelCase_ )
snake_case_ : Optional[int] = 0.0
for _ in range(lowerCamelCase_ ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
snake_case_ : int = (x_end - x_start) / steps + xa
snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
snake_case_ : Any = xa
snake_case_ : str = fxa
return area
if __name__ == "__main__":
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
return x**3 + x**2
print('f(x) = x^3 + x^2')
print('The area between the curve, x = -5, x = 5 and the x axis is:')
__A : List[str] = 10
while i <= 100_000:
print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}')
i *= 10 | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __UpperCamelCase ( lowercase__ ):
lowercase : Any = 'dandelin/vilt-b32-finetuned-vqa'
lowercase : Tuple = (
'This is a tool that answers a question about an image. It takes an input named `image` which should be the '
'image containing the information, as well as a `question` which should be the question in English. It '
'returns a text that is the answer to the question.'
)
lowercase : Optional[Any] = 'image_qa'
lowercase : int = AutoProcessor
lowercase : Tuple = AutoModelForVisualQuestionAnswering
lowercase : Any = ['image', 'text']
lowercase : Optional[Any] = ['text']
def __init__( self :str ,*_UpperCamelCase :int ,**_UpperCamelCase :List[Any] ):
requires_backends(self ,["""vision"""] )
super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
def a__ ( self :int ,_UpperCamelCase :"Image" ,_UpperCamelCase :str ):
return self.pre_processor(_UpperCamelCase ,_UpperCamelCase ,return_tensors="""pt""" )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ):
with torch.no_grad():
return self.model(**_UpperCamelCase ).logits
def a__ ( self :str ,_UpperCamelCase :Union[str, Any] ):
snake_case_ : Tuple = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx] | 352 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
__A : int = logging.getLogger()
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
snake_case_ : int = parser.parse_args()
return args.f
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Optional[Any] = {}
snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" )
if os.path.exists(lowerCamelCase_ ):
with open(lowerCamelCase_ , """r""" ) as f:
snake_case_ : str = json.load(lowerCamelCase_ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda"""
return is_using_cuda and is_apex_available()
__A : Any = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __UpperCamelCase ( lowercase__ ):
@classmethod
def a__ ( cls :Dict ):
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
snake_case_ : Optional[int] = tempfile.mkdtemp()
snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" )
write_basic_config(save_location=cls.configPath )
snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def a__ ( cls :int ):
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Optional[int] ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[str] = F'''
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
'''.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
snake_case_ : Dict = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Tuple ):
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
'''.split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
snake_case_ : Optional[int] = get_results(_UpperCamelCase )
self.assertLess(result["""perplexity"""] ,1_0_0 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Tuple ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[str] = F'''
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
self.assertLess(result["""perplexity"""] ,4_2 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[Any] ):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : str = F'''
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Optional[int] = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 )
self.assertLess(result["""train_loss"""] ,0.5 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) )
@unittest.skip(reason="""Fix me @muellerzr""" )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[str] ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : Optional[int] = F'''
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result["""eval_f1"""] ,2_8 )
self.assertGreaterEqual(result["""eval_exact"""] ,2_8 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :List[Any] ):
snake_case_ : str = self.get_auto_remove_tmp_dir()
snake_case_ : Union[str, Any] = F'''
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Union[str, Any] = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :int ):
snake_case_ : List[Any] = self.get_auto_remove_tmp_dir()
snake_case_ : List[Any] = F'''
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : int = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 )
self.assertGreaterEqual(result["""eval_rouge2"""] ,2 )
self.assertGreaterEqual(result["""eval_rougeL"""] ,7 )
self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :int ):
snake_case_ : Tuple = self.get_auto_remove_tmp_dir()
snake_case_ : Optional[Any] = F'''
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : Any = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) )
@slow
def a__ ( self :Optional[Any] ):
snake_case_ : List[str] = logging.StreamHandler(sys.stdout )
logger.addHandler(_UpperCamelCase )
snake_case_ : Dict = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
'''.split()
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 )
@mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} )
def a__ ( self :Any ):
snake_case_ : Dict = self.get_auto_remove_tmp_dir()
snake_case_ : Tuple = F'''
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
'''.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
snake_case_ : str = get_results(_UpperCamelCase )
# The base model scores a 25%
self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) )
self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) ) | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
return [ord(lowerCamelCase_ ) - 96 for elem in plain]
def UpperCAmelCase ( lowerCamelCase_ :list[int] ):
'''simple docstring'''
return "".join(chr(elem + 96 ) for elem in encoded )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Optional[Any] = encode(input("""-> """ ).strip().lower() )
print("""Encoded: """ , lowerCamelCase_ )
print("""Decoded:""" , decode(lowerCamelCase_ ) )
if __name__ == "__main__":
main() | 353 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__A : Tuple = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
lowercase : str = ['input_values', 'padding_mask']
def __init__( self :Optional[int] ,_UpperCamelCase :int = 1 ,_UpperCamelCase :int = 2_4_0_0_0 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :float = None ,_UpperCamelCase :float = None ,**_UpperCamelCase :List[Any] ,):
super().__init__(feature_size=_UpperCamelCase ,sampling_rate=_UpperCamelCase ,padding_value=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Dict = chunk_length_s
snake_case_ : str = overlap
@property
def a__ ( self :Any ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def a__ ( self :List[str] ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self :Optional[Any] ,_UpperCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None ,_UpperCamelCase :Optional[bool] = False ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :Optional[Union[str, TensorType]] = None ,_UpperCamelCase :Optional[int] = None ,):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
snake_case_ : Tuple = True
snake_case_ : str = bool(
isinstance(_UpperCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
snake_case_ : Any = [np.asarray(_UpperCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_UpperCamelCase ,np.ndarray ):
snake_case_ : Optional[int] = np.asarray(_UpperCamelCase ,dtype=np.floataa )
elif isinstance(_UpperCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
snake_case_ : List[str] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ : Optional[Any] = [np.asarray(_UpperCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(_UpperCamelCase ):
if example.ndim > 2:
raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' )
snake_case_ : Tuple = None
snake_case_ : Optional[Any] = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
snake_case_ : Union[str, Any] = min(array.shape[0] for array in raw_audio )
snake_case_ : Dict = int(np.floor(max_length / self.chunk_stride ) )
snake_case_ : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
snake_case_ : Any = max(array.shape[0] for array in raw_audio )
snake_case_ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) )
snake_case_ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length
snake_case_ : Union[str, Any] = """max_length"""
else:
snake_case_ : int = input_values
# normal padding on batch
if padded_inputs is None:
snake_case_ : Optional[int] = self.pad(
_UpperCamelCase ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,padding=_UpperCamelCase ,return_attention_mask=_UpperCamelCase ,)
if padding:
snake_case_ : Tuple = padded_inputs.pop("""attention_mask""" )
snake_case_ : Optional[int] = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
snake_case_ : Dict = example[..., None]
input_values.append(example.T )
snake_case_ : List[Any] = input_values
if return_tensors is not None:
snake_case_ : Tuple = padded_inputs.convert_to_tensors(_UpperCamelCase )
return padded_inputs | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int = 10_00 ):
'''simple docstring'''
snake_case_ : List[Any] = 1, 1
snake_case_ : Union[str, Any] = []
for i in range(1 , n + 1 ):
snake_case_ : int = prev_numerator + 2 * prev_denominator
snake_case_ : Any = prev_numerator + prev_denominator
if len(str(lowerCamelCase_ ) ) > len(str(lowerCamelCase_ ) ):
result.append(lowerCamelCase_ )
snake_case_ : Tuple = numerator
snake_case_ : Optional[int] = denominator
return len(lowerCamelCase_ )
if __name__ == "__main__":
print(F'{solution() = }')
| 354 |
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
__A : Dict = {
'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json',
'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json',
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[int] = 'ernie_m'
lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,):
super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Optional[int] = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : Union[str, Any] = num_attention_heads
snake_case_ : Any = intermediate_size
snake_case_ : Any = hidden_act
snake_case_ : Tuple = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : str = max_position_embeddings
snake_case_ : int = initializer_range
snake_case_ : Optional[Any] = layer_norm_eps
snake_case_ : Union[str, Any] = classifier_dropout
snake_case_ : Tuple = is_decoder
snake_case_ : int = act_dropout | 8 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : int = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 355 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __UpperCamelCase ( nn.Module ):
def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Any = only_cross_attention
snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase )
else:
snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
snake_case_ : str = (
AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
)
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none
else:
snake_case_ : Any = None
snake_case_ : Optional[Any] = None
# 3. Feed-forward
snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase )
# let chunk size default to None
snake_case_ : Optional[int] = None
snake_case_ : Dict = 0
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ):
# Sets chunk feed-forward
snake_case_ : Optional[Any] = chunk_size
snake_case_ : Optional[Any] = dim
def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.norma(
_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype )
else:
snake_case_ : Optional[int] = self.norma(_UpperCamelCase )
snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {}
snake_case_ : Union[str, Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output
snake_case_ : Union[str, Any] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
snake_case_ : Any = (
self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase )
)
snake_case_ : List[Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Tuple = attn_output + hidden_states
# 3. Feed-forward
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
snake_case_ : int = torch.cat(
[self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,)
else:
snake_case_ : List[str] = self.ff(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output
snake_case_ : Any = ff_output + hidden_states
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Tuple = int(dim * mult )
snake_case_ : Optional[int] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase )
if activation_fn == "gelu-approximate":
snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" )
elif activation_fn == "geglu":
snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase )
elif activation_fn == "geglu-approximate":
snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Dict = nn.ModuleList([] )
# project in
self.net.append(_UpperCamelCase )
# project dropout
self.net.append(nn.Dropout(_UpperCamelCase ) )
# project out
self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(_UpperCamelCase ) )
def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ):
for module in self.net:
snake_case_ : Tuple = module(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ):
super().__init__()
snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Optional[Any] = approximate
def a__ ( self :str ,_UpperCamelCase :int ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase ,approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ):
snake_case_ : Optional[Any] = self.proj(_UpperCamelCase )
snake_case_ : int = self.gelu(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 )
def a__ ( self :Dict ,_UpperCamelCase :List[str] ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ):
snake_case_ , snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 )
return hidden_states * self.gelu(_UpperCamelCase )
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ):
snake_case_ : int = self.proj(_UpperCamelCase )
return x * torch.sigmoid(1.7_02 * x )
class __UpperCamelCase ( nn.Module ):
def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ):
super().__init__()
snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Union[str, Any] = nn.SiLU()
snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 )
snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) )
snake_case_ , snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 )
snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift
return x
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : int = nn.SiLU()
snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase )
snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 )
def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) )
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = emb.chunk(6 ,dim=1 )
snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ):
super().__init__()
snake_case_ : Optional[int] = num_groups
snake_case_ : List[Any] = eps
if act_fn is None:
snake_case_ : int = None
else:
snake_case_ : Dict = get_activation(_UpperCamelCase )
snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 )
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ):
if self.act:
snake_case_ : Any = self.act(_UpperCamelCase )
snake_case_ : Optional[int] = self.linear(_UpperCamelCase )
snake_case_ : Dict = emb[:, :, None, None]
snake_case_ , snake_case_ : str = emb.chunk(2 ,dim=1 )
snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps )
snake_case_ : List[str] = x * (1 + scale) + shift
return x | 8 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
__A : str = logging.getLogger(__name__)
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : List[Any] = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=lowerCamelCase_ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=lowerCamelCase_ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=lowerCamelCase_ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=lowerCamelCase_ , default=10_00 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=lowerCamelCase_ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=lowerCamelCase_ , default=5_12 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=lowerCamelCase_ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
snake_case_ : Optional[int] = parser.parse_args()
return args
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
def fn(lowerCamelCase_ :Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def UpperCAmelCase ( lowerCamelCase_ :Dict ):
'''simple docstring'''
snake_case_ : Optional[Any] = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
snake_case_ : List[Any] = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
snake_case_ : Tuple = tf.train.Features(feature=lowerCamelCase_ )
snake_case_ : Union[str, Any] = tf.train.Example(features=lowerCamelCase_ )
snake_case_ : List[Any] = example.SerializeToString()
records.append(lowerCamelCase_ )
return records
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : List[str] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
snake_case_ : List[str] = min(len(lowerCamelCase_ ) , args.limit )
snake_case_ : Optional[Any] = dataset.select(range(lowerCamelCase_ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
snake_case_ : int = os.path.join(args.output_dir , args.split )
if not os.path.exists(lowerCamelCase_ ):
os.makedirs(lowerCamelCase_ )
else:
snake_case_ : List[str] = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
snake_case_ : List[str] = tokenize_function(lowerCamelCase_ )
snake_case_ : Optional[int] = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(lowerCamelCase_ :Tuple ):
# Concatenate all texts.
snake_case_ : Any = {k: sum(examples[k] , [] ) for k in examples.keys()}
snake_case_ : Tuple = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
snake_case_ : str = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
snake_case_ : Tuple = {
k: [t[i : i + args.max_length] for i in range(0 , lowerCamelCase_ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
snake_case_ : List[str] = dataset_tokenized.map(lowerCamelCase_ , batched=lowerCamelCase_ , batch_size=10_00 , num_proc=4 )
snake_case_ : Optional[Any] = 0
snake_case_ : str = 0
for shard in range(0 , len(lowerCamelCase_ ) , args.shard_size ):
snake_case_ : List[Any] = grouped_dataset[shard : shard + args.shard_size]
snake_case_ : Dict = len(dataset_snapshot["""input_ids"""] )
snake_case_ : int = os.path.join(lowerCamelCase_ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
snake_case_ : List[Any] = get_serialized_examples(lowerCamelCase_ )
with tf.io.TFRecordWriter(lowerCamelCase_ ) as out_file:
for i in range(len(lowerCamelCase_ ) ):
snake_case_ : Dict = serialized_examples[i]
out_file.write(lowerCamelCase_ )
print("""Wrote file {} containing {} records""".format(lowerCamelCase_ , lowerCamelCase_ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=lowerCamelCase_ )
if __name__ == "__main__":
__A : List[Any] = parse_args()
main(args) | 356 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=True , lowerCamelCase_ :str="pt" ):
'''simple docstring'''
snake_case_ : Tuple = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(""" """ ) else {}
snake_case_ : Union[str, Any] = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Any=None , ):
'''simple docstring'''
snake_case_ : Dict = input_ids.ne(lowerCamelCase_ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any="train" ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[int]="" ,):
super().__init__()
snake_case_ : List[str] = Path(_UpperCamelCase ).joinpath(type_path + """.source""" )
snake_case_ : int = Path(_UpperCamelCase ).joinpath(type_path + """.target""" )
snake_case_ : Optional[int] = self.get_char_lens(self.src_file )
snake_case_ : List[str] = max_source_length
snake_case_ : str = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
snake_case_ : str = tokenizer
snake_case_ : str = prefix
if n_obs is not None:
snake_case_ : int = self.src_lens[:n_obs]
snake_case_ : Tuple = src_lang
snake_case_ : str = tgt_lang
def __len__( self :Any ):
return len(self.src_lens )
def __getitem__( self :List[str] ,_UpperCamelCase :Union[str, Any] ):
snake_case_ : Optional[int] = index + 1 # linecache starts at 1
snake_case_ : Dict = self.prefix + linecache.getline(str(self.src_file ) ,_UpperCamelCase ).rstrip("""\n""" )
snake_case_ : List[Any] = linecache.getline(str(self.tgt_file ) ,_UpperCamelCase ).rstrip("""\n""" )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer ,_UpperCamelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
snake_case_ : int = (
self.tokenizer.question_encoder if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
)
snake_case_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,_UpperCamelCase ) else self.tokenizer
snake_case_ : Optional[Any] = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_source_length ,"""right""" )
snake_case_ : Tuple = encode_line(_UpperCamelCase ,_UpperCamelCase ,self.max_target_length ,"""right""" )
snake_case_ : int = source_inputs["""input_ids"""].squeeze()
snake_case_ : str = target_inputs["""input_ids"""].squeeze()
snake_case_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def a__ ( _UpperCamelCase :str ):
return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()]
def a__ ( self :Optional[int] ,_UpperCamelCase :List[str] ):
snake_case_ : Optional[Any] = torch.stack([x["""input_ids"""] for x in batch] )
snake_case_ : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] )
snake_case_ : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
snake_case_ : Optional[Any] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Tuple = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer ,_UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case_ : Optional[int] = trim_batch(_UpperCamelCase ,_UpperCamelCase )
snake_case_ , snake_case_ : Dict = trim_batch(_UpperCamelCase ,_UpperCamelCase ,attention_mask=_UpperCamelCase )
snake_case_ : Optional[int] = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__A : List[Any] = getLogger(__name__)
def UpperCAmelCase ( lowerCamelCase_ :List[List] ):
'''simple docstring'''
return list(itertools.chain.from_iterable(lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : int = get_git_info()
save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , """git_log.json""" ) )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int]=4 , **lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
with open(lowerCamelCase_ , """w""" ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] ):
'''simple docstring'''
with open(lowerCamelCase_ ) as f:
return json.load(lowerCamelCase_ )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Optional[Any] = git.Repo(search_parent_directories=lowerCamelCase_ )
snake_case_ : List[str] = {
"""repo_id""": str(lowerCamelCase_ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :Iterable ):
'''simple docstring'''
return list(map(lowerCamelCase_ , lowerCamelCase_ ) )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , """wb""" ) as f:
return pickle.dump(lowerCamelCase_ , lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Dict ):
'''simple docstring'''
def remove_articles(lowerCamelCase_ :str ):
return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase_ )
def white_space_fix(lowerCamelCase_ :Optional[Any] ):
return " ".join(text.split() )
def remove_punc(lowerCamelCase_ :Tuple ):
snake_case_ : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCamelCase_ :Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
snake_case_ : List[Any] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : Optional[int] = normalize_answer(lowerCamelCase_ ).split()
snake_case_ : List[Any] = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ )
snake_case_ : Optional[Any] = sum(common.values() )
if num_same == 0:
return 0
snake_case_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Union[str, Any] = 1.0 * num_same / len(lowerCamelCase_ )
snake_case_ : Optional[Any] = (2 * precision * recall) / (precision + recall)
return fa
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ):
'''simple docstring'''
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
snake_case_ : Optional[int] = 0
for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ):
em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
em /= len(lowerCamelCase_ )
return {"em": em}
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
return model_prefix.startswith("""rag""" )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
snake_case_ : Optional[int] = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
continue
snake_case_ : str = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p]
setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
return hparams, config | 8 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=lowercase__ ):
lowercase : Union[str, Any] = ['flax', 'transformers']
def __init__( self :Dict ,*_UpperCamelCase :Any ,**_UpperCamelCase :str ):
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :Union[str, Any] ,*_UpperCamelCase :int ,**_UpperCamelCase :int ):
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :List[Any] ,*_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Any ):
requires_backends(cls ,["""flax""", """transformers"""] )
class __UpperCamelCase ( metaclass=lowercase__ ):
lowercase : int = ['flax', 'transformers']
def __init__( self :Optional[int] ,*_UpperCamelCase :List[Any] ,**_UpperCamelCase :int ):
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :Tuple ,*_UpperCamelCase :Tuple ,**_UpperCamelCase :List[str] ):
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :int ,*_UpperCamelCase :List[str] ,**_UpperCamelCase :Optional[Any] ):
requires_backends(cls ,["""flax""", """transformers"""] )
class __UpperCamelCase ( metaclass=lowercase__ ):
lowercase : Union[str, Any] = ['flax', 'transformers']
def __init__( self :Tuple ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Union[str, Any] ):
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :int ,*_UpperCamelCase :Any ,**_UpperCamelCase :str ):
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :Tuple ,*_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Any ):
requires_backends(cls ,["""flax""", """transformers"""] )
class __UpperCamelCase ( metaclass=lowercase__ ):
lowercase : Dict = ['flax', 'transformers']
def __init__( self :List[Any] ,*_UpperCamelCase :Any ,**_UpperCamelCase :Any ):
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :Any ,*_UpperCamelCase :str ,**_UpperCamelCase :Any ):
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def a__ ( cls :Optional[Any] ,*_UpperCamelCase :List[Any] ,**_UpperCamelCase :Union[str, Any] ):
requires_backends(cls ,["""flax""", """transformers"""] ) | 357 |
'''simple docstring'''
import functools
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[str] = len(lowerCamelCase_ )
snake_case_ : Dict = len(lowerCamelCase_ )
@functools.cache
def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 8 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def UpperCAmelCase ( lowerCamelCase_ :Sequence[float] , lowerCamelCase_ :bool = False ):
'''simple docstring'''
if not arr:
return 0
snake_case_ : Optional[int] = 0 if allow_empty_subarrays else float("""-inf""" )
snake_case_ : Dict = 0.0
for num in arr:
snake_case_ : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num )
snake_case_ : Tuple = max(lowerCamelCase_ , lowerCamelCase_ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
__A : Dict = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'{max_subarray_sum(nums) = }')
| 358 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Any = tmp_path / """file.csv"""
snake_case_ : Any = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : Optional[int] = tmp_path / """malformed_file.csv"""
snake_case_ : int = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : str = tmp_path / """csv_with_image.csv"""
snake_case_ : int = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Any ):
'''simple docstring'''
snake_case_ : int = tmp_path / """csv_with_label.csv"""
snake_case_ : Tuple = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
@pytest.fixture
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : List[str] = tmp_path / """csv_with_int_list.csv"""
snake_case_ : str = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(lowerCamelCase_ , """w""" ) as f:
f.write(lowerCamelCase_ )
return str(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :Tuple ):
'''simple docstring'''
snake_case_ : int = Csv()
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowerCamelCase_ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(lowerCamelCase_ ) in record.message
for record in caplog.records )
@require_pil
def UpperCAmelCase ( lowerCamelCase_ :Tuple ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : Tuple = f.read().splitlines()[1]
snake_case_ : str = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
snake_case_ : Tuple = csv._generate_tables([[csv_file_with_image]] )
snake_case_ : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
snake_case_ : List[str] = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
snake_case_ : List[Any] = f.read().splitlines()[1:]
snake_case_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] )
snake_case_ : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
snake_case_ : Union[str, Any] = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase_ ) for label in labels]
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
snake_case_ : str = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase_ : [int(lowerCamelCase_ ) for i in x.split()]} )
snake_case_ : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] )
snake_case_ : Tuple = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
snake_case_ : Dict = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | 8 | 0 |
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ):
'''simple docstring'''
return int((input_a, input_a).count(0 ) == 0 )
def UpperCAmelCase ( ):
'''simple docstring'''
assert and_gate(0 , 0 ) == 0
assert and_gate(0 , 1 ) == 0
assert and_gate(1 , 0 ) == 0
assert and_gate(1 , 1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1)) | 359 |
'''simple docstring'''
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ):
'''simple docstring'''
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match'''
snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match'''
snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : Optional[Any] = np.asarray(weights[0] )
snake_case_ : int = np.asarray(weights[1] )
snake_case_ : Any = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ):
'''simple docstring'''
# set torch weights for 1-to-1 comparison
snake_case_ : List[Any] = np.asarray(weights[0] )
snake_case_ : Optional[int] = np.asarray(weights[1] )
snake_case_ : Union[str, Any] = np.asarray(weights[2] )
snake_case_ : int = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
# layernorm 1
snake_case_ : str = weights[0][0][0]
snake_case_ : int = np.asarray(layer_norm_a[0] )
snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# lsh weights + output
snake_case_ : Tuple = weights[0][1]
if len(lowerCamelCase_ ) < 4:
set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
else:
set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ )
# intermediate weighs
snake_case_ : str = weights[2][0][1][2]
# Chunked Feed Forward
if len(lowerCamelCase_ ) == 4:
snake_case_ : List[Any] = intermediate_weights[2]
# layernorm 2
snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] )
snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# intermediate dense
snake_case_ : Any = np.asarray(intermediate_weights[1][0] )
snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
# intermediate out
snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] )
snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ):
'''simple docstring'''
# reformer model
snake_case_ : Dict = torch_model.reformer
# word embeds
snake_case_ : List[Any] = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , )
if isinstance(weights[3] , lowerCamelCase_ ):
snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'''{position_embeddings[emb_idx]} emb does not match'''
snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) )
snake_case_ : List[Any] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
lowerCamelCase_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# output layer norm
snake_case_ : Optional[Any] = np.asarray(weights[7][0] )
snake_case_ : List[Any] = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , )
# output embeddings
snake_case_ : Optional[int] = np.asarray(weights[9][0] )
snake_case_ : Any = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , )
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ):
'''simple docstring'''
# Initialise PyTorch model
snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ )
with open(lowerCamelCase_ , """rb""" ) as f:
snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""]
set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , lowerCamelCase_ )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__A : List[Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path) | 8 | 0 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __UpperCamelCase ( nn.Module ):
def __init__( self :Any ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int=0.0 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ,_UpperCamelCase :str = "layer_norm" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Any = only_cross_attention
snake_case_ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero"""
snake_case_ : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm"""
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
snake_case_ : Dict = AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ : str = AdaLayerNormZero(_UpperCamelCase ,_UpperCamelCase )
else:
snake_case_ : List[Any] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_UpperCamelCase ,)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
snake_case_ : str = (
AdaLayerNorm(_UpperCamelCase ,_UpperCamelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
)
snake_case_ : List[str] = Attention(
query_dim=_UpperCamelCase ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_UpperCamelCase ,dim_head=_UpperCamelCase ,dropout=_UpperCamelCase ,bias=_UpperCamelCase ,upcast_attention=_UpperCamelCase ,) # is self-attn if encoder_hidden_states is none
else:
snake_case_ : Any = None
snake_case_ : Optional[Any] = None
# 3. Feed-forward
snake_case_ : List[str] = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
snake_case_ : Union[str, Any] = FeedForward(_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn=_UpperCamelCase ,final_dropout=_UpperCamelCase )
# let chunk size default to None
snake_case_ : Optional[int] = None
snake_case_ : Dict = 0
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :int ):
# Sets chunk feed-forward
snake_case_ : Optional[Any] = chunk_size
snake_case_ : Optional[Any] = dim
def a__ ( self :List[str] ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.FloatTensor] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,_UpperCamelCase :Dict[str, Any] = None ,_UpperCamelCase :Optional[torch.LongTensor] = None ,):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase ,_UpperCamelCase )
elif self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = self.norma(
_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=hidden_states.dtype )
else:
snake_case_ : Optional[int] = self.norma(_UpperCamelCase )
snake_case_ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {}
snake_case_ : Union[str, Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output
snake_case_ : Union[str, Any] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
snake_case_ : Any = (
self.norma(_UpperCamelCase ,_UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase )
)
snake_case_ : List[Any] = self.attna(
_UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,attention_mask=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Tuple = attn_output + hidden_states
# 3. Feed-forward
snake_case_ : Optional[Any] = self.norma(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
snake_case_ : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
snake_case_ : int = torch.cat(
[self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,)
else:
snake_case_ : List[str] = self.ff(_UpperCamelCase )
if self.use_ada_layer_norm_zero:
snake_case_ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output
snake_case_ : Any = ff_output + hidden_states
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Dict ,_UpperCamelCase :int ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :int = 4 ,_UpperCamelCase :float = 0.0 ,_UpperCamelCase :str = "geglu" ,_UpperCamelCase :bool = False ,):
super().__init__()
snake_case_ : Tuple = int(dim * mult )
snake_case_ : Optional[int] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
snake_case_ : Any = GELU(_UpperCamelCase ,_UpperCamelCase )
if activation_fn == "gelu-approximate":
snake_case_ : Tuple = GELU(_UpperCamelCase ,_UpperCamelCase ,approximate="""tanh""" )
elif activation_fn == "geglu":
snake_case_ : Dict = GEGLU(_UpperCamelCase ,_UpperCamelCase )
elif activation_fn == "geglu-approximate":
snake_case_ : Optional[Any] = ApproximateGELU(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Dict = nn.ModuleList([] )
# project in
self.net.append(_UpperCamelCase )
# project dropout
self.net.append(nn.Dropout(_UpperCamelCase ) )
# project out
self.net.append(nn.Linear(_UpperCamelCase ,_UpperCamelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(_UpperCamelCase ) )
def a__ ( self :Tuple ,_UpperCamelCase :Union[str, Any] ):
for module in self.net:
snake_case_ : Tuple = module(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :str = "none" ):
super().__init__()
snake_case_ : Union[str, Any] = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Optional[Any] = approximate
def a__ ( self :str ,_UpperCamelCase :int ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase ,approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ):
snake_case_ : Optional[Any] = self.proj(_UpperCamelCase )
snake_case_ : int = self.gelu(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : str = nn.Linear(_UpperCamelCase ,dim_out * 2 )
def a__ ( self :Dict ,_UpperCamelCase :List[str] ):
if gate.device.type != "mps":
return F.gelu(_UpperCamelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[int] ):
snake_case_ : Dict = self.proj(_UpperCamelCase ).chunk(2 ,dim=-1 )
return hidden_states * self.gelu(_UpperCamelCase )
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = nn.Linear(_UpperCamelCase ,_UpperCamelCase )
def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ):
snake_case_ : int = self.proj(_UpperCamelCase )
return x * torch.sigmoid(1.7_02 * x )
class __UpperCamelCase ( nn.Module ):
def __init__( self :int ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ):
super().__init__()
snake_case_ : int = nn.Embedding(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : Union[str, Any] = nn.SiLU()
snake_case_ : Any = nn.Linear(_UpperCamelCase ,embedding_dim * 2 )
snake_case_ : Dict = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase )
def a__ ( self :int ,_UpperCamelCase :List[str] ,_UpperCamelCase :int ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) )
snake_case_ : Tuple = torch.chunk(_UpperCamelCase ,2 )
snake_case_ : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift
return x
class __UpperCamelCase ( nn.Module ):
def __init__( self :List[str] ,_UpperCamelCase :Tuple ,_UpperCamelCase :int ):
super().__init__()
snake_case_ : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase ,_UpperCamelCase )
snake_case_ : int = nn.SiLU()
snake_case_ : List[str] = nn.Linear(_UpperCamelCase ,6 * embedding_dim ,bias=_UpperCamelCase )
snake_case_ : str = nn.LayerNorm(_UpperCamelCase ,elementwise_affine=_UpperCamelCase ,eps=1E-6 )
def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str=None ):
snake_case_ : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ,_UpperCamelCase ,hidden_dtype=_UpperCamelCase ) ) )
snake_case_ : Any = emb.chunk(6 ,dim=1 )
snake_case_ : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __UpperCamelCase ( nn.Module ):
def __init__( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :int ,_UpperCamelCase :Optional[str] = None ,_UpperCamelCase :float = 1E-5 ):
super().__init__()
snake_case_ : Optional[int] = num_groups
snake_case_ : List[Any] = eps
if act_fn is None:
snake_case_ : int = None
else:
snake_case_ : Dict = get_activation(_UpperCamelCase )
snake_case_ : Optional[int] = nn.Linear(_UpperCamelCase ,out_dim * 2 )
def a__ ( self :List[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ):
if self.act:
snake_case_ : Any = self.act(_UpperCamelCase )
snake_case_ : Optional[int] = self.linear(_UpperCamelCase )
snake_case_ : Dict = emb[:, :, None, None]
snake_case_ : str = emb.chunk(2 ,dim=1 )
snake_case_ : str = F.group_norm(_UpperCamelCase ,self.num_groups ,eps=self.eps )
snake_case_ : List[str] = x * (1 + scale) + shift
return x | 360 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : str = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __UpperCamelCase ( lowercase__ ):
lowercase : List[Any] = 'canine'
def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,):
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : List[str] = max_position_embeddings
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : Dict = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : Tuple = intermediate_size
snake_case_ : str = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : Optional[Any] = initializer_range
snake_case_ : Optional[int] = type_vocab_size
snake_case_ : List[str] = layer_norm_eps
# Character config:
snake_case_ : Any = downsampling_rate
snake_case_ : List[str] = upsampling_kernel_size
snake_case_ : int = num_hash_functions
snake_case_ : Tuple = num_hash_buckets
snake_case_ : Tuple = local_transformer_stride | 8 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
__A : Any = None
__A : Optional[Any] = logging.get_logger(__name__)
__A : List[str] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
__A : Any = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
__A : List[Any] = {
'camembert-base': 512,
}
__A : Union[str, Any] = '▁'
class __UpperCamelCase ( lowercase__ ):
lowercase : Dict = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[str] = ['input_ids', 'attention_mask']
lowercase : List[str] = CamembertTokenizer
def __init__( self :Optional[Any] ,_UpperCamelCase :Dict=None ,_UpperCamelCase :Any=None ,_UpperCamelCase :List[Any]="<s>" ,_UpperCamelCase :List[str]="</s>" ,_UpperCamelCase :List[str]="</s>" ,_UpperCamelCase :Dict="<s>" ,_UpperCamelCase :str="<unk>" ,_UpperCamelCase :List[str]="<pad>" ,_UpperCamelCase :Union[str, Any]="<mask>" ,_UpperCamelCase :Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] ,**_UpperCamelCase :str ,):
# Mask token behave like a normal word, i.e. include the space before it
snake_case_ : List[str] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token
super().__init__(
_UpperCamelCase ,tokenizer_file=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,additional_special_tokens=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Dict = vocab_file
snake_case_ : Tuple = False if not self.vocab_file else True
def a__ ( self :List[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case_ : Optional[int] = [self.cls_token_id]
snake_case_ : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a__ ( self :Dict ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : Optional[Any] = [self.sep_token_id]
snake_case_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self :Any ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCamelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case_ : Any = os.path.join(
_UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ):
copyfile(self.vocab_file ,_UpperCamelCase )
return (out_vocab_file,) | 361 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
__A : Tuple = logging.get_logger(__name__)
__A : List[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : str = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
__A : Optional[Any] = {
'facebook/blenderbot_small-90M': 512,
}
class __UpperCamelCase ( lowercase__ ):
lowercase : str = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Dict = BlenderbotSmallTokenizer
def __init__( self :str ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :int="<|endoftext|>" ,_UpperCamelCase :Dict="<|endoftext|>" ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,):
super().__init__(
ByteLevelBPETokenizer(
vocab=_UpperCamelCase ,merges=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,) ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,**_UpperCamelCase ,)
snake_case_ : Any = add_prefix_space
def a__ ( self :Optional[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=None ):
snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a__ ( self :int ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ):
snake_case_ : int = [self.sep_token_id]
snake_case_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] | 8 | 0 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ )
for row_idx in range(lowerCamelCase_ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = []
for current_row_idx in range(lowerCamelCase_ ):
snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ )
triangle.append(lowerCamelCase_ )
return triangle
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
snake_case_ : Optional[Any] = 1, 1
for current_col_idx in range(1 , lowerCamelCase_ ):
calculate_current_element(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return current_row
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ):
'''simple docstring'''
snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx]
snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = [[1]]
for row_index in range(1 , lowerCamelCase_ ):
snake_case_ : Optional[Any] = [0] + result[-1] + [0]
snake_case_ : Dict = row_index + 1
# Calculate the number of distinct elements in a row
snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) )
snake_case_ : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
snake_case_ : str = row_first_half + row_second_half
result.append(lowerCamelCase_ )
return result
def UpperCAmelCase ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None:
snake_case_ : Dict = F'''{func.__name__}({value})'''
snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 362 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :list ):
'''simple docstring'''
if len(lowerCamelCase_ ) <= 1:
return lst
snake_case_ : Union[str, Any] = 1
while i < len(lowerCamelCase_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case_ : int = 1
return lst
if __name__ == "__main__":
__A : Optional[int] = input('Enter numbers separated by a comma:\n').strip()
__A : int = [int(item) for item in user_input.split(',')]
print(gnome_sort(unsorted)) | 8 | 0 |
'''simple docstring'''
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( lowerCamelCase_ :str = "isbn/0140328726" ):
'''simple docstring'''
snake_case_ : Tuple = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("""/""" ) != 1:
snake_case_ : int = F'''{olid} is not a valid Open Library olid'''
raise ValueError(lowerCamelCase_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( lowerCamelCase_ :dict ):
'''simple docstring'''
snake_case_ : List[str] = {
"""title""": """Title""",
"""publish_date""": """Publish date""",
"""authors""": """Authors""",
"""number_of_pages""": """Number of pages:""",
"""first_sentence""": """First sentence""",
"""isbn_10""": """ISBN (10)""",
"""isbn_13""": """ISBN (13)""",
}
snake_case_ : Optional[int] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
snake_case_ : List[Any] = [
get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""]
]
snake_case_ : Optional[int] = data["""First sentence"""]["""value"""]
for key, value in data.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
snake_case_ : str = """, """.join(lowerCamelCase_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
__A : Any = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.')
continue
print(F'\nSearching Open Library for ISBN: {isbn}...\n')
try:
__A : Any = summarize_book(get_openlibrary_data(F'isbn/{isbn}'))
print('\n'.join(F'{key}: {value}' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'Sorry, there are no results for ISBN: {isbn}.') | 363 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self :Any ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Optional[int]=True ,_UpperCamelCase :Union[str, Any]=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=9_9 ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Union[str, Any]=3_2 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :Optional[Any]=4 ,_UpperCamelCase :List[Any]=3_7 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :Any=0 ,_UpperCamelCase :str=None ,):
snake_case_ : str = parent
snake_case_ : int = batch_size
snake_case_ : Union[str, Any] = seq_length
snake_case_ : List[Any] = is_training
snake_case_ : Union[str, Any] = use_input_mask
snake_case_ : List[str] = use_labels
snake_case_ : int = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : List[Any] = projection_dim
snake_case_ : Dict = num_hidden_layers
snake_case_ : Dict = num_attention_heads
snake_case_ : str = intermediate_size
snake_case_ : int = dropout
snake_case_ : int = attention_dropout
snake_case_ : Dict = max_position_embeddings
snake_case_ : Union[str, Any] = initializer_range
snake_case_ : Dict = scope
snake_case_ : Union[str, Any] = bos_token_id
def a__ ( self :Any ):
snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
snake_case_ : Union[str, Any] = None
if self.use_input_mask:
snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
snake_case_ : int = input_mask.numpy()
snake_case_ , snake_case_ : Tuple = input_mask.shape
snake_case_ : Any = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) )
for batch_idx, start_index in enumerate(_UpperCamelCase ):
snake_case_ : Optional[int] = 1
snake_case_ : List[str] = 0
snake_case_ : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(_UpperCamelCase )
def a__ ( self :str ):
return BlipTextConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,)
def a__ ( self :List[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ):
snake_case_ : List[str] = TFBlipTextModel(config=_UpperCamelCase )
snake_case_ : List[Any] = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,training=_UpperCamelCase )
snake_case_ : Any = model(_UpperCamelCase ,training=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def a__ ( self :List[str] ):
snake_case_ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : str = config_and_inputs
snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else ()
lowercase : int = False
lowercase : List[Any] = False
lowercase : Dict = False
def a__ ( self :List[Any] ):
snake_case_ : List[str] = BlipTextModelTester(self )
snake_case_ : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=3_7 )
def a__ ( self :Union[str, Any] ):
self.config_tester.run_common_tests()
def a__ ( self :Union[str, Any] ):
snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def a__ ( self :Tuple ):
pass
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def a__ ( self :Any ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :Tuple ):
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def a__ ( self :List[Any] ):
pass
@slow
def a__ ( self :Any ):
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def a__ ( self :Dict ,_UpperCamelCase :Tuple=True ):
super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
__A : Dict = {
'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json',
'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json',
}
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[int] = 'ernie_m'
lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,):
super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : Optional[int] = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : Union[str, Any] = num_attention_heads
snake_case_ : Any = intermediate_size
snake_case_ : Any = hidden_act
snake_case_ : Tuple = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : str = max_position_embeddings
snake_case_ : int = initializer_range
snake_case_ : Optional[Any] = layer_norm_eps
snake_case_ : Union[str, Any] = classifier_dropout
snake_case_ : Tuple = is_decoder
snake_case_ : int = act_dropout | 364 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : int = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 8 | 0 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
__A : Optional[Any] = _symbol_database.Default()
__A : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
__A : Dict = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
__A : List[Any] = None
__A : Union[str, Any] = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
__A : Dict = 45
__A : Optional[Any] = 1_581
__A : Dict = 1_517
__A : Tuple = 1_570
__A : List[Any] = 1_584
__A : Union[str, Any] = 1_793
__A : List[Any] = 1_795
__A : Optional[int] = 1_916
__A : List[str] = 1_864
__A : List[str] = 1_905
__A : Any = 1_919
__A : Any = 2_429
__A : Dict = 2_208
__A : Optional[int] = 2_418
__A : Optional[int] = 2_323
__A : Union[str, Any] = 2_407
# @@protoc_insertion_point(module_scope) | 365 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__A : Optional[int] = logging.get_logger(__name__)
class __UpperCamelCase ( lowercase__ ):
def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ):
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,)
super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) | 8 | 0 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
__A : Dict = 'src/transformers'
# Matches is_xxx_available()
__A : Dict = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__A : int = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__A : List[Any] = re.compile(r'^\s*try:')
# Catches a line with else:
__A : Any = re.compile(r'^\s*else:')
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
if _re_test_backend.search(lowerCamelCase_ ) is None:
return None
snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )]
backends.sort()
return "_and_".join(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : str = f.readlines()
snake_case_ : List[Any] = 0
while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ : Union[str, Any] = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ : str = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCamelCase_ ):
snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0]
snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ )
if single_line_import_search is not None:
snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ : Union[str, Any] = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ : List[str] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : Tuple = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ : List[Any] = lines[line_index]
if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None:
snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_between_brackets.search(lowerCamelCase_ ) is not None:
snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_quote_object.search(lowerCamelCase_ ) is not None:
objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ : List[Any] = []
while (
line_index < len(lowerCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ : Union[str, Any] = lines[line_index]
snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ : Dict = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : str = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ : Dict = lines[line_index]
snake_case_ : Any = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ :Union[str, Any] ):
return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ : Optional[int] = []
for key in import_dict_objects.keys():
snake_case_ : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
snake_case_ : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Tuple = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" )
snake_case_ : Dict = parse_init(lowerCamelCase_ )
if objects is not None:
snake_case_ : Any = analyze_results(*lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(lowerCamelCase_ ) )
if len(lowerCamelCase_ ) > 0:
raise ValueError("""\n\n""".join(lowerCamelCase_ ) )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = []
for path, directories, files in os.walk(lowerCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(lowerCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" )
submodules.append(lowerCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(lowerCamelCase_ )
return submodules
__A : List[Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def UpperCAmelCase ( ):
'''simple docstring'''
from transformers.utils import direct_transformers_import
snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ )
snake_case_ : List[str] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f:
snake_case_ : str = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) )
snake_case_ : Dict = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCamelCase_ ) > 0:
snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules() | 366 |
'''simple docstring'''
import re
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : List[Any] = re.compile(
R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" )
return bool(re.search(lowerCamelCase_ , lowerCamelCase_ ) )
if __name__ == "__main__":
__A : int = '0094702343221'
print(is_sri_lankan_phone_number(phone)) | 8 | 0 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class __UpperCamelCase :
def __init__( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any]=1_3 ,_UpperCamelCase :Union[str, Any]=3_0 ,_UpperCamelCase :int=2 ,_UpperCamelCase :Dict=3 ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :List[str]=True ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Optional[int]=2 ,_UpperCamelCase :int=4 ,_UpperCamelCase :List[str]=3_7 ,_UpperCamelCase :Optional[Any]="gelu" ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :List[str]=1_0 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Dict=2 ,):
snake_case_ : Optional[Any] = parent
snake_case_ : int = batch_size
snake_case_ : Dict = image_size
snake_case_ : Union[str, Any] = patch_size
snake_case_ : Optional[int] = num_channels
snake_case_ : Tuple = is_training
snake_case_ : List[Any] = use_labels
snake_case_ : Any = hidden_size
snake_case_ : Optional[Any] = num_hidden_layers
snake_case_ : Dict = num_attention_heads
snake_case_ : Optional[int] = intermediate_size
snake_case_ : Tuple = hidden_act
snake_case_ : List[Any] = hidden_dropout_prob
snake_case_ : List[str] = attention_probs_dropout_prob
snake_case_ : str = type_sequence_label_size
snake_case_ : str = initializer_range
snake_case_ : Optional[Any] = scope
snake_case_ : Dict = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
snake_case_ : Dict = (image_size // patch_size) ** 2
snake_case_ : List[str] = num_patches + 2
def a__ ( self :Any ):
snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : str = None
if self.use_labels:
snake_case_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
snake_case_ : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self :Any ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCamelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def a__ ( self :List[str] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[int] ):
snake_case_ : List[str] = TFDeiTModel(config=_UpperCamelCase )
snake_case_ : List[str] = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self :List[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ):
snake_case_ : List[Any] = TFDeiTForMaskedImageModeling(config=_UpperCamelCase )
snake_case_ : Union[str, Any] = model(_UpperCamelCase )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case_ : Dict = 1
snake_case_ : Dict = TFDeiTForMaskedImageModeling(_UpperCamelCase )
snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[Any] = model(_UpperCamelCase )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def a__ ( self :Union[str, Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :int ):
snake_case_ : Tuple = self.type_sequence_label_size
snake_case_ : Dict = TFDeiTForImageClassification(_UpperCamelCase )
snake_case_ : Tuple = model(_UpperCamelCase ,labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case_ : Dict = 1
snake_case_ : Optional[Any] = TFDeiTForImageClassification(_UpperCamelCase )
snake_case_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : Any = model(_UpperCamelCase ,labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def a__ ( self :Dict ):
snake_case_ : Dict = self.prepare_config_and_inputs()
snake_case_ : Optional[Any] = config_and_inputs
snake_case_ : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
lowercase : List[str] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
lowercase : Tuple = (
{
'feature-extraction': TFDeiTModel,
'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
lowercase : List[str] = False
lowercase : Dict = False
lowercase : Any = False
lowercase : Dict = False
def a__ ( self :Optional[Any] ):
snake_case_ : str = TFDeiTModelTester(self )
snake_case_ : Optional[int] = ConfigTester(self ,config_class=_UpperCamelCase ,has_text_modality=_UpperCamelCase ,hidden_size=3_7 )
def a__ ( self :int ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def a__ ( self :Any ):
pass
def a__ ( self :Optional[Any] ):
snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
snake_case_ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCamelCase ,tf.keras.layers.Dense ) )
def a__ ( self :str ):
snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : Optional[int] = model_class(_UpperCamelCase )
snake_case_ : int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : int = [*signature.parameters.keys()]
snake_case_ : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_UpperCamelCase )
def a__ ( self :Optional[int] ):
snake_case_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def a__ ( self :List[Any] ):
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase )
def a__ ( self :Tuple ):
snake_case_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase )
def a__ ( self :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Union[str, Any]=False ):
snake_case_ : str = super()._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def a__ ( self :Union[str, Any] ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : List[str] = TFDeiTModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def a__ ( self :Any ):
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def a__ ( self :List[Any] ):
snake_case_ : int = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
snake_case_ : Tuple = self.default_image_processor
snake_case_ : List[str] = prepare_img()
snake_case_ : Dict = image_processor(images=_UpperCamelCase ,return_tensors="""tf""" )
# forward pass
snake_case_ : Optional[int] = model(**_UpperCamelCase )
# verify the logits
snake_case_ : List[str] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape ,_UpperCamelCase )
snake_case_ : Union[str, Any] = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,_UpperCamelCase ,atol=1E-4 ) ) | 367 |
'''simple docstring'''
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class __UpperCamelCase ( lowercase__ ):
lowercase : Union[List[PIL.Image.Image], np.ndarray]
lowercase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline | 8 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class __UpperCamelCase ( lowercase__ ):
lowercase : torch.FloatTensor
class __UpperCamelCase ( lowercase__ , lowercase__ ):
@register_to_config
def __init__( self :str ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 3 ,_UpperCamelCase :Tuple[str] = ("DownEncoderBlock2D",) ,_UpperCamelCase :Tuple[str] = ("UpDecoderBlock2D",) ,_UpperCamelCase :Tuple[int] = (6_4,) ,_UpperCamelCase :int = 1 ,_UpperCamelCase :str = "silu" ,_UpperCamelCase :int = 3 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :int = 2_5_6 ,_UpperCamelCase :int = 3_2 ,_UpperCamelCase :Optional[int] = None ,_UpperCamelCase :float = 0.1_82_15 ,_UpperCamelCase :str = "group" ,):
super().__init__()
# pass init params to Encoder
snake_case_ : Optional[Any] = Encoder(
in_channels=_UpperCamelCase ,out_channels=_UpperCamelCase ,down_block_types=_UpperCamelCase ,block_out_channels=_UpperCamelCase ,layers_per_block=_UpperCamelCase ,act_fn=_UpperCamelCase ,norm_num_groups=_UpperCamelCase ,double_z=_UpperCamelCase ,)
snake_case_ : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case_ : str = nn.Convad(_UpperCamelCase ,_UpperCamelCase ,1 )
snake_case_ : int = VectorQuantizer(_UpperCamelCase ,_UpperCamelCase ,beta=0.25 ,remap=_UpperCamelCase ,sane_index_shape=_UpperCamelCase )
snake_case_ : List[str] = nn.Convad(_UpperCamelCase ,_UpperCamelCase ,1 )
# pass init params to Decoder
snake_case_ : str = Decoder(
in_channels=_UpperCamelCase ,out_channels=_UpperCamelCase ,up_block_types=_UpperCamelCase ,block_out_channels=_UpperCamelCase ,layers_per_block=_UpperCamelCase ,act_fn=_UpperCamelCase ,norm_num_groups=_UpperCamelCase ,norm_type=_UpperCamelCase ,)
@apply_forward_hook
def a__ ( self :Dict ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ):
snake_case_ : str = self.encoder(_UpperCamelCase )
snake_case_ : Optional[Any] = self.quant_conv(_UpperCamelCase )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_UpperCamelCase )
@apply_forward_hook
def a__ ( self :Any ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = False ,_UpperCamelCase :bool = True ):
# also go through quantization layer
if not force_not_quantize:
snake_case_ : List[str] = self.quantize(_UpperCamelCase )
else:
snake_case_ : List[str] = h
snake_case_ : List[str] = self.post_quant_conv(_UpperCamelCase )
snake_case_ : str = self.decoder(_UpperCamelCase ,quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCamelCase )
def a__ ( self :int ,_UpperCamelCase :torch.FloatTensor ,_UpperCamelCase :bool = True ):
snake_case_ : Any = sample
snake_case_ : Any = self.encode(_UpperCamelCase ).latents
snake_case_ : Tuple = self.decode(_UpperCamelCase ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCamelCase ) | 368 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
lowercase : Dict = StableDiffusionInpaintPipeline
lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowercase : Dict = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowercase : Optional[int] = frozenset([] )
def a__ ( self :Any ):
torch.manual_seed(0 )
snake_case_ : Optional[int] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=3_2 ,attention_head_dim=(2, 4) ,use_linear_projection=_UpperCamelCase ,)
snake_case_ : Tuple = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ : List[str] = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
snake_case_ : Optional[int] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act="""gelu""" ,projection_dim=5_1_2 ,)
snake_case_ : Tuple = CLIPTextModel(_UpperCamelCase )
snake_case_ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
snake_case_ : str = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any]=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
snake_case_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase )
snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0]
snake_case_ : List[str] = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((6_4, 6_4) )
snake_case_ : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) )
if str(_UpperCamelCase ).startswith("""mps""" ):
snake_case_ : Optional[Any] = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ : Optional[int] = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self :Any ):
snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case_ : Optional[Any] = self.get_dummy_components()
snake_case_ : Dict = StableDiffusionInpaintPipeline(**_UpperCamelCase )
snake_case_ : List[str] = sd_pipe.to(_UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ : Tuple = sd_pipe(**_UpperCamelCase ).images
snake_case_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def a__ ( self :Any ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def a__ ( self :List[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self :Tuple ):
snake_case_ : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_UpperCamelCase ,safety_checker=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[str] = torch.manual_seed(0 )
snake_case_ : Dict = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def a__ ( self :Tuple ):
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
snake_case_ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,torch_dtype=torch.floataa ,safety_checker=_UpperCamelCase ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing()
snake_case_ : Optional[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : List[Any] = torch.manual_seed(0 )
snake_case_ : Any = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case_ : List[str] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def a__ ( self :Union[str, Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case_ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
snake_case_ : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting"""
snake_case_ : Dict = PNDMScheduler.from_pretrained(_UpperCamelCase ,subfolder="""scheduler""" )
snake_case_ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCamelCase ,safety_checker=_UpperCamelCase ,scheduler=_UpperCamelCase ,torch_dtype=torch.floataa ,)
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench"""
snake_case_ : Optional[int] = torch.manual_seed(0 )
snake_case_ : Tuple = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=2 ,output_type="""np""" ,)
snake_case_ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 1_0**9 | 8 | 0 |
'''simple docstring'''
__A : int = 256
# Modulus to hash a string
__A : Any = 1_000_003
def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ):
'''simple docstring'''
snake_case_ : int = len(lowerCamelCase_ )
snake_case_ : Optional[int] = len(lowerCamelCase_ )
if p_len > t_len:
return False
snake_case_ : Dict = 0
snake_case_ : int = 0
snake_case_ : int = 1
# Calculating the hash of pattern and substring of text
for i in range(lowerCamelCase_ ):
snake_case_ : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
snake_case_ : Optional[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
snake_case_ : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
snake_case_ : Optional[int] = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = """abc1abc12"""
snake_case_ : Optional[int] = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
snake_case_ : List[Any] = """alskfjaldsk23adsfabcabc"""
assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ ) and not rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
# Test 2)
snake_case_ : List[Any] = """ABABX"""
snake_case_ : List[Any] = """ABABZABABYABABX"""
assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
# Test 3)
snake_case_ : Optional[int] = """AAAB"""
snake_case_ : Optional[int] = """ABAAAAAB"""
assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
# Test 4)
snake_case_ : Tuple = """abcdabcy"""
snake_case_ : List[str] = """abcxabcdabxabcdabcdabcy"""
assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
# Test 5)
snake_case_ : Union[str, Any] = """Lü"""
snake_case_ : Tuple = """Lüsai"""
assert rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
snake_case_ : str = """Lue"""
assert not rabin_karp(lowerCamelCase_ , lowerCamelCase_ )
print("""Success.""" )
if __name__ == "__main__":
test_rabin_karp()
| 369 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
__A : Dict = 'src/transformers'
# Matches is_xxx_available()
__A : Dict = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__A : Any = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__A : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__A : Optional[int] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__A : Union[str, Any] = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__A : int = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__A : int = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__A : List[Any] = re.compile(r'^\s*try:')
# Catches a line with else:
__A : Any = re.compile(r'^\s*else:')
def UpperCAmelCase ( lowerCamelCase_ :str ):
'''simple docstring'''
if _re_test_backend.search(lowerCamelCase_ ) is None:
return None
snake_case_ : Tuple = [b[0] for b in _re_backend.findall(lowerCamelCase_ )]
backends.sort()
return "_and_".join(lowerCamelCase_ )
def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ):
'''simple docstring'''
with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : str = f.readlines()
snake_case_ : List[Any] = 0
while line_index < len(lowerCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ : Union[str, Any] = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ : str = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCamelCase_ ):
snake_case_ : Optional[int] = _re_one_line_import_struct.search(lowerCamelCase_ ).groups()[0]
snake_case_ : Union[str, Any] = re.findall(R"""\[([^\]]+)\]""" , lowerCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ : Any = _re_import_struct_key_value.search(lowerCamelCase_ )
if single_line_import_search is not None:
snake_case_ : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ : Union[str, Any] = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ : List[str] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : Tuple = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ : List[Any] = lines[line_index]
if _re_import_struct_add_one.search(lowerCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCamelCase_ ) is not None:
snake_case_ : Optional[int] = _re_import_struct_add_many.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : List[str] = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_between_brackets.search(lowerCamelCase_ ) is not None:
snake_case_ : List[str] = _re_between_brackets.search(lowerCamelCase_ ).groups()[0].split(""", """ )
snake_case_ : Any = [obj[1:-1] for obj in imports if len(lowerCamelCase_ ) > 0]
objects.extend(lowerCamelCase_ )
elif _re_quote_object.search(lowerCamelCase_ ) is not None:
objects.append(_re_quote_object.search(lowerCamelCase_ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ : List[Any] = []
while (
line_index < len(lowerCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ : Union[str, Any] = lines[line_index]
snake_case_ : Union[str, Any] = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ : Dict = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : str = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Any = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ : Dict = lines[line_index]
snake_case_ : Any = _re_import.search(lowerCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[str] ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ :Union[str, Any] ):
return [k for k, v in collections.Counter(lowerCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ : Optional[int] = []
for key in import_dict_objects.keys():
snake_case_ : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
snake_case_ : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ : str = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Tuple = []
for root, _, files in os.walk(lowerCamelCase_ ):
if "__init__.py" in files:
snake_case_ : Any = os.path.join(lowerCamelCase_ , """__init__.py""" )
snake_case_ : Dict = parse_init(lowerCamelCase_ )
if objects is not None:
snake_case_ : Any = analyze_results(*lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(lowerCamelCase_ ) )
if len(lowerCamelCase_ ) > 0:
raise ValueError("""\n\n""".join(lowerCamelCase_ ) )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Union[str, Any] = []
for path, directories, files in os.walk(lowerCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(lowerCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ : Tuple = str((Path(lowerCamelCase_ ) / folder).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(os.path.sep , """.""" )
submodules.append(lowerCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ : Dict = str((Path(lowerCamelCase_ ) / fname).relative_to(lowerCamelCase_ ) )
snake_case_ : List[str] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(lowerCamelCase_ )
return submodules
__A : List[Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def UpperCAmelCase ( ):
'''simple docstring'''
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
snake_case_ : Union[str, Any] = direct_transformers_import(lowerCamelCase_ )
snake_case_ : List[str] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCamelCase_ , """__init__.py""" ) , """r""" ) as f:
snake_case_ : str = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase_ ) ) )
snake_case_ : Dict = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCamelCase_ ) > 0:
snake_case_ : str = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules() | 8 | 0 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __UpperCamelCase ( lowercase__ ):
lowercase : Optional[Any] = 'char'
lowercase : Optional[Any] = 'bpe'
lowercase : List[str] = 'wp'
__A : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __UpperCamelCase ( lowercase__ ):
lowercase : Tuple = ['image_processor', 'char_tokenizer']
lowercase : Optional[int] = 'ViTImageProcessor'
lowercase : Tuple = 'MgpstrTokenizer'
def __init__( self :Dict ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :str=None ,**_UpperCamelCase :Union[str, Any] ):
snake_case_ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" ,_UpperCamelCase ,)
snake_case_ : Any = kwargs.pop("""feature_extractor""" )
snake_case_ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
snake_case_ : List[Any] = tokenizer
snake_case_ : List[str] = AutoTokenizer.from_pretrained("""gpt2""" )
snake_case_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(_UpperCamelCase ,_UpperCamelCase )
def __call__( self :str ,_UpperCamelCase :Any=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :str=None ,**_UpperCamelCase :Optional[int] ):
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
snake_case_ : Union[str, Any] = self.image_processor(_UpperCamelCase ,return_tensors=_UpperCamelCase ,**_UpperCamelCase )
if text is not None:
snake_case_ : Union[str, Any] = self.char_tokenizer(_UpperCamelCase ,return_tensors=_UpperCamelCase ,**_UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case_ : Optional[int] = encodings["""input_ids"""]
return inputs
def a__ ( self :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ):
snake_case_ : List[Any] = sequences
snake_case_ : Any = char_preds.size(0 )
snake_case_ : int = self._decode_helper(_UpperCamelCase ,"""char""" )
snake_case_ : Dict = self._decode_helper(_UpperCamelCase ,"""bpe""" )
snake_case_ : Optional[Any] = self._decode_helper(_UpperCamelCase ,"""wp""" )
snake_case_ : Optional[int] = []
snake_case_ : Optional[Any] = []
for i in range(_UpperCamelCase ):
snake_case_ : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]]
snake_case_ : Any = [char_strs[i], bpe_strs[i], wp_strs[i]]
snake_case_ : str = scores.index(max(_UpperCamelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
snake_case_ : Any = {}
snake_case_ : Tuple = final_strs
snake_case_ : List[Any] = final_scores
snake_case_ : Any = char_strs
snake_case_ : int = bpe_strs
snake_case_ : Union[str, Any] = wp_strs
return out
def a__ ( self :Union[str, Any] ,_UpperCamelCase :str ,_UpperCamelCase :Union[str, Any] ):
if format == DecodeType.CHARACTER:
snake_case_ : Optional[Any] = self.char_decode
snake_case_ : int = 1
snake_case_ : str = """[s]"""
elif format == DecodeType.BPE:
snake_case_ : Optional[int] = self.bpe_decode
snake_case_ : Optional[Any] = 2
snake_case_ : List[str] = """#"""
elif format == DecodeType.WORDPIECE:
snake_case_ : Optional[Any] = self.wp_decode
snake_case_ : List[Any] = 1_0_2
snake_case_ : Dict = """[SEP]"""
else:
raise ValueError(F'''Format {format} is not supported.''' )
snake_case_ : List[Any] = [], []
snake_case_ : Tuple = pred_logits.size(0 )
snake_case_ : Union[str, Any] = pred_logits.size(1 )
snake_case_ : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=_UpperCamelCase ,sorted=_UpperCamelCase )
snake_case_ : Any = preds_index.view(-1 ,_UpperCamelCase )[:, 1:]
snake_case_ : List[str] = decoder(_UpperCamelCase )
snake_case_ : Tuple = torch.nn.functional.softmax(_UpperCamelCase ,dim=2 ).max(dim=2 )
snake_case_ : Optional[int] = preds_max_prob[:, 1:]
for index in range(_UpperCamelCase ):
snake_case_ : Any = preds_str[index].find(_UpperCamelCase )
snake_case_ : Tuple = preds_str[index][:pred_eos]
snake_case_ : Optional[Any] = preds_index[index].cpu().tolist()
snake_case_ : Union[str, Any] = pred_index.index(_UpperCamelCase ) if eos_token in pred_index else -1
snake_case_ : Optional[Any] = preds_max_prob[index][: pred_eos_index + 1]
snake_case_ : Optional[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_UpperCamelCase )
conf_scores.append(_UpperCamelCase )
return dec_strs, conf_scores
def a__ ( self :Any ,_UpperCamelCase :List[Any] ):
snake_case_ : List[Any] = [seq.replace(""" """ ,"""""" ) for seq in self.char_tokenizer.batch_decode(_UpperCamelCase )]
return decode_strs
def a__ ( self :List[str] ,_UpperCamelCase :Dict ):
return self.bpe_tokenizer.batch_decode(_UpperCamelCase )
def a__ ( self :str ,_UpperCamelCase :List[Any] ):
snake_case_ : int = [seq.replace(""" """ ,"""""" ) for seq in self.wp_tokenizer.batch_decode(_UpperCamelCase )]
return decode_strs | 370 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self :List[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any]=7 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Any=1_8 ,_UpperCamelCase :Optional[Any]=3_0 ,_UpperCamelCase :List[str]=4_0_0 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :List[Any]=True ,):
snake_case_ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case_ : Union[str, Any] = parent
snake_case_ : str = batch_size
snake_case_ : List[Any] = num_channels
snake_case_ : Tuple = image_size
snake_case_ : int = min_resolution
snake_case_ : int = max_resolution
snake_case_ : Union[str, Any] = do_resize
snake_case_ : Optional[Any] = size
snake_case_ : Any = apply_ocr
def a__ ( self :Union[str, Any] ):
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __UpperCamelCase ( lowercase__ , unittest.TestCase ):
lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self :List[Any] ):
snake_case_ : Union[str, Any] = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self :int ):
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self :Any ):
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""size""" ) )
self.assertTrue(hasattr(_UpperCamelCase ,"""apply_ocr""" ) )
def a__ ( self :int ):
snake_case_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 1_8, """width""": 1_8} )
snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 )
self.assertEqual(image_processor.size ,{"""height""": 4_2, """width""": 4_2} )
def a__ ( self :Optional[Any] ):
pass
def a__ ( self :Union[str, Any] ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,Image.Image )
# Test not batched input
snake_case_ : List[str] = image_processing(image_inputs[0] ,return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
self.assertIsInstance(encoding.words ,_UpperCamelCase )
self.assertIsInstance(encoding.boxes ,_UpperCamelCase )
# Test batched
snake_case_ : List[Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Tuple ):
# Initialize image_processing
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,numpify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,np.ndarray )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Any = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :Optional[Any] ):
# Initialize image_processing
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_UpperCamelCase ,torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase ,torch.Tensor )
# Test not batched input
snake_case_ : Tuple = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
# Test batched
snake_case_ : Union[str, Any] = image_processing(_UpperCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) ,)
def a__ ( self :List[Any] ):
# with apply_OCR = True
snake_case_ : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
snake_case_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" )
snake_case_ : str = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
snake_case_ : Dict = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) )
self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231
snake_case_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words ,_UpperCamelCase )
self.assertListEqual(encoding.boxes ,_UpperCamelCase )
# with apply_OCR = False
snake_case_ : Dict = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase )
snake_case_ : Optional[int] = image_processing(_UpperCamelCase ,return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape ,(1, 3, 2_2_4, 2_2_4) ) | 8 | 0 |
'''simple docstring'''
class __UpperCamelCase :
def __init__( self :Any ,_UpperCamelCase :int ):
snake_case_ : List[str] = n
snake_case_ : List[Any] = [None] * self.n
snake_case_ : Optional[Any] = 0 # index of the first element
snake_case_ : Union[str, Any] = 0
snake_case_ : int = 0
def __len__( self :Union[str, Any] ):
return self.size
def a__ ( self :Optional[int] ):
return self.size == 0
def a__ ( self :str ):
return False if self.is_empty() else self.array[self.front]
def a__ ( self :List[str] ,_UpperCamelCase :List[str] ):
if self.size >= self.n:
raise Exception("""QUEUE IS FULL""" )
snake_case_ : Tuple = data
snake_case_ : List[str] = (self.rear + 1) % self.n
self.size += 1
return self
def a__ ( self :Union[str, Any] ):
if self.size == 0:
raise Exception("""UNDERFLOW""" )
snake_case_ : Union[str, Any] = self.array[self.front]
snake_case_ : Optional[Any] = None
snake_case_ : Optional[Any] = (self.front + 1) % self.n
self.size -= 1
return temp | 371 |
'''simple docstring'''
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : List[Any] = generate_pascal_triangle(lowerCamelCase_ )
for row_idx in range(lowerCamelCase_ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=""" """ )
else:
print(triangle[row_idx][col_idx] , end="""""" )
print()
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = []
for current_row_idx in range(lowerCamelCase_ ):
snake_case_ : List[str] = populate_current_row(lowerCamelCase_ , lowerCamelCase_ )
triangle.append(lowerCamelCase_ )
return triangle
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :int ):
'''simple docstring'''
snake_case_ : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
snake_case_ , snake_case_ : Optional[Any] = 1, 1
for current_col_idx in range(1 , lowerCamelCase_ ):
calculate_current_element(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
return current_row
def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ):
'''simple docstring'''
snake_case_ : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1]
snake_case_ : List[Any] = triangle[current_row_idx - 1][current_col_idx]
snake_case_ : Optional[int] = above_to_left_elt + above_to_right_elt
def UpperCAmelCase ( lowerCamelCase_ :int ):
'''simple docstring'''
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ):
raise TypeError("""The input value of 'num_rows' should be 'int'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of 'num_rows' should be greater than or equal to 0""" )
snake_case_ : list[list[int]] = [[1]]
for row_index in range(1 , lowerCamelCase_ ):
snake_case_ : Optional[Any] = [0] + result[-1] + [0]
snake_case_ : Dict = row_index + 1
# Calculate the number of distinct elements in a row
snake_case_ : Any = sum(divmod(lowerCamelCase_ , 2 ) )
snake_case_ : Tuple = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
snake_case_ : Optional[int] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
snake_case_ : str = row_first_half + row_second_half
result.append(lowerCamelCase_ )
return result
def UpperCAmelCase ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCamelCase_ :Callable , lowerCamelCase_ :int ) -> None:
snake_case_ : Dict = F'''{func.__name__}({value})'''
snake_case_ : Dict = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 8 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : List[str] = logging.get_logger(__name__)
_UpperCAmelCase : int = {
"""facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : int = 'wav2vec2'
def __init__(self , __lowercase=32 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=1_28 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.0_5 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=3_20 , __lowercase=2 , __lowercase=0.1 , __lowercase=1_00 , __lowercase=2_56 , __lowercase=2_56 , __lowercase=0.1 , __lowercase="sum" , __lowercase=False , __lowercase=False , __lowercase=2_56 , __lowercase=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=5_12 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=False , __lowercase=3 , __lowercase=2 , __lowercase=3 , __lowercase=None , __lowercase=None , **__lowercase , ):
super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase )
__lowerCAmelCase = hidden_size
__lowerCAmelCase = feat_extract_norm
__lowerCAmelCase = feat_extract_activation
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = conv_bias
__lowerCAmelCase = num_conv_pos_embeddings
__lowerCAmelCase = num_conv_pos_embedding_groups
__lowerCAmelCase = len(self.conv_dim )
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_dropout
__lowerCAmelCase = attention_dropout
__lowerCAmelCase = activation_dropout
__lowerCAmelCase = feat_proj_dropout
__lowerCAmelCase = final_dropout
__lowerCAmelCase = layerdrop
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = initializer_range
__lowerCAmelCase = vocab_size
__lowerCAmelCase = do_stable_layer_norm
__lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCAmelCase = apply_spec_augment
__lowerCAmelCase = mask_time_prob
__lowerCAmelCase = mask_time_length
__lowerCAmelCase = mask_time_min_masks
__lowerCAmelCase = mask_feature_prob
__lowerCAmelCase = mask_feature_length
__lowerCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__lowerCAmelCase = num_codevectors_per_group
__lowerCAmelCase = num_codevector_groups
__lowerCAmelCase = contrastive_logits_temperature
__lowerCAmelCase = feat_quantizer_dropout
__lowerCAmelCase = num_negatives
__lowerCAmelCase = codevector_dim
__lowerCAmelCase = proj_codevector_dim
__lowerCAmelCase = diversity_loss_weight
# ctc loss
__lowerCAmelCase = ctc_loss_reduction
__lowerCAmelCase = ctc_zero_infinity
# adapter
__lowerCAmelCase = add_adapter
__lowerCAmelCase = adapter_kernel_size
__lowerCAmelCase = adapter_stride
__lowerCAmelCase = num_adapter_layers
__lowerCAmelCase = output_hidden_size or hidden_size
__lowerCAmelCase = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = list(__lowercase )
__lowerCAmelCase = xvector_output_dim
@property
def _snake_case (self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 9 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 1 |
'''simple docstring'''
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
_UpperCAmelCase : Tuple = """\
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
"""
_UpperCAmelCase : Tuple = """\
IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
"""
_UpperCAmelCase : Union[str, Any] = """
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
predictions: list of predictions to score (as int64),
except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).
references: list of ground truth labels corresponding to the predictions (as int64),
except for 'cvit-mkb-clsr' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
\"accuracy\": Accuracy
\"f1\": F1 score
\"precision\": Precision@10
Examples:
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')
>>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'precision@10': 1.0}
"""
def __magic_name__( lowerCamelCase, lowerCamelCase):
return float((preds == labels).mean())
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = simple_accuracy(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = float(fa_score(y_true=lowerCamelCase, y_pred=lowerCamelCase))
return {
"accuracy": acc,
"f1": fa,
}
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = en_sentvecs.shape[0]
# mean centering
__lowerCAmelCase = en_sentvecs - np.mean(lowerCamelCase, axis=0)
__lowerCAmelCase = in_sentvecs - np.mean(lowerCamelCase, axis=0)
__lowerCAmelCase = cdist(lowerCamelCase, lowerCamelCase, '''cosine''')
__lowerCAmelCase = np.array(range(lowerCamelCase))
__lowerCAmelCase = sim.argsort(axis=1)[:, :1_0]
__lowerCAmelCase = np.any(preds == actual[:, None], axis=1)
return float(matches.mean())
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
'''references''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , )
def _snake_case (self , __lowercase , __lowercase ):
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(__lowercase , __lowercase )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(__lowercase , __lowercase )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
| 9 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 1 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 1 |
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
_UpperCAmelCase : List[Any] = imread(r"""digital_image_processing/image_data/lena_small.jpg""")
_UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
def __magic_name__( ):
__lowerCAmelCase = cn.convert_to_negative(lowerCamelCase)
# assert negative_img array for at least one True
assert negative_img.any()
def __magic_name__( ):
with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img:
# Work around assertion for response
assert str(cc.change_contrast(lowerCamelCase, 1_1_0)).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''')
def __magic_name__( ):
__lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4)
# Assert ambiguous array
assert resp.all()
def __magic_name__( ):
__lowerCAmelCase = imread('''digital_image_processing/image_data/lena_small.jpg''', 0)
# assert ambiguous array for all == True
assert canny_img.all()
__lowerCAmelCase = canny.canny(lowerCamelCase)
# assert canny array for at least one True
assert canny_array.any()
def __magic_name__( ):
assert gg.gaussian_filter(lowerCamelCase, 5, sigma=0.9).all()
def __magic_name__( ):
# laplace diagonals
__lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
__lowerCAmelCase = conv.img_convolve(lowerCamelCase, lowerCamelCase).astype(lowerCamelCase)
assert res.any()
def __magic_name__( ):
assert med.median_filter(lowerCamelCase, 3).any()
def __magic_name__( ):
__lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCamelCase)
assert grad.any() and theta.any()
def __magic_name__( ):
__lowerCAmelCase = sp.make_sepia(lowerCamelCase, 2_0)
assert sepia.all()
def __magic_name__( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg"):
__lowerCAmelCase = bs.Burkes(imread(lowerCamelCase, 1), 1_2_0)
burkes.process()
assert burkes.output_img.any()
def __magic_name__( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg", ):
__lowerCAmelCase = rs.NearestNeighbour(imread(lowerCamelCase, 1), 4_0_0, 2_0_0)
nn.process()
assert nn.output.any()
def __magic_name__( ):
__lowerCAmelCase = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
__lowerCAmelCase = imread(lowerCamelCase, 0)
# Test for get_neighbors_pixel function() return not None
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = image[x_coordinate][y_coordinate]
__lowerCAmelCase = lbp.get_neighbors_pixel(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0, image.shape[0]):
for j in range(0, image.shape[1]):
__lowerCAmelCase = lbp.local_binary_value(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert lbp_image.any()
| 9 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 1 |
'''simple docstring'''
def __magic_name__( ):
return [
a * b * (1_0_0_0 - a - b)
for a in range(1, 9_9_9)
for b in range(lowerCamelCase, 9_9_9)
if (a * a + b * b == (1_0_0_0 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 9 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 1 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
if not isinstance(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(lowerCamelCase)
if number < 0:
return False
__lowerCAmelCase = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ):
__lowerCAmelCase , __lowerCAmelCase = coefficient_matrix.shape
__lowerCAmelCase , __lowerCAmelCase = constant_matrix.shape
if rowsa != colsa:
__lowerCAmelCase = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase)
if colsa != 1:
__lowerCAmelCase = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase)
if rowsa != rowsa:
__lowerCAmelCase = (
'''Coefficient and constant matrices dimensions must be nxn and nx1 but '''
F"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase)
if len(lowerCamelCase) != rowsa:
__lowerCAmelCase = (
'''Number of initial values must be equal to number of rows in coefficient '''
F"""matrix but received {len(lowerCamelCase)} and {rowsa}"""
)
raise ValueError(lowerCamelCase)
if iterations <= 0:
raise ValueError('''Iterations must be at least 1''')
__lowerCAmelCase = np.concatenate(
(coefficient_matrix, constant_matrix), axis=1)
__lowerCAmelCase , __lowerCAmelCase = table.shape
strictly_diagonally_dominant(lowerCamelCase)
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase):
__lowerCAmelCase = []
for row in range(lowerCamelCase):
__lowerCAmelCase = 0
for col in range(lowerCamelCase):
if col == row:
__lowerCAmelCase = table[row][col]
elif col == cols - 1:
__lowerCAmelCase = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__lowerCAmelCase = (temp + val) / denom
new_val.append(lowerCamelCase)
__lowerCAmelCase = new_val
return [float(lowerCamelCase) for i in new_val]
def __magic_name__( lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase = table.shape
__lowerCAmelCase = True
for i in range(0, lowerCamelCase):
__lowerCAmelCase = 0
for j in range(0, cols - 1):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError('''Coefficient matrix is not strictly diagonally dominant''')
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 1 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase=0.0 , __lowercase = None , __lowercase = "geglu" , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = "layer_norm" , __lowercase = False , ):
super().__init__()
__lowerCAmelCase = only_cross_attention
__lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero'''
__lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm'''
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"""
F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
__lowerCAmelCase = AdaLayerNorm(__lowercase , __lowercase )
elif self.use_ada_layer_norm_zero:
__lowerCAmelCase = AdaLayerNormZero(__lowercase , __lowercase )
else:
__lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase )
__lowerCAmelCase = Attention(
query_dim=__lowercase , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowercase , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
__lowerCAmelCase = (
AdaLayerNorm(__lowercase , __lowercase )
if self.use_ada_layer_norm
else nn.LayerNorm(__lowercase , elementwise_affine=__lowercase )
)
__lowerCAmelCase = Attention(
query_dim=__lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , upcast_attention=__lowercase , ) # is self-attn if encoder_hidden_states is none
else:
__lowerCAmelCase = None
__lowerCAmelCase = None
# 3. Feed-forward
__lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase )
__lowerCAmelCase = FeedForward(__lowercase , dropout=__lowercase , activation_fn=__lowercase , final_dropout=__lowercase )
# let chunk size default to None
__lowerCAmelCase = None
__lowerCAmelCase = 0
def _snake_case (self , __lowercase , __lowercase ):
# Sets chunk feed-forward
__lowerCAmelCase = chunk_size
__lowerCAmelCase = dim
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
__lowerCAmelCase = self.norma(__lowercase , __lowercase )
elif self.use_ada_layer_norm_zero:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma(
__lowercase , __lowercase , __lowercase , hidden_dtype=hidden_states.dtype )
else:
__lowerCAmelCase = self.norma(__lowercase )
__lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {}
__lowerCAmelCase = self.attna(
__lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowercase , **__lowercase , )
if self.use_ada_layer_norm_zero:
__lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output
__lowerCAmelCase = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
__lowerCAmelCase = (
self.norma(__lowercase , __lowercase ) if self.use_ada_layer_norm else self.norma(__lowercase )
)
__lowerCAmelCase = self.attna(
__lowercase , encoder_hidden_states=__lowercase , attention_mask=__lowercase , **__lowercase , )
__lowerCAmelCase = attn_output + hidden_states
# 3. Feed-forward
__lowerCAmelCase = self.norma(__lowercase )
if self.use_ada_layer_norm_zero:
__lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" )
__lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
__lowerCAmelCase = torch.cat(
[self.ff(__lowercase ) for hid_slice in norm_hidden_states.chunk(__lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
__lowerCAmelCase = self.ff(__lowercase )
if self.use_ada_layer_norm_zero:
__lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output
__lowerCAmelCase = ff_output + hidden_states
return hidden_states
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = None , __lowercase = 4 , __lowercase = 0.0 , __lowercase = "geglu" , __lowercase = False , ):
super().__init__()
__lowerCAmelCase = int(dim * mult )
__lowerCAmelCase = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
__lowerCAmelCase = GELU(__lowercase , __lowercase )
if activation_fn == "gelu-approximate":
__lowerCAmelCase = GELU(__lowercase , __lowercase , approximate='''tanh''' )
elif activation_fn == "geglu":
__lowerCAmelCase = GEGLU(__lowercase , __lowercase )
elif activation_fn == "geglu-approximate":
__lowerCAmelCase = ApproximateGELU(__lowercase , __lowercase )
__lowerCAmelCase = nn.ModuleList([] )
# project in
self.net.append(__lowercase )
# project dropout
self.net.append(nn.Dropout(__lowercase ) )
# project out
self.net.append(nn.Linear(__lowercase , __lowercase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__lowercase ) )
def _snake_case (self , __lowercase ):
for module in self.net:
__lowerCAmelCase = module(__lowercase )
return hidden_states
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase = "none" ):
super().__init__()
__lowerCAmelCase = nn.Linear(__lowercase , __lowercase )
__lowerCAmelCase = approximate
def _snake_case (self , __lowercase ):
if gate.device.type != "mps":
return F.gelu(__lowercase , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.proj(__lowercase )
__lowerCAmelCase = self.gelu(__lowercase )
return hidden_states
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
super().__init__()
__lowerCAmelCase = nn.Linear(__lowercase , dim_out * 2 )
def _snake_case (self , __lowercase ):
if gate.device.type != "mps":
return F.gelu(__lowercase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = self.proj(__lowercase ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
super().__init__()
__lowerCAmelCase = nn.Linear(__lowercase , __lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.proj(__lowercase )
return x * torch.sigmoid(1.7_0_2 * x )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
super().__init__()
__lowerCAmelCase = nn.Embedding(__lowercase , __lowercase )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Linear(__lowercase , embedding_dim * 2 )
__lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase ) ) )
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__lowercase , 2 )
__lowerCAmelCase = self.norm(__lowercase ) * (1 + scale) + shift
return x
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase ):
super().__init__()
__lowerCAmelCase = CombinedTimestepLabelEmbeddings(__lowercase , __lowercase )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Linear(__lowercase , 6 * embedding_dim , bias=__lowercase )
__lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase , eps=1e-6 )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=None ):
__lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase , __lowercase , hidden_dtype=__lowercase ) ) )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6 , dim=1 )
__lowerCAmelCase = self.norm(__lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = 1e-5 ):
super().__init__()
__lowerCAmelCase = num_groups
__lowerCAmelCase = eps
if act_fn is None:
__lowerCAmelCase = None
else:
__lowerCAmelCase = get_activation(__lowercase )
__lowerCAmelCase = nn.Linear(__lowercase , out_dim * 2 )
def _snake_case (self , __lowercase , __lowercase ):
if self.act:
__lowerCAmelCase = self.act(__lowercase )
__lowerCAmelCase = self.linear(__lowercase )
__lowerCAmelCase = emb[:, :, None, None]
__lowerCAmelCase , __lowerCAmelCase = emb.chunk(2 , dim=1 )
__lowerCAmelCase = F.group_norm(__lowercase , self.num_groups , eps=self.eps )
__lowerCAmelCase = x * (1 + scale) + shift
return x
| 9 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 1 |
'''simple docstring'''
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {}
__lowerCAmelCase = job['''started_at''']
__lowerCAmelCase = job['''completed_at''']
__lowerCAmelCase = date_parser.parse(lowerCamelCase)
__lowerCAmelCase = date_parser.parse(lowerCamelCase)
__lowerCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0)
__lowerCAmelCase = start
__lowerCAmelCase = end
__lowerCAmelCase = duration_in_min
return job_info
def __magic_name__( lowerCamelCase, lowerCamelCase=None):
__lowerCAmelCase = None
if token is not None:
__lowerCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""}
__lowerCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
__lowerCAmelCase = requests.get(lowerCamelCase, headers=lowerCamelCase).json()
__lowerCAmelCase = {}
try:
job_time.update({job['''name''']: extract_time_from_single_job(lowerCamelCase) for job in result['''jobs''']})
__lowerCAmelCase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0)
for i in range(lowerCamelCase):
__lowerCAmelCase = requests.get(url + F"""&page={i + 2}""", headers=lowerCamelCase).json()
job_time.update({job['''name''']: extract_time_from_single_job(lowerCamelCase) for job in result['''jobs''']})
return job_time
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""")
return {}
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
_UpperCAmelCase : Tuple = parser.parse_args()
_UpperCAmelCase : int = get_job_time(args.workflow_run_id)
_UpperCAmelCase : Union[str, Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f"""{k}: {v['duration']}""")
| 9 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def __magic_name__( lowerCamelCase = 1_0_0_0_0_0_0, lowerCamelCase = 1_0):
__lowerCAmelCase = defaultdict(lowerCamelCase)
for outer_width in range(3, (t_limit // 4) + 2):
if outer_width * outer_width > t_limit:
__lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit)), 1)
else:
__lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowerCamelCase, outer_width - 1, 2):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0)
if __name__ == "__main__":
print(f"""{solution() = }""")
| 9 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : Any = ['flax', 'transformers']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : List[Any] = ['flax', 'transformers']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['flax', 'transformers']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : Dict = ['flax', 'transformers']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''flax''', '''transformers'''] )
| 9 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_UpperCAmelCase : List[str] = 1_6
_UpperCAmelCase : int = 3_2
def __magic_name__( lowerCamelCase, lowerCamelCase = 1_6):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''')
def tokenize_function(lowerCamelCase):
# max_length=None => use the model max length (it's actually the default)
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__lowerCAmelCase = datasets.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
# On TPU it's best to pad everything to the same length or training will be very slow.
__lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__lowerCAmelCase = 1_6
elif accelerator.mixed_precision != "no":
__lowerCAmelCase = 8
else:
__lowerCAmelCase = None
return tokenizer.pad(
lowerCamelCase, padding='''longest''', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='''pt''', )
# Instantiate dataloaders.
__lowerCAmelCase = DataLoader(
tokenized_datasets['''train'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase)
__lowerCAmelCase = DataLoader(
tokenized_datasets['''validation'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_UpperCAmelCase : str = mocked_dataloaders # noqa: F811
def __magic_name__( lowerCamelCase, lowerCamelCase):
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowerCamelCase) == "1":
__lowerCAmelCase = 2
# Initialize accelerator
__lowerCAmelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision)
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCAmelCase = config['''lr''']
__lowerCAmelCase = int(config['''num_epochs'''])
__lowerCAmelCase = int(config['''seed'''])
__lowerCAmelCase = int(config['''batch_size'''])
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
# If the batch size is too big we use gradient accumulation
__lowerCAmelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE
__lowerCAmelCase = MAX_GPU_BATCH_SIZE
set_seed(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCamelCase, lowerCamelCase)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowerCamelCase)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__lowerCAmelCase = model.to(accelerator.device)
# Instantiate optimizer
__lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCamelCase)
# Instantiate scheduler
__lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase, num_warmup_steps=1_0_0, num_training_steps=(len(lowerCamelCase) * num_epochs) // gradient_accumulation_steps, )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# Now we train the model
for epoch in range(lowerCamelCase):
model.train()
for step, batch in enumerate(lowerCamelCase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.loss
__lowerCAmelCase = loss / gradient_accumulation_steps
accelerator.backward(lowerCamelCase)
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
__lowerCAmelCase = 0
for step, batch in enumerate(lowerCamelCase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather((predictions, batch['''labels''']))
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(lowerCamelCase) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
__lowerCAmelCase = predictions[: len(eval_dataloader.dataset) - samples_seen]
__lowerCAmelCase = references[: len(eval_dataloader.dataset) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=lowerCamelCase, references=lowerCamelCase, )
__lowerCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""", lowerCamelCase)
def __magic_name__( ):
__lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''')
parser.add_argument(
'''--mixed_precision''', type=lowerCamelCase, default=lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''')
__lowerCAmelCase = parser.parse_args()
__lowerCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(lowerCamelCase, lowerCamelCase)
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 1 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = len(lowerCamelCase)
for i in range(1, lowerCamelCase):
__lowerCAmelCase = collection[i]
__lowerCAmelCase = 0
__lowerCAmelCase = i - 1
while low <= high:
__lowerCAmelCase = (low + high) // 2
if val < collection[mid]:
__lowerCAmelCase = mid - 1
else:
__lowerCAmelCase = mid + 1
for j in range(lowerCamelCase, lowerCamelCase, -1):
__lowerCAmelCase = collection[j - 1]
__lowerCAmelCase = val
return collection
if __name__ == "__main__":
_UpperCAmelCase : Any = input("""Enter numbers separated by a comma:\n""").strip()
_UpperCAmelCase : int = [int(item) for item in user_input.split(""",""")]
print(binary_insertion_sort(unsorted))
| 9 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Any = {
"""microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""",
}
class a__ ( __A , __A ):
"""simple docstring"""
__UpperCamelCase : Dict = 'resnet'
__UpperCamelCase : int = ['basic', 'bottleneck']
def __init__(self , __lowercase=3 , __lowercase=64 , __lowercase=[2_56, 5_12, 10_24, 20_48] , __lowercase=[3, 4, 6, 3] , __lowercase="bottleneck" , __lowercase="relu" , __lowercase=False , __lowercase=None , __lowercase=None , **__lowercase , ):
super().__init__(**__lowercase )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" )
__lowerCAmelCase = num_channels
__lowerCAmelCase = embedding_size
__lowerCAmelCase = hidden_sizes
__lowerCAmelCase = depths
__lowerCAmelCase = layer_type
__lowerCAmelCase = hidden_act
__lowerCAmelCase = downsample_in_first_stage
__lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowercase ) + 1 )]
__lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(
out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : List[str] = version.parse('1.11' )
@property
def _snake_case (self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _snake_case (self ):
return 1e-3
| 9 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
_UpperCAmelCase : Optional[Any] = (3, 9, -1_1, 0, 7, 5, 1, -1)
_UpperCAmelCase : Any = (4, 6, 2, 0, 8, 1_0, 3, -2)
@dataclass
class a__ :
"""simple docstring"""
__UpperCamelCase : int
__UpperCamelCase : Node | None
class a__ :
"""simple docstring"""
def __init__(self , __lowercase ):
__lowerCAmelCase = None
for i in sorted(__lowercase , reverse=__lowercase ):
__lowerCAmelCase = Node(__lowercase , self.head )
def __iter__(self ):
__lowerCAmelCase = self.head
while node:
yield node.data
__lowerCAmelCase = node.next_node
def __len__(self ):
return sum(1 for _ in self )
def __str__(self ):
return " -> ".join([str(__lowercase ) for node in self] )
def __magic_name__( lowerCamelCase, lowerCamelCase):
return SortedLinkedList(list(lowerCamelCase) + list(lowerCamelCase))
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : Dict = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 9 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = 10
def _snake_case (self ):
__lowerCAmelCase = [1, 2, 3, 4]
__lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
__lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
__lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase )
self.assertEqual(__lowercase , [] )
def _snake_case (self ):
__lowerCAmelCase = ''''''
__lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase )
self.assertEqual(__lowercase , [] )
self.assertEqual(__lowercase , [] )
def _snake_case (self ):
__lowerCAmelCase = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
__lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase )
__lowerCAmelCase = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(__lowercase , __lowercase )
__lowerCAmelCase = ['''It was the best of times.''']
self.assertEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = torch.tensor([1, 2, 3, 4] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(__lowercase , 0 ).numpy() , expected.numpy() )
def _snake_case (self ):
__lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__lowercase , 23 ).numpy() , expected.numpy() )
def _snake_case (self ):
__lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__lowercase , 1 ).numpy() , expected.numpy() )
def _snake_case (self ):
__lowerCAmelCase = 1_01
__lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] )
__lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__lowerCAmelCase = compute_token_type_ids(__lowercase , __lowercase )
np.testing.assert_array_equal(__lowercase , __lowercase )
| 9 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 1 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase)
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, cache_dir=lowerCamelCase, keep_in_memory=lowerCamelCase).read()
_check_json_dataset(lowerCamelCase, lowerCamelCase)
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCAmelCase = features.copy() if features else default_expected_features
__lowerCAmelCase = (
Features({feature: Value(lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None
)
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase).read()
_check_json_dataset(lowerCamelCase, lowerCamelCase)
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
], )
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
__lowerCAmelCase = features.copy() if features else default_expected_features
__lowerCAmelCase = (
Features({feature: Value(lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None
)
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase).read()
assert isinstance(lowerCamelCase, lowerCamelCase)
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def __magic_name__( lowerCamelCase, lowerCamelCase):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
__lowerCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
__lowerCAmelCase = features.copy()
__lowerCAmelCase = (
Features({feature: Value(lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None
)
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, features=lowerCamelCase, cache_dir=lowerCamelCase).read()
assert isinstance(lowerCamelCase, lowerCamelCase)
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train'''), '''train''', '''test'''])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, cache_dir=lowerCamelCase, split=lowerCamelCase).read()
_check_json_dataset(lowerCamelCase, lowerCamelCase)
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''', [str, list])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
if issubclass(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = jsonl_path
elif issubclass(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [jsonl_path]
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, cache_dir=lowerCamelCase).read()
_check_json_dataset(lowerCamelCase, lowerCamelCase)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=("train",)):
assert isinstance(lowerCamelCase, lowerCamelCase)
for split in splits:
__lowerCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCAmelCase = JsonDatasetReader({'''train''': jsonl_path}, cache_dir=lowerCamelCase, keep_in_memory=lowerCamelCase).read()
_check_json_datasetdict(lowerCamelCase, lowerCamelCase)
@pytest.mark.parametrize(
'''features''', [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
], )
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCAmelCase = features.copy() if features else default_expected_features
__lowerCAmelCase = (
Features({feature: Value(lowerCamelCase) for feature, dtype in features.items()}) if features is not None else None
)
__lowerCAmelCase = JsonDatasetReader({'''train''': jsonl_path}, features=lowerCamelCase, cache_dir=lowerCamelCase).read()
_check_json_datasetdict(lowerCamelCase, lowerCamelCase)
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train'''), '''train''', '''test'''])
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
if split:
__lowerCAmelCase = {split: jsonl_path}
else:
__lowerCAmelCase = '''train'''
__lowerCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path}
__lowerCAmelCase = tmp_path / '''cache'''
__lowerCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
__lowerCAmelCase = JsonDatasetReader(lowerCamelCase, cache_dir=lowerCamelCase).read()
_check_json_datasetdict(lowerCamelCase, lowerCamelCase, splits=list(path.keys()))
assert all(dataset[split].split == split for split in path.keys())
def __magic_name__( lowerCamelCase):
return json.load(lowerCamelCase)
def __magic_name__( lowerCamelCase):
return [json.loads(lowerCamelCase) for line in buffer]
class a__ :
"""simple docstring"""
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase ).write()
buffer.seek(0 )
__lowerCAmelCase = load_json_function(__lowercase )
assert isinstance(__lowercase , __lowercase )
assert isinstance(exported_content[0] , __lowercase )
assert len(__lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , orient=__lowercase ).write()
buffer.seek(0 )
__lowerCAmelCase = load_json(__lowercase )
assert isinstance(__lowercase , __lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__lowercase ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def _snake_case (self , __lowercase , __lowercase , __lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , num_proc=2 ).write()
buffer.seek(0 )
__lowerCAmelCase = load_json_function(__lowercase )
assert isinstance(__lowercase , __lowercase )
assert isinstance(exported_content[0] , __lowercase )
assert len(__lowercase ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__lowercase , __lowercase , lines=__lowercase , orient=__lowercase , num_proc=2 ).write()
buffer.seek(0 )
__lowerCAmelCase = load_json(__lowercase )
assert isinstance(__lowercase , __lowercase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__lowercase ) == 10
def _snake_case (self , __lowercase ):
with pytest.raises(__lowercase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__lowercase , __lowercase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}"""
__lowerCAmelCase = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__lowercase , __lowercase , compression=__lowercase ).write()
with fsspec.open(__lowercase , '''rb''' , compression='''infer''' ) as f:
__lowerCAmelCase = f.read()
with fsspec.open(__lowercase , '''rb''' , compression='''infer''' ) as f:
__lowerCAmelCase = f.read()
assert exported_content == original_content
| 9 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Dict = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Any = [
"""MRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MraForMaskedLM""",
"""MraForMultipleChoice""",
"""MraForQuestionAnswering""",
"""MraForSequenceClassification""",
"""MraForTokenClassification""",
"""MraLayer""",
"""MraModel""",
"""MraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 9 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 | 1 |
'''simple docstring'''
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def __magic_name__( lowerCamelCase):
return getitem, k
def __magic_name__( lowerCamelCase, lowerCamelCase):
return setitem, k, v
def __magic_name__( lowerCamelCase):
return delitem, k
def __magic_name__( lowerCamelCase, lowerCamelCase, *lowerCamelCase):
try:
return fun(lowerCamelCase, *lowerCamelCase), None
except Exception as e:
return None, e
_UpperCAmelCase : Dict = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
_UpperCAmelCase : List[Any] = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
_UpperCAmelCase : Union[str, Any] = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
_UpperCAmelCase : Tuple = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
_UpperCAmelCase : Any = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
_UpperCAmelCase : Optional[Any] = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
'''operations''', (
pytest.param(_add_items, id='''add items'''),
pytest.param(_overwrite_items, id='''overwrite items'''),
pytest.param(_delete_items, id='''delete items'''),
pytest.param(_access_absent_items, id='''access absent items'''),
pytest.param(_add_with_resize_up, id='''add with resize up'''),
pytest.param(_add_with_resize_down, id='''add with resize down'''),
), )
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = HashMap(initial_block_size=4)
__lowerCAmelCase = {}
for _, (fun, *args) in enumerate(lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase)
assert my_res == py_res
assert str(lowerCamelCase) == str(lowerCamelCase)
assert set(lowerCamelCase) == set(lowerCamelCase)
assert len(lowerCamelCase) == len(lowerCamelCase)
assert set(my.items()) == set(py.items())
def __magic_name__( ):
def is_public(lowerCamelCase) -> bool:
return not name.startswith('''_''')
__lowerCAmelCase = {name for name in dir({}) if is_public(lowerCamelCase)}
__lowerCAmelCase = {name for name in dir(HashMap()) if is_public(lowerCamelCase)}
assert dict_public_names > hash_public_names
| 9 |
'''simple docstring'''
from math import sqrt
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' must been an int and positive"
__lowerCAmelCase = True
# 0 and 1 are none primes.
if number <= 1:
__lowerCAmelCase = False
for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__lowerCAmelCase = False
break
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool"
return status
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__lowerCAmelCase = list(range(2, n + 1))
__lowerCAmelCase = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowerCamelCase)):
for j in range(i + 1, len(lowerCamelCase)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__lowerCAmelCase = 0
# filters actual prime numbers.
__lowerCAmelCase = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2"
__lowerCAmelCase = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(lowerCamelCase):
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0"
__lowerCAmelCase = [] # this list will be returns of the function.
# potential prime number factors.
__lowerCAmelCase = 2
__lowerCAmelCase = number
if number == 0 or number == 1:
ans.append(lowerCamelCase)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowerCamelCase):
while quotient != 1:
if is_prime(lowerCamelCase) and (quotient % factor == 0):
ans.append(lowerCamelCase)
quotient /= factor
else:
factor += 1
else:
ans.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = max(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number >= 0
), "'number' bust been an int and >= 0"
__lowerCAmelCase = 0
# prime factorization of 'number'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = min(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 == 0
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int"
assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool"
return number % 2 != 0
def __magic_name__( lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase)
), "'number' must been an int, even and > 2"
__lowerCAmelCase = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__lowerCAmelCase = get_prime_numbers(lowerCamelCase)
__lowerCAmelCase = len(lowerCamelCase)
# run variable for while-loops.
__lowerCAmelCase = 0
__lowerCAmelCase = None
# exit variable. for break up the loops
__lowerCAmelCase = True
while i < len_pn and loop:
__lowerCAmelCase = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__lowerCAmelCase = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (len(lowerCamelCase) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 0
while numbera != 0:
__lowerCAmelCase = numbera % numbera
__lowerCAmelCase = numbera
__lowerCAmelCase = rest
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__lowerCAmelCase = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__lowerCAmelCase = prime_factorization(lowerCamelCase)
__lowerCAmelCase = prime_factorization(lowerCamelCase)
elif numbera == 1 or numbera == 1:
__lowerCAmelCase = []
__lowerCAmelCase = []
__lowerCAmelCase = max(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(max(lowerCamelCase, lowerCamelCase)):
ans *= n
else:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__lowerCAmelCase = prime_fac_a.count(lowerCamelCase)
for _ in range(lowerCamelCase):
ans *= n
done.append(lowerCamelCase)
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int"
__lowerCAmelCase = 0
__lowerCAmelCase = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowerCamelCase):
ans += 1
# precondition
assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime(
lowerCamelCase), "'ans' must been a prime number and from type int"
return ans
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__lowerCAmelCase = p_number_a + 1 # jump to the next number
__lowerCAmelCase = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
while number < p_number_a:
ans.append(lowerCamelCase)
number += 1
# fetch the next prime number.
while not is_prime(lowerCamelCase):
number += 1
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and ans[0] != p_number_a
and ans[len(lowerCamelCase) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1"
__lowerCAmelCase = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(lowerCamelCase)
# precondition
assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)"
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (
number > 1
), "'number' must been an int and >= 1"
__lowerCAmelCase = get_divisors(lowerCamelCase)
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (divisors[0] == 1)
and (divisors[len(lowerCamelCase) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
def __magic_name__( lowerCamelCase, lowerCamelCase):
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and isinstance(lowerCamelCase, lowerCamelCase)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase))
# precondition
assert (
isinstance(lowerCamelCase, lowerCamelCase)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0"
__lowerCAmelCase = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
def __magic_name__( lowerCamelCase):
assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0"
__lowerCAmelCase = 0
__lowerCAmelCase = 1
__lowerCAmelCase = 1 # this will be return
for _ in range(n - 1):
__lowerCAmelCase = ans
ans += fiba
__lowerCAmelCase = tmp
return ans
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCAmelCase : Union[str, Any] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Any = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_UpperCAmelCase : Dict = """true"""
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6):
set_seed(4_2)
__lowerCAmelCase = RegressionModel()
__lowerCAmelCase = deepcopy(lowerCamelCase)
__lowerCAmelCase = RegressionDataset(length=lowerCamelCase)
__lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase)
model.to(accelerator.device)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return model, ddp_model, dataloader
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''')
def tokenize_function(lowerCamelCase):
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
with accelerator.main_process_first():
__lowerCAmelCase = dataset.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
if use_longest:
return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''')
return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''')
return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6)
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase)
__lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase)
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = []
for batch in dataloader:
__lowerCAmelCase , __lowerCAmelCase = batch.values()
with torch.no_grad():
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
__lowerCAmelCase , __lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(lowerCamelCase)
targs.append(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase)
return logits, targs
def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase)
assert (
len(lowerCamelCase) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}"""
def __magic_name__( lowerCamelCase = False, lowerCamelCase = False):
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
__lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase)
# First do baseline
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no''']
model.to(lowerCamelCase)
model.eval()
for batch in dataloader:
batch.to(lowerCamelCase)
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
metric.add_batch(predictions=lowerCamelCase, references=batch['''labels'''])
__lowerCAmelCase = metric.compute()
# Then do distributed
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase = batch['''labels''']
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references))
metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase)
__lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __magic_name__( ):
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""")
test_mrpc(lowerCamelCase, lowerCamelCase)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''')
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase)
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""")
test_torch_metrics(lowerCamelCase, 9_9)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''')
__lowerCAmelCase = Accelerator()
test_torch_metrics(lowerCamelCase, 5_1_2)
accelerator.state._reset_state()
def __magic_name__( lowerCamelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Dict = TransfoXLTokenizer
__UpperCamelCase : Tuple = False
__UpperCamelCase : Optional[Any] = False
def _snake_case (self ):
super().setUp()
__lowerCAmelCase = [
'''<unk>''',
'''[CLS]''',
'''[SEP]''',
'''want''',
'''unwanted''',
'''wa''',
'''un''',
'''running''',
''',''',
'''low''',
'''l''',
]
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _snake_case (self , **__lowercase ):
__lowerCAmelCase = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''<unk> UNwanted , running'''
__lowerCAmelCase = '''<unk> unwanted, running'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowercase )
__lowerCAmelCase = tokenizer.tokenize('''<unk> UNwanted , running''' )
self.assertListEqual(__lowercase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [0, 4, 8, 7] )
def _snake_case (self ):
__lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
def _snake_case (self ):
__lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def _snake_case (self ):
__lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase )
__lowerCAmelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?'''
__lowerCAmelCase = [
'''Hello''',
'''(''',
'''bracket''',
''')''',
'''and''',
'''side''',
'''@-@''',
'''scrolled''',
'''[''',
'''and''',
''']''',
'''Henry''',
'''\'s''',
'''$''',
'''5''',
'''@,@''',
'''000''',
'''with''',
'''3''',
'''@.@''',
'''34''',
'''m''',
'''.''',
'''What''',
'''\'s''',
'''up''',
'''!''',
'''?''',
]
self.assertListEqual(tokenizer.tokenize(__lowercase ) , __lowercase )
self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = len(__lowercase )
tokenizer.add_tokens(['''new1''', '''new2'''] )
tokenizer.move_added_token('''new1''' , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(__lowercase ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode('''new1''' ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
| 9 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : str = logging.get_logger(__name__)
_UpperCAmelCase : str = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = 'roberta'
def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ):
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = hidden_act
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = position_embedding_type
__lowerCAmelCase = use_cache
__lowerCAmelCase = classifier_dropout
class a__ ( __A ):
"""simple docstring"""
@property
def _snake_case (self ):
if self.task == "multiple-choice":
__lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 9 | 1 |
'''simple docstring'''
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
_UpperCAmelCase : Optional[Any] = {
# 1536-bit
5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 2048-bit
1_4: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AACAA68FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 3072-bit
1_5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 4096-bit
1_6: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"""
+ """FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 6144-bit
1_7: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"""
+ """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"""
+ """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"""
+ """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"""
+ """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"""
+ """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"""
+ """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"""
+ """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"""
+ """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"""
+ """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"""
+ """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"""
+ """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"""
+ """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"""
+ """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"""
+ """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"""
+ """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"""
+ """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"""
+ """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"""
+ """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"""
+ """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"""
+ """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"""
+ """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"""
+ """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"""
+ """6DCC4024FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 8192-bit
1_8: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"""
+ """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"""
+ """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"""
+ """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"""
+ """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"""
+ """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"""
+ """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"""
+ """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"""
+ """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"""
+ """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"""
+ """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"""
+ """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"""
+ """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"""
+ """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"""
+ """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"""
+ """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"""
+ """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"""
+ """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"""
+ """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"""
+ """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"""
+ """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
}
class a__ :
"""simple docstring"""
def __init__(self , __lowercase = 14 ):
if group not in primes:
raise ValueError('''Unsupported Group''' )
__lowerCAmelCase = primes[group]['''prime''']
__lowerCAmelCase = primes[group]['''generator''']
__lowerCAmelCase = int(hexlify(urandom(32 ) ) , base=16 )
def _snake_case (self ):
return hex(self.__private_key )[2:]
def _snake_case (self ):
__lowerCAmelCase = pow(self.generator , self.__private_key , self.prime )
return hex(__lowercase )[2:]
def _snake_case (self , __lowercase ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(__lowercase , (self.prime - 1) // 2 , self.prime ) == 1
)
def _snake_case (self , __lowercase ):
__lowerCAmelCase = int(__lowercase , base=16 )
if not self.is_valid_public_key(__lowercase ):
raise ValueError('''Invalid public key''' )
__lowerCAmelCase = pow(__lowercase , self.__private_key , self.prime )
return shaaaa(str(__lowercase ).encode() ).hexdigest()
@staticmethod
def _snake_case (__lowercase , __lowercase ):
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(__lowercase , (prime - 1) // 2 , __lowercase ) == 1
)
@staticmethod
def _snake_case (__lowercase , __lowercase , __lowercase = 14 ):
__lowerCAmelCase = int(__lowercase , base=16 )
__lowerCAmelCase = int(__lowercase , base=16 )
__lowerCAmelCase = primes[group]['''prime''']
if not DiffieHellman.is_valid_public_key_static(__lowercase , __lowercase ):
raise ValueError('''Invalid public key''' )
__lowerCAmelCase = pow(__lowercase , __lowercase , __lowercase )
return shaaaa(str(__lowercase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = old_name
if "patch_embed" in old_name:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''')
if layer == "0":
__lowerCAmelCase = old_name.replace('''0''', '''convolution1''')
elif layer == "1":
__lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''')
elif layer == "3":
__lowerCAmelCase = old_name.replace('''3''', '''convolution2''')
else:
__lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''')
if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase):
__lowerCAmelCase = r'''\b\d{2}\b'''
if bool(re.search(lowerCamelCase, lowerCamelCase)):
__lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group()
else:
__lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group()
if int(match[0]) < 6:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
__lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1])
__lowerCAmelCase = '''intermediate_stages.''' + trimmed_name
else:
__lowerCAmelCase = old_name.replace(lowerCamelCase, '''''')
if int(match[2]) < num_meta4D_last_stage:
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2])
else:
__lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage)
__lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index)
if "norm1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''')
elif "norm2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''')
elif "fc1" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''')
elif "fc2" in old_name:
__lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''')
__lowerCAmelCase = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase):
__lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''')
if "fc" in new_name:
__lowerCAmelCase = new_name.replace('''fc''', '''convolution''')
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
__lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''')
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
__lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''')
if "proj" in new_name:
__lowerCAmelCase = new_name.replace('''proj''', '''projection''')
if "dist_head" in new_name:
__lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''')
elif "head" in new_name:
__lowerCAmelCase = new_name.replace('''head''', '''classifier''')
elif "patch_embed" in new_name:
__lowerCAmelCase = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
__lowerCAmelCase = new_name.replace('''norm''', '''layernorm''')
__lowerCAmelCase = '''efficientformer.''' + new_name
else:
__lowerCAmelCase = '''efficientformer.encoder.''' + new_name
return new_name
def __magic_name__( lowerCamelCase, lowerCamelCase):
for key in checkpoint.copy().keys():
__lowerCAmelCase = checkpoint.pop(lowerCamelCase)
__lowerCAmelCase = val
return checkpoint
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return image
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
__lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase)
__lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase)
__lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1])
__lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1
__lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = 2_5_6
__lowerCAmelCase = 2_2_4
__lowerCAmelCase = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], )
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values
# original processing pipeline
__lowerCAmelCase = Compose(
[
Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']),
CenterCrop(lowerCamelCase),
ToTensor(),
Normalize(lowerCamelCase, lowerCamelCase),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
assert torch.allclose(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = model(lowerCamelCase)
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = (1, 1_0_0_0)
if "l1" in model_name:
__lowerCAmelCase = torch.Tensor(
[-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27])
assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
__lowerCAmelCase = torch.Tensor(
[-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78])
assert logits.shape == expected_shape
else:
raise ValueError(
F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""")
# Save Checkpoints
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""")
processor.save_pretrained(lowerCamelCase)
print(F"""Processor successfuly saved at {pytorch_dump_path}""")
if push_to_hub:
print('''Pushing model to the hub...''')
model.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, )
processor.push_to_hub(
repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, )
if __name__ == "__main__":
_UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""",
default=None,
type=str,
required=True,
help="""Path to EfficientFormer pytorch checkpoint.""",
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for EfficientFormer model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
parser.set_defaults(push_to_hub=True)
_UpperCAmelCase : List[str] = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 9 | 1 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 |
'''simple docstring'''
from __future__ import annotations
import math
def __magic_name__( lowerCamelCase, lowerCamelCase):
if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2:
raise Exception('''Matrices are not 2x2''')
__lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase, lowerCamelCase):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(lowerCamelCase))
]
def __magic_name__( lowerCamelCase):
if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception('''Odd matrices are not supported!''')
__lowerCAmelCase = len(lowerCamelCase)
__lowerCAmelCase = matrix_length // 2
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [
[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)
]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)]
__lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)]
return top_left, top_right, bot_left, bot_right
def __magic_name__( lowerCamelCase):
return len(lowerCamelCase), len(matrix[0])
def __magic_name__( lowerCamelCase):
print('''\n'''.join(str(lowerCamelCase) for line in matrix))
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase) == (2, 2):
return default_matrix_multiplication(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase))
__lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase)
# construct the new matrix from our 4 quadrants
__lowerCAmelCase = []
for i in range(len(lowerCamelCase)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(lowerCamelCase)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def __magic_name__( lowerCamelCase, lowerCamelCase):
if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]:
__lowerCAmelCase = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
__lowerCAmelCase = matrix_dimensions(lowerCamelCase)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase)
__lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase))))
__lowerCAmelCase = matrixa
__lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
__lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase)
# Removing the additional zeros
for i in range(0, lowerCamelCase):
if i < dimensiona[0]:
for _ in range(dimensiona[1], lowerCamelCase):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
_UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
_UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCAmelCase : List[str] = {
"""configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : int = ["""AlbertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = ["""AlbertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : str = [
"""ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AlbertForMaskedLM""",
"""AlbertForMultipleChoice""",
"""AlbertForPreTraining""",
"""AlbertForQuestionAnswering""",
"""AlbertForSequenceClassification""",
"""AlbertForTokenClassification""",
"""AlbertModel""",
"""AlbertPreTrainedModel""",
"""load_tf_weights_in_albert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
"""TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAlbertForMaskedLM""",
"""TFAlbertForMultipleChoice""",
"""TFAlbertForPreTraining""",
"""TFAlbertForQuestionAnswering""",
"""TFAlbertForSequenceClassification""",
"""TFAlbertForTokenClassification""",
"""TFAlbertMainLayer""",
"""TFAlbertModel""",
"""TFAlbertPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Optional[Any] = [
"""FlaxAlbertForMaskedLM""",
"""FlaxAlbertForMultipleChoice""",
"""FlaxAlbertForPreTraining""",
"""FlaxAlbertForQuestionAnswering""",
"""FlaxAlbertForSequenceClassification""",
"""FlaxAlbertForTokenClassification""",
"""FlaxAlbertModel""",
"""FlaxAlbertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 9 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
_UpperCAmelCase : int = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
_UpperCAmelCase : Dict = {
"""vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""},
"""merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""},
"""tokenizer_config_file""": {
"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"""
},
}
_UpperCAmelCase : Optional[Any] = {"""facebook/blenderbot-3B""": 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __magic_name__( ):
__lowerCAmelCase = (
list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1))
)
__lowerCAmelCase = bs[:]
__lowerCAmelCase = 0
for b in range(2**8):
if b not in bs:
bs.append(lowerCamelCase)
cs.append(2**8 + n)
n += 1
__lowerCAmelCase = [chr(lowerCamelCase) for n in cs]
return dict(zip(lowerCamelCase, lowerCamelCase))
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = set()
__lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
__lowerCAmelCase = char
return pairs
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES
__UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : str = ['input_ids', 'attention_mask']
def __init__(self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ):
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token
super().__init__(
errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , )
with open(__lowercase , encoding='''utf-8''' ) as vocab_handle:
__lowerCAmelCase = json.load(__lowercase )
__lowerCAmelCase = {v: k for k, v in self.encoder.items()}
__lowerCAmelCase = errors # how to handle errors in decoding
__lowerCAmelCase = bytes_to_unicode()
__lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()}
with open(__lowercase , encoding='''utf-8''' ) as merges_handle:
__lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = {}
__lowerCAmelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case (self ):
return len(self.encoder )
def _snake_case (self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case (self , __lowercase ):
if token in self.cache:
return self.cache[token]
__lowerCAmelCase = tuple(__lowercase )
__lowerCAmelCase = get_pairs(__lowercase )
if not pairs:
return token
while True:
__lowerCAmelCase = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCAmelCase , __lowerCAmelCase = bigram
__lowerCAmelCase = []
__lowerCAmelCase = 0
while i < len(__lowercase ):
try:
__lowerCAmelCase = word.index(__lowercase , __lowercase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowerCAmelCase = j
if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCAmelCase = tuple(__lowercase )
__lowerCAmelCase = new_word
if len(__lowercase ) == 1:
break
else:
__lowerCAmelCase = get_pairs(__lowercase )
__lowerCAmelCase = ''' '''.join(__lowercase )
__lowerCAmelCase = word
return word
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
for token in re.findall(self.pat , __lowercase ):
__lowerCAmelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) )
return bpe_tokens
def _snake_case (self , __lowercase ):
return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) )
def _snake_case (self , __lowercase ):
return self.decoder.get(__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = ''''''.join(__lowercase )
__lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case (self , __lowercase , __lowercase = None ):
if not os.path.isdir(__lowercase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' )
__lowerCAmelCase = 0
with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
__lowerCAmelCase = token_index
writer.write(''' '''.join(__lowercase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase )
if token_ids_a is None:
return [1] + ([0] * len(__lowercase )) + [1]
return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1]
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case (self , __lowercase , __lowercase=False , **__lowercase ):
__lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()):
__lowerCAmelCase = ''' ''' + text
return (text, kwargs)
def _snake_case (self , __lowercase , __lowercase = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case (self , __lowercase ):
__lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(''' ''' + text )
else:
# Generated responses should contain them already.
inputs.append(__lowercase )
__lowerCAmelCase = ''' '''.join(__lowercase )
__lowerCAmelCase = self.encode(__lowercase )
if len(__lowercase ) > self.model_max_length:
__lowerCAmelCase = input_ids[-self.model_max_length :]
logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 9 |
'''simple docstring'''
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ):
__lowerCAmelCase = 1.0 if scale is None else scale
__lowerCAmelCase = 0.0 if loc is None else loc
super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] )
@property
def _snake_case (self ):
return self.base_dist.mean * self.scale + self.loc
@property
def _snake_case (self ):
return self.base_dist.variance * self.scale**2
@property
def _snake_case (self ):
return self.variance.sqrt()
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ):
super().__init__(**__lowercase )
__lowerCAmelCase = args_dim
__lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] )
__lowerCAmelCase = domain_map
def _snake_case (self , __lowercase ):
__lowerCAmelCase = [proj(__lowercase ) for proj in self.proj]
return self.domain_map(*__lowercase )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__(self , __lowercase ):
super().__init__()
__lowerCAmelCase = function
def _snake_case (self , __lowercase , *__lowercase ):
return self.function(__lowercase , *__lowercase )
class a__ :
"""simple docstring"""
__UpperCamelCase : type
__UpperCamelCase : int
__UpperCamelCase : Dict[str, int]
def __init__(self , __lowercase = 1 ):
__lowerCAmelCase = dim
__lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim}
def _snake_case (self , __lowercase ):
if self.dim == 1:
return self.distribution_class(*__lowercase )
else:
return Independent(self.distribution_class(*__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ):
__lowerCAmelCase = self._base_distribution(__lowercase )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim )
@property
def _snake_case (self ):
return () if self.dim == 1 else (self.dim,)
@property
def _snake_case (self ):
return len(self.event_shape )
@property
def _snake_case (self ):
return 0.0
def _snake_case (self , __lowercase ):
return ParameterProjection(
in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _snake_case (self , *__lowercase ):
raise NotImplementedError()
@staticmethod
def _snake_case (__lowercase ):
return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
__UpperCamelCase : type = StudentT
@classmethod
def _snake_case (cls , __lowercase , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
__lowerCAmelCase = 2.0 + cls.squareplus(__lowercase )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1}
__UpperCamelCase : type = Normal
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1}
__UpperCamelCase : type = NegativeBinomial
@classmethod
def _snake_case (cls , __lowercase , __lowercase ):
__lowerCAmelCase = cls.squareplus(__lowercase )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _snake_case (self , __lowercase ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if self.dim == 1:
return self.distribution_class(total_count=__lowercase , logits=__lowercase )
else:
return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ):
__lowerCAmelCase , __lowerCAmelCase = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 9 | 1 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : List[str] = LongformerTokenizer
__UpperCamelCase : Dict = True
__UpperCamelCase : List[str] = LongformerTokenizerFast
__UpperCamelCase : Optional[Any] = True
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase ) # , add_prefix_space=True)
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''Encode this sequence.'''
__lowerCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
__lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__lowercase , __lowercase )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
__lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__lowercase , __lowercase )
# Testing spaces after special tokens
__lowerCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase )} ) # mask token has a left space
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase )
__lowerCAmelCase = '''Encode <mask> sequence'''
__lowerCAmelCase = '''Encode <mask>sequence'''
__lowerCAmelCase = tokenizer.encode(__lowercase )
__lowerCAmelCase = encoded.index(__lowercase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokenizer.encode(__lowercase )
__lowerCAmelCase = encoded.index(__lowercase )
__lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__lowercase , __lowercase )
def _snake_case (self ):
pass
def _snake_case (self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase )
__lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase )
__lowerCAmelCase = '''A, <mask> AllenNLP sentence.'''
__lowerCAmelCase = tokenizer_r.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase )
__lowerCAmelCase = tokenizer_p.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def _snake_case (self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowercase )
self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowercase )
self.assertEqual(post_processor_state['''trim_offsets'''] , __lowercase )
def _snake_case (self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
__lowerCAmelCase = F"""{text_of_1_token} {text_of_1_token}"""
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowercase ) + 1, 1 + len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , )
__lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase )
__lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , )
| 9 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa'
__UpperCamelCase : List[str] = (
'This is a tool that answers a question about an document (pdf). It takes an input named `document` which '
'should be the document containing the information, as well as a `question` that is the question about the '
'document. It returns a text that contains the answer to the question.'
)
__UpperCamelCase : Optional[int] = 'document_qa'
__UpperCamelCase : Optional[int] = AutoProcessor
__UpperCamelCase : Tuple = VisionEncoderDecoderModel
__UpperCamelCase : Any = ['image', 'text']
__UpperCamelCase : Optional[Any] = ['text']
def __init__(self , *__lowercase , **__lowercase ):
if not is_vision_available():
raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' )
super().__init__(*__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>'''
__lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase )
__lowerCAmelCase = self.pre_processor.tokenizer(
__lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids
__lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _snake_case (self , __lowercase ):
return self.model.generate(
inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences
def _snake_case (self , __lowercase ):
__lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0]
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' )
__lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' )
__lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token
__lowerCAmelCase = self.pre_processor.tokenajson(__lowercase )
return sequence["answer"]
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Any = {
"""configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : List[Any] = [
"""GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GraphormerForGraphClassification""",
"""GraphormerModel""",
"""GraphormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = 1
__lowerCAmelCase = 2
while i * i <= n:
__lowerCAmelCase = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def __magic_name__( ):
__lowerCAmelCase = 1
__lowerCAmelCase = 1
while True:
i += 1
t_num += i
if count_divisors(lowerCamelCase) > 5_0_0:
break
return t_num
if __name__ == "__main__":
print(solution())
| 9 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_UpperCAmelCase : Tuple = 1_6
_UpperCAmelCase : List[Any] = 3_2
def __magic_name__( lowerCamelCase, lowerCamelCase = 1_6):
__lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''')
__lowerCAmelCase = load_dataset('''glue''', '''mrpc''')
def tokenize_function(lowerCamelCase):
# max_length=None => use the model max length (it's actually the default)
__lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__lowerCAmelCase = datasets.map(
lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''')
def collate_fn(lowerCamelCase):
# On TPU it's best to pad everything to the same length or training will be very slow.
__lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__lowerCAmelCase = 1_6
elif accelerator.mixed_precision != "no":
__lowerCAmelCase = 8
else:
__lowerCAmelCase = None
return tokenizer.pad(
lowerCamelCase, padding='''longest''', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='''pt''', )
# Instantiate dataloaders.
__lowerCAmelCase = DataLoader(
tokenized_datasets['''train'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase)
__lowerCAmelCase = DataLoader(
tokenized_datasets['''validation'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_UpperCAmelCase : Dict = mocked_dataloaders # noqa: F811
def __magic_name__( lowerCamelCase, lowerCamelCase):
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowerCamelCase) == "1":
__lowerCAmelCase = 2
# New Code #
__lowerCAmelCase = int(args.gradient_accumulation_steps)
# Initialize accelerator
__lowerCAmelCase = Accelerator(
cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=lowerCamelCase)
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''')
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCAmelCase = config['''lr''']
__lowerCAmelCase = int(config['''num_epochs'''])
__lowerCAmelCase = int(config['''seed'''])
__lowerCAmelCase = int(config['''batch_size'''])
__lowerCAmelCase = evaluate.load('''glue''', '''mrpc''')
set_seed(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCamelCase, lowerCamelCase)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowerCamelCase)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__lowerCAmelCase = model.to(accelerator.device)
# Instantiate optimizer
__lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCamelCase)
# Instantiate scheduler
__lowerCAmelCase = get_linear_schedule_with_warmup(
optimizer=lowerCamelCase, num_warmup_steps=1_0_0, num_training_steps=(len(lowerCamelCase) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# Now we train the model
for epoch in range(lowerCamelCase):
model.train()
for step, batch in enumerate(lowerCamelCase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowerCamelCase):
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = output.loss
accelerator.backward(lowerCamelCase)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCamelCase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(dim=-1)
__lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']))
metric.add_batch(
predictions=lowerCamelCase, references=lowerCamelCase, )
__lowerCAmelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""", lowerCamelCase)
def __magic_name__( ):
__lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''')
parser.add_argument(
'''--mixed_precision''', type=lowerCamelCase, default=lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''', type=lowerCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''')
__lowerCAmelCase = parser.parse_args()
__lowerCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(lowerCamelCase, lowerCamelCase)
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
self.assertTrue(isinstance(dc.token_ids , __lowercase ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__lowercase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def _snake_case (self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__lowerCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__lowercase ):
DisjunctiveConstraint(__lowercase ) # fails here
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
__lowerCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(__lowercase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 )
__lowerCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(__lowercase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def _snake_case (self ):
__lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__lowerCAmelCase = DisjunctiveConstraint(__lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 9 | 1 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
__lowerCAmelCase = cst_fwd.get(lowerCamelCase, np.inf)
__lowerCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt))
__lowerCAmelCase = new_cost_f
__lowerCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
__lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = -1
__lowerCAmelCase = set()
__lowerCAmelCase = set()
__lowerCAmelCase = {source: 0}
__lowerCAmelCase = {destination: 0}
__lowerCAmelCase = {source: None}
__lowerCAmelCase = {destination: None}
__lowerCAmelCase = PriorityQueue()
__lowerCAmelCase = PriorityQueue()
__lowerCAmelCase = np.inf
queue_forward.put((0, source))
queue_backward.put((0, destination))
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
__lowerCAmelCase , __lowerCAmelCase = queue_forward.get()
visited_forward.add(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = queue_backward.get()
visited_backward.add(lowerCamelCase)
__lowerCAmelCase = pass_and_relaxation(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, )
__lowerCAmelCase = pass_and_relaxation(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
__lowerCAmelCase = shortest_distance
return shortest_path_distance
_UpperCAmelCase : List[str] = {
"""B""": [["""C""", 1]],
"""C""": [["""D""", 1]],
"""D""": [["""F""", 1]],
"""E""": [["""B""", 1], ["""G""", 2]],
"""F""": [],
"""G""": [["""F""", 1]],
}
_UpperCAmelCase : Optional[Any] = {
"""B""": [["""E""", 1]],
"""C""": [["""B""", 1]],
"""D""": [["""C""", 1]],
"""F""": [["""D""", 1], ["""G""", 1]],
"""E""": [[None, np.inf]],
"""G""": [["""E""", 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
_UpperCAmelCase : List[str] = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
_UpperCAmelCase : str = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
_UpperCAmelCase : Tuple = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
if label_map is not None:
for old_id, new_id in label_map.items():
__lowerCAmelCase = new_id
# turn into Numpy arrays
__lowerCAmelCase = np.array(lowerCamelCase)
__lowerCAmelCase = np.array(lowerCamelCase)
if reduce_labels:
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label - 1
__lowerCAmelCase = 2_5_5
__lowerCAmelCase = label != ignore_index
__lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = pred_label[mask]
__lowerCAmelCase = np.array(lowerCamelCase)[mask]
__lowerCAmelCase = pred_label[pred_label == label]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0]
__lowerCAmelCase = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
__lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa)
for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union(
lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase)
# compute metrics
__lowerCAmelCase = {}
__lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum()
__lowerCAmelCase = total_area_intersect / total_area_union
__lowerCAmelCase = total_area_intersect / total_area_label
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = np.nanmean(lowerCamelCase)
__lowerCAmelCase = all_acc
__lowerCAmelCase = iou
__lowerCAmelCase = acc
if nan_to_num is not None:
__lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def _snake_case (self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ),
} ) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ):
__lowerCAmelCase = mean_iou(
results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , )
return iou_result
| 9 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_download, hf_hub_url
from PIL import Image
from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : Dict = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = SwinConfig(
embed_dim=1_9_2, depths=(2, 2, 1_8, 2), num_heads=(6, 1_2, 2_4, 4_8), window_size=1_2, out_features=['''stage2''', '''stage3''', '''stage4'''], )
__lowerCAmelCase = DetaConfig(
backbone_config=lowerCamelCase, num_queries=9_0_0, encoder_ffn_dim=2_0_4_8, decoder_ffn_dim=2_0_4_8, num_feature_levels=5, assign_first_stage=lowerCamelCase, with_box_refine=lowerCamelCase, two_stage=lowerCamelCase, )
# set labels
__lowerCAmelCase = '''huggingface/label-files'''
if "o365" in model_name:
__lowerCAmelCase = 3_6_6
__lowerCAmelCase = '''object365-id2label.json'''
else:
__lowerCAmelCase = 9_1
__lowerCAmelCase = '''coco-detection-id2label.json'''
__lowerCAmelCase = num_labels
__lowerCAmelCase = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type='''dataset''')), '''r'''))
__lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
return config
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight'''))
rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias'''))
rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight'''))
rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias'''))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias"""))
if i < 3:
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight"""))
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias"""))
rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight'''))
rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias'''))
rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight'''))
rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias'''))
rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight'''))
rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias'''))
# transformer encoder
for i in range(config.encoder_layers):
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias"""))
# transformer decoder
for i in range(config.decoder_layers):
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias"""))
# fmt: on
return rename_keys
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = dct.pop(lowerCamelCase)
__lowerCAmelCase = val
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))]
for i in range(len(backbone_config.depths)):
__lowerCAmelCase = num_features[i]
for j in range(backbone_config.depths[i]):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__lowerCAmelCase = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""")
__lowerCAmelCase = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""")
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[:dim, :]
__lowerCAmelCase = in_proj_bias[: dim]
__lowerCAmelCase = in_proj_weight[
dim : dim * 2, :
]
__lowerCAmelCase = in_proj_bias[
dim : dim * 2
]
__lowerCAmelCase = in_proj_weight[
-dim :, :
]
__lowerCAmelCase = in_proj_bias[-dim :]
# fmt: on
def __magic_name__( lowerCamelCase, lowerCamelCase):
# transformer decoder self-attention layers
__lowerCAmelCase = config.d_model
for i in range(config.decoder_layers):
# read in weights + bias of input projection layer of self-attention
__lowerCAmelCase = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""")
__lowerCAmelCase = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""")
# next, add query, keys and values (in that order) to the state dict
__lowerCAmelCase = in_proj_weight[:hidden_size, :]
__lowerCAmelCase = in_proj_bias[:hidden_size]
__lowerCAmelCase = in_proj_weight[
hidden_size : hidden_size * 2, :
]
__lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2]
__lowerCAmelCase = in_proj_weight[-hidden_size:, :]
__lowerCAmelCase = in_proj_bias[-hidden_size:]
def __magic_name__( ):
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
return im
@torch.no_grad()
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = get_deta_config(lowerCamelCase)
# load original state dict
if model_name == "deta-swin-large":
__lowerCAmelCase = hf_hub_download(repo_id='''nielsr/deta-checkpoints''', filename='''adet_swin_ft.pth''')
elif model_name == "deta-swin-large-o365":
__lowerCAmelCase = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''', filename='''deta_swin_pt_o365.pth''')
else:
raise ValueError(F"""Model name {model_name} not supported""")
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model''']
# original state dict
for name, param in state_dict.items():
print(lowerCamelCase, param.shape)
# rename keys
__lowerCAmelCase = create_rename_keys(lowerCamelCase)
for src, dest in rename_keys:
rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase)
read_in_swin_q_k_v(lowerCamelCase, config.backbone_config)
read_in_decoder_q_k_v(lowerCamelCase, lowerCamelCase)
# fix some prefixes
for key in state_dict.copy().keys():
if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key:
__lowerCAmelCase = state_dict.pop(lowerCamelCase)
__lowerCAmelCase = val
if "input_proj" in key:
__lowerCAmelCase = state_dict.pop(lowerCamelCase)
__lowerCAmelCase = val
if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key:
__lowerCAmelCase = state_dict.pop(lowerCamelCase)
__lowerCAmelCase = val
# finally, create HuggingFace model and load state dict
__lowerCAmelCase = DetaForObjectDetection(lowerCamelCase)
model.load_state_dict(lowerCamelCase)
model.eval()
__lowerCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
model.to(lowerCamelCase)
# load image processor
__lowerCAmelCase = DetaImageProcessor(format='''coco_detection''')
# verify our conversion on image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''')
__lowerCAmelCase = encoding['''pixel_values''']
__lowerCAmelCase = model(pixel_values.to(lowerCamelCase))
# verify logits
print('''Logits:''', outputs.logits[0, :3, :3])
print('''Boxes:''', outputs.pred_boxes[0, :3, :3])
if model_name == "deta-swin-large":
__lowerCAmelCase = torch.tensor(
[[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]])
__lowerCAmelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]])
elif model_name == "deta-swin-large-o365":
__lowerCAmelCase = torch.tensor(
[[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]])
__lowerCAmelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]])
assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(lowerCamelCase), atol=1E-4)
assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(lowerCamelCase), atol=1E-4)
print('''Everything ok!''')
if pytorch_dump_folder_path:
# Save model and processor
logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""")
Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase)
model.save_pretrained(lowerCamelCase)
processor.save_pretrained(lowerCamelCase)
# Push to hub
if push_to_hub:
print('''Pushing model and processor to hub...''')
model.push_to_hub(F"""jozhang97/{model_name}""")
processor.push_to_hub(F"""jozhang97/{model_name}""")
if __name__ == "__main__":
_UpperCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
type=str,
default="""deta-swin-large""",
choices=["""deta-swin-large""", """deta-swin-large-o365"""],
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
help="""Path to the folder to output PyTorch model.""",
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_UpperCAmelCase : Tuple = parser.parse_args()
convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 9 |
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : str = True
__UpperCamelCase : Any = DebertaTokenizerFast
def _snake_case (self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__lowerCAmelCase = {'''unk_token''': '''[UNK]'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
def _snake_case (self , **__lowercase ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self , __lowercase ):
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = '''lower newer'''
return input_text, output_text
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__lowerCAmelCase = tokenizer.tokenize(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
__lowerCAmelCase = tokens + [tokenizer.unk_token]
__lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = tokenizer('''Hello''' , '''World''' )
__lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __lowercase )
@slow
def _snake_case (self ):
__lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _snake_case (self ):
__lowerCAmelCase = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
__lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
__lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase )
__lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']]
# fmt: off
__lowerCAmelCase = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
__lowerCAmelCase = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __lowercase )
for expected, decoded in zip(__lowercase , __lowercase ):
self.assertEqual(__lowercase , __lowercase )
| 9 | 1 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 |
'''simple docstring'''
import argparse
import datetime
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
__lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowerCamelCase) < 1_1:
raise ValueError('''Must be 10 characters long''')
# Get month
__lowerCAmelCase = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 1_3:
raise ValueError('''Month must be between 1 - 12''')
__lowerCAmelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get day
__lowerCAmelCase = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 3_2:
raise ValueError('''Date must be between 1 - 31''')
# Get second separator
__lowerCAmelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''')
# Get year
__lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 4_5 < y < 8_5_0_0:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''')
# Get datetime obj for validation
__lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase))
# Start math
if m <= 2:
__lowerCAmelCase = y - 1
__lowerCAmelCase = m + 1_2
# maths var
__lowerCAmelCase = int(str(lowerCamelCase)[:2])
__lowerCAmelCase = int(str(lowerCamelCase)[2:])
__lowerCAmelCase = int(2.6 * m - 5.39)
__lowerCAmelCase = int(c / 4)
__lowerCAmelCase = int(k / 4)
__lowerCAmelCase = int(d + k)
__lowerCAmelCase = int(t + u + v + x)
__lowerCAmelCase = int(z - (2 * c))
__lowerCAmelCase = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''')
# Response
__lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCAmelCase : List[str] = argparse.ArgumentParser(
description=(
"""Find out what day of the week nearly any date is or was. Enter """
"""date as a string in the mm-dd-yyyy or mm/dd/yyyy format"""
)
)
parser.add_argument(
"""date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)"""
)
_UpperCAmelCase : Dict = parser.parse_args()
zeller(args.date_input)
| 9 | 1 |
'''simple docstring'''
# Imports
import numpy as np
class a__ :
"""simple docstring"""
def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
if red is not None:
__lowerCAmelCase = red
if green is not None:
__lowerCAmelCase = green
if blue is not None:
__lowerCAmelCase = blue
if red_edge is not None:
__lowerCAmelCase = red_edge
if nir is not None:
__lowerCAmelCase = nir
return True
def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ):
self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase )
__lowerCAmelCase = {
'''ARVI2''': self.arvaa,
'''CCCI''': self.ccci,
'''CVI''': self.cvi,
'''GLI''': self.gli,
'''NDVI''': self.ndvi,
'''BNDVI''': self.bndvi,
'''redEdgeNDVI''': self.red_edge_ndvi,
'''GNDVI''': self.gndvi,
'''GBNDVI''': self.gbndvi,
'''GRNDVI''': self.grndvi,
'''RBNDVI''': self.rbndvi,
'''PNDVI''': self.pndvi,
'''ATSAVI''': self.atsavi,
'''BWDRVI''': self.bwdrvi,
'''CIgreen''': self.ci_green,
'''CIrededge''': self.ci_rededge,
'''CI''': self.ci,
'''CTVI''': self.ctvi,
'''GDVI''': self.gdvi,
'''EVI''': self.evi,
'''GEMI''': self.gemi,
'''GOSAVI''': self.gosavi,
'''GSAVI''': self.gsavi,
'''Hue''': self.hue,
'''IVI''': self.ivi,
'''IPVI''': self.ipvi,
'''I''': self.i,
'''RVI''': self.rvi,
'''MRVI''': self.mrvi,
'''MSAVI''': self.m_savi,
'''NormG''': self.norm_g,
'''NormNIR''': self.norm_nir,
'''NormR''': self.norm_r,
'''NGRDI''': self.ngrdi,
'''RI''': self.ri,
'''S''': self.s,
'''IF''': self._if,
'''DVI''': self.dvi,
'''TVI''': self.tvi,
'''NDRE''': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('''Index not in the list!''' )
return False
def _snake_case (self ):
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _snake_case (self ):
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _snake_case (self ):
return self.nir * (self.red / (self.green**2))
def _snake_case (self ):
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _snake_case (self ):
return (self.nir - self.red) / (self.nir + self.red)
def _snake_case (self ):
return (self.nir - self.blue) / (self.nir + self.blue)
def _snake_case (self ):
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _snake_case (self ):
return (self.nir - self.green) / (self.nir + self.green)
def _snake_case (self ):
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _snake_case (self ):
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _snake_case (self ):
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _snake_case (self ):
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ):
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _snake_case (self ):
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _snake_case (self ):
return (self.nir / self.green) - 1
def _snake_case (self ):
return (self.nir / self.redEdge) - 1
def _snake_case (self ):
return (self.red - self.blue) / self.red
def _snake_case (self ):
__lowerCAmelCase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _snake_case (self ):
return self.nir - self.green
def _snake_case (self ):
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _snake_case (self ):
__lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _snake_case (self , __lowercase=0.1_6 ):
return (self.nir - self.green) / (self.nir + self.green + y)
def _snake_case (self , __lowercase=0.5 ):
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _snake_case (self ):
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def _snake_case (self , __lowercase=None , __lowercase=None ):
return (self.nir - b) / (a * self.red)
def _snake_case (self ):
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _snake_case (self ):
return (self.red + self.green + self.blue) / 3_0.5
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.rvi() - 1) / (self.rvi() + 1)
def _snake_case (self ):
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _snake_case (self ):
return self.green / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.nir / (self.nir + self.red + self.green)
def _snake_case (self ):
return self.red / (self.nir + self.red + self.green)
def _snake_case (self ):
return (self.green - self.red) / (self.green + self.red)
def _snake_case (self ):
return (self.red - self.green) / (self.red + self.green)
def _snake_case (self ):
__lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _snake_case (self ):
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _snake_case (self ):
return self.nir / self.red
def _snake_case (self ):
return (self.ndvi() + 0.5) ** (1 / 2)
def _snake_case (self ):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 9 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = ConsistencyModelPipeline
__UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
__UpperCamelCase : List[Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def _snake_case (self , __lowercase=False ):
if class_cond:
__lowerCAmelCase = self.dummy_cond_unet
else:
__lowerCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _snake_case (self , __lowercase , __lowercase=0 ):
if str(__lowercase ).startswith('''mps''' ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
else:
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _snake_case (self ):
__lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase )
__lowerCAmelCase = ConsistencyModelPipeline(**__lowercase )
__lowerCAmelCase = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_dummy_inputs(__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = 0
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
__lowerCAmelCase = torch.manual_seed(__lowercase )
__lowerCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
__lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
__lowerCAmelCase = latents
return inputs
def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ):
if type(__lowercase ) == str:
__lowerCAmelCase = torch.device(__lowercase )
__lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs()
__lowerCAmelCase = 1
__lowerCAmelCase = None
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _snake_case (self ):
__lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
__lowerCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
__lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
__lowerCAmelCase = 1
__lowerCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
__lowerCAmelCase = pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
__lowerCAmelCase = image[0, -3:, -3:, -1]
__lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 9 | 1 |
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
__lowerCAmelCase = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(lowerCamelCase):
os.makedirs(lowerCamelCase)
__lowerCAmelCase = model.state_dict()
def to_tf_var_name(lowerCamelCase):
for patt, repl in iter(lowerCamelCase):
__lowerCAmelCase = name.replace(lowerCamelCase, lowerCamelCase)
return F"""bert/{name}"""
def create_tf_var(lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = tf.dtypes.as_dtype(tensor.dtype)
__lowerCAmelCase = tf.get_variable(dtype=lowerCamelCase, shape=tensor.shape, name=lowerCamelCase, initializer=tf.zeros_initializer())
session.run(tf.variables_initializer([tf_var]))
session.run(lowerCamelCase)
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__lowerCAmelCase = to_tf_var_name(lowerCamelCase)
__lowerCAmelCase = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose):
__lowerCAmelCase = torch_tensor.T
__lowerCAmelCase = create_tf_var(tensor=lowerCamelCase, name=lowerCamelCase, session=lowerCamelCase)
tf.keras.backend.set_value(lowerCamelCase, lowerCamelCase)
__lowerCAmelCase = session.run(lowerCamelCase)
print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase, lowerCamelCase)}""")
__lowerCAmelCase = tf.train.Saver(tf.trainable_variables())
saver.save(lowerCamelCase, os.path.join(lowerCamelCase, model_name.replace('''-''', '''_''') + '''.ckpt'''))
def __magic_name__( lowerCamelCase=None):
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_name''', type=lowerCamelCase, required=lowerCamelCase, help='''model name e.g. bert-base-uncased''')
parser.add_argument(
'''--cache_dir''', type=lowerCamelCase, default=lowerCamelCase, required=lowerCamelCase, help='''Directory containing pytorch model''')
parser.add_argument('''--pytorch_model_path''', type=lowerCamelCase, required=lowerCamelCase, help='''/path/to/<pytorch-model-name>.bin''')
parser.add_argument('''--tf_cache_dir''', type=lowerCamelCase, required=lowerCamelCase, help='''Directory in which to save tensorflow model''')
__lowerCAmelCase = parser.parse_args(lowerCamelCase)
__lowerCAmelCase = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path), cache_dir=args.cache_dir, )
convert_pytorch_checkpoint_to_tf(model=lowerCamelCase, ckpt_dir=args.tf_cache_dir, model_name=args.model_name)
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_UpperCAmelCase : List[Any] = datasets.load_iris()
_UpperCAmelCase : Dict = np.array(data["""data"""])
_UpperCAmelCase : int = np.array(data["""target"""])
_UpperCAmelCase : str = data["""target_names"""]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y)
def __magic_name__( lowerCamelCase, lowerCamelCase):
return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5):
__lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase)
# List of distances of all points from the point to be classified
__lowerCAmelCase = []
for data_point in data:
__lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase)
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances.
__lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 9 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Dict = {"""vocab_file""": """vocab.txt"""}
_UpperCAmelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""",
"""facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""",
},
}
_UpperCAmelCase : List[str] = {
"""facebook/esm2_t6_8M_UR50D""": 1_0_2_4,
"""facebook/esm2_t12_35M_UR50D""": 1_0_2_4,
}
def __magic_name__( lowerCamelCase):
with open(lowerCamelCase, '''r''') as f:
__lowerCAmelCase = f.read().splitlines()
return [l.strip() for l in lines]
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
__UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Tuple = ['input_ids', 'attention_mask']
def __init__(self , __lowercase , __lowercase="<unk>" , __lowercase="<cls>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase="<eos>" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = load_vocab_file(__lowercase )
__lowerCAmelCase = dict(enumerate(self.all_tokens ) )
__lowerCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )}
__lowerCAmelCase = unk_token
__lowerCAmelCase = cls_token
__lowerCAmelCase = pad_token
__lowerCAmelCase = mask_token
__lowerCAmelCase = eos_token
__lowerCAmelCase = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _snake_case (self , __lowercase ):
return self._id_to_token.get(__lowercase , self.unk_token )
def _snake_case (self , __lowercase ):
return self._token_to_id.get(__lowercase , self._token_to_id.get(self.unk_token ) )
def _snake_case (self , __lowercase , **__lowercase ):
return text.split()
def _snake_case (self , __lowercase=False ):
return len(self._id_to_token )
def _snake_case (self ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _snake_case (self , __lowercase ):
return self._token_to_id.get(__lowercase , self._token_to_id.get(self.unk_token ) )
def _snake_case (self , __lowercase ):
return self._id_to_token.get(__lowercase , self.unk_token )
def _snake_case (self , __lowercase , __lowercase = None ):
__lowerCAmelCase = [self.cls_token_id]
__lowerCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
__lowerCAmelCase = [1] + ([0] * len(__lowercase )) + [1]
if token_ids_a is not None:
mask += [0] * len(__lowercase ) + [1]
return mask
def _snake_case (self , __lowercase , __lowercase ):
__lowerCAmelCase = os.path.join(__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__lowercase , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def _snake_case (self ):
return self.get_vocab_size(with_added_tokens=__lowercase )
def _snake_case (self , __lowercase , __lowercase = False ):
return super()._add_tokens(__lowercase , special_tokens=__lowercase )
| 9 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
def _snake_case (self ):
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
__lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCAmelCase = {'''unk_token''': '''<unk>'''}
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowercase ) )
__lowerCAmelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(__lowercase , __lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase )
def _snake_case (self , **__lowercase ):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def _snake_case (self ):
shutil.rmtree(self.tmpdirname )
def _snake_case (self ):
__lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case (self ):
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_rust_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase )
__lowerCAmelCase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' )
__lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' )
__lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = '''lower newer'''
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']]
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = len(__lowercase )
__lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = '''google/owlvit-base-patch32'''
__lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase )
__lowerCAmelCase = ['''cat''', '''nasa badge''']
__lowerCAmelCase = processor(text=__lowercase )
__lowerCAmelCase = 16
__lowerCAmelCase = inputs['''input_ids''']
__lowerCAmelCase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def _snake_case (self ):
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__lowercase )
__lowerCAmelCase = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCAmelCase : Tuple = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Any = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Dict = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : Tuple = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
_UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
class a__ ( __A ):
"""simple docstring"""
def __init__(self , *__lowercase , **__lowercase ):
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , __lowercase , )
super().__init__(*__lowercase , **__lowercase )
| 9 |
'''simple docstring'''
import numpy as np
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ):
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1]
# Ensure proper dimensionality.
assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase)
__lowerCAmelCase = np.iscomplexobj(lowerCamelCase)
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowerCamelCase, input_matrix.conj().T)
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__lowerCAmelCase = False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1E12
while not convergence:
# Multiple matrix by the vector.
__lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase)
# Normalize the resulting output vector.
__lowerCAmelCase = w / np.linalg.norm(lowerCamelCase)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__lowerCAmelCase = vector.conj().T if is_complex else vector.T
__lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase))
# Check convergence.
__lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__lowerCAmelCase = True
__lowerCAmelCase = lambda_
if is_complex:
__lowerCAmelCase = np.real(lambda_)
return lambda_, vector
def __magic_name__( ):
__lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]])
__lowerCAmelCase = np.array([4_1, 4, 2_0])
__lowerCAmelCase = real_input_matrix.astype(np.complexaaa)
__lowerCAmelCase = np.triu(1J * complex_input_matrix, 1)
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa)
for problem_type in ["real", "complex"]:
if problem_type == "real":
__lowerCAmelCase = real_input_matrix
__lowerCAmelCase = real_vector
elif problem_type == "complex":
__lowerCAmelCase = complex_input_matrix
__lowerCAmelCase = complex_vector
# Our implementation.
__lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase)
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase)
# Last eigenvalue is the maximum one.
__lowerCAmelCase = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__lowerCAmelCase = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 | 1 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : List[Any] = ['audio_values', 'audio_mask']
def __init__(self , __lowercase=20_48 , __lowercase=1 , __lowercase=[16, 16] , __lowercase=1_28 , __lowercase=4_41_00 , __lowercase=86 , __lowercase=20_48 , __lowercase=0.0 , **__lowercase , ):
super().__init__(
feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase , )
__lowerCAmelCase = spectrogram_length
__lowerCAmelCase = num_channels
__lowerCAmelCase = patch_size
__lowerCAmelCase = feature_size // self.patch_size[1]
__lowerCAmelCase = n_fft
__lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate
__lowerCAmelCase = sampling_rate
__lowerCAmelCase = padding_value
__lowerCAmelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowercase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ).T
def _snake_case (self , __lowercase ):
__lowerCAmelCase = spectrogram(
__lowercase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=8_0.0 , )
__lowerCAmelCase = log_spec[:, :-1]
__lowerCAmelCase = log_spec - 2_0.0
__lowerCAmelCase = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__(self , __lowercase , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = False , __lowercase = False , **__lowercase , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
F""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__lowerCAmelCase = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
__lowerCAmelCase = is_batched_numpy or (
isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__lowercase , np.ndarray ):
__lowerCAmelCase = np.asarray(__lowercase , dtype=np.floataa )
elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__lowerCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__lowerCAmelCase = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__lowerCAmelCase = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __lowercase ):
__lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__lowerCAmelCase = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__lowerCAmelCase = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__lowerCAmelCase = np.array(__lowercase ).astype(np.floataa )
# convert into correct format for padding
__lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__lowerCAmelCase = np.ones([len(__lowercase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__lowerCAmelCase = padded_audio_features * self.padding_value
for i in range(len(__lowercase ) ):
__lowerCAmelCase = audio_features[i]
__lowerCAmelCase = feature
# return as BatchFeature
if return_attention_mask:
__lowerCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__lowerCAmelCase = {'''audio_values''': padded_audio_features}
__lowerCAmelCase = BatchFeature(data=__lowercase , tensor_type=__lowercase )
return encoded_inputs
| 9 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_UpperCAmelCase : str = logging.get_logger(__name__)
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase):
return [
int(1_0_0_0 * (box[0] / width)),
int(1_0_0_0 * (box[1] / height)),
int(1_0_0_0 * (box[2] / width)),
int(1_0_0_0 * (box[3] / height)),
]
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None):
__lowerCAmelCase = tesseract_config if tesseract_config is not None else ''''''
# apply OCR
__lowerCAmelCase = to_pil_image(lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase = pil_image.size
__lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()]
__lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
__lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowerCAmelCase = []
for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
__lowerCAmelCase = [x, y, x + w, y + h]
actual_boxes.append(lowerCamelCase)
# finally, normalize the bounding boxes
__lowerCAmelCase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase))
assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : str = ['pixel_values']
def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ):
super().__init__(**__lowercase )
__lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = do_resize
__lowerCAmelCase = size
__lowerCAmelCase = resample
__lowerCAmelCase = apply_ocr
__lowerCAmelCase = ocr_lang
__lowerCAmelCase = tesseract_config
def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ):
__lowerCAmelCase = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
__lowerCAmelCase = (size['''height'''], size['''width'''])
return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase )
def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ):
__lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
__lowerCAmelCase = size if size is not None else self.size
__lowerCAmelCase = get_size_dict(__lowercase )
__lowerCAmelCase = resample if resample is not None else self.resample
__lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowerCAmelCase = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
# All transformations expect numpy arrays.
__lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images]
if apply_ocr:
requires_backends(self , '''pytesseract''' )
__lowerCAmelCase = []
__lowerCAmelCase = []
for image in images:
__lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase )
words_batch.append(__lowercase )
boxes_batch.append(__lowercase )
if do_resize:
__lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
__lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images]
__lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase )
if apply_ocr:
__lowerCAmelCase = words_batch
__lowerCAmelCase = boxes_batch
return data
| 9 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class a__ ( __A ):
"""simple docstring"""
__UpperCamelCase : Dict = ['image_processor', 'tokenizer']
__UpperCamelCase : Optional[int] = 'LayoutLMv2ImageProcessor'
__UpperCamelCase : List[Any] = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast')
def __init__(self , __lowercase=None , __lowercase=None , **__lowercase ):
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowercase , )
__lowerCAmelCase = kwargs.pop('''feature_extractor''' )
__lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__lowercase , __lowercase )
def __call__(self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = 0 , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = None , **__lowercase , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' )
# first, apply the image processor
__lowerCAmelCase = self.image_processor(images=__lowercase , return_tensors=__lowercase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__lowercase , __lowercase ):
__lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowerCAmelCase = features['''words''']
__lowerCAmelCase = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , )
# add pixel values
__lowerCAmelCase = features.pop('''pixel_values''' )
if return_overflowing_tokens is True:
__lowerCAmelCase = self.get_overflowing_images(__lowercase , encoded_inputs['''overflow_to_sample_mapping'''] )
__lowerCAmelCase = images
return encoded_inputs
def _snake_case (self , __lowercase , __lowercase ):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__lowerCAmelCase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__lowercase ) != len(__lowercase ):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
F""" {len(__lowercase )} and {len(__lowercase )}""" )
return images_with_overflow
def _snake_case (self , *__lowercase , **__lowercase ):
return self.tokenizer.batch_decode(*__lowercase , **__lowercase )
def _snake_case (self , *__lowercase , **__lowercase ):
return self.tokenizer.decode(*__lowercase , **__lowercase )
@property
def _snake_case (self ):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def _snake_case (self ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowercase , )
return self.image_processor_class
@property
def _snake_case (self ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowercase , )
return self.image_processor
| 9 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=__A ):
"""simple docstring"""
__UpperCamelCase : int = ['torch', 'scipy']
def __init__(self , *__lowercase , **__lowercase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def _snake_case (cls , *__lowercase , **__lowercase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
| 9 | 1 |
'''simple docstring'''
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase = OmegaConf.load(lowerCamelCase)
if display:
print(yaml.dump(OmegaConf.to_container(lowerCamelCase)))
return config
def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None):
if conf_path is None:
__lowerCAmelCase = '''./model_checkpoints/vqgan_only.yaml'''
__lowerCAmelCase = load_config(lowerCamelCase, display=lowerCamelCase)
__lowerCAmelCase = VQModel(**config.model.params)
if ckpt_path is None:
__lowerCAmelCase = '''./model_checkpoints/vqgan_only.pt'''
__lowerCAmelCase = torch.load(lowerCamelCase, map_location=lowerCamelCase)
if ".ckpt" in ckpt_path:
__lowerCAmelCase = sd['''state_dict''']
model.load_state_dict(lowerCamelCase, strict=lowerCamelCase)
model.to(lowerCamelCase)
del sd
return model
def __magic_name__( lowerCamelCase, lowerCamelCase):
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.encode(lowerCamelCase)
print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""")
__lowerCAmelCase = model.decode(lowerCamelCase)
return xrec
def __magic_name__( lowerCamelCase, lowerCamelCase=False):
__lowerCAmelCase , __lowerCAmelCase = string.rsplit('''.''', 1)
if reload:
__lowerCAmelCase = importlib.import_module(lowerCamelCase)
importlib.reload(lowerCamelCase)
return getattr(importlib.import_module(lowerCamelCase, package=lowerCamelCase), cls)
def __magic_name__( lowerCamelCase):
if "target" not in config:
raise KeyError('''Expected key `target` to instantiate.''')
return get_obj_from_str(config['''target'''])(**config.get('''params''', {}))
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=True, lowerCamelCase=True):
__lowerCAmelCase = instantiate_from_config(lowerCamelCase)
if sd is not None:
model.load_state_dict(lowerCamelCase)
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase):
# load the specified checkpoint
if ckpt:
__lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')
__lowerCAmelCase = pl_sd['''global_step''']
print(F"""loaded model from global step {global_step}.""")
else:
__lowerCAmelCase = {'''state_dict''': None}
__lowerCAmelCase = None
__lowerCAmelCase = load_model_from_config(config.model, pl_sd['''state_dict'''], gpu=lowerCamelCase, eval_mode=lowerCamelCase)['''model''']
return model, global_step
| 9 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class a__ ( unittest.TestCase ):
"""simple docstring"""
def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = do_resize
__lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88}
__lowerCAmelCase = size_divisor
__lowerCAmelCase = do_rescale
__lowerCAmelCase = rescale_factor
__lowerCAmelCase = do_normalize
__lowerCAmelCase = do_center_crop
__lowerCAmelCase = image_mean
__lowerCAmelCase = image_std
__lowerCAmelCase = do_pad
__lowerCAmelCase = batch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = min_resolution
__lowerCAmelCase = max_resolution
def _snake_case (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _snake_case (self , __lowercase , __lowercase=False ):
if not batched:
__lowerCAmelCase = self.size['''shortest_edge''']
__lowerCAmelCase = image_inputs[0]
if isinstance(__lowercase , Image.Image ):
__lowerCAmelCase , __lowerCAmelCase = image.size
else:
__lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2]
__lowerCAmelCase = size / min(__lowercase , __lowercase )
if h < w:
__lowerCAmelCase , __lowerCAmelCase = size, scale * w
else:
__lowerCAmelCase , __lowerCAmelCase = scale * h, size
__lowerCAmelCase = int((13_33 / 8_00) * size )
if max(__lowercase , __lowercase ) > max_size:
__lowerCAmelCase = max_size / max(__lowercase , __lowercase )
__lowerCAmelCase = newh * scale
__lowerCAmelCase = neww * scale
__lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 )
__lowerCAmelCase , __lowerCAmelCase = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__lowerCAmelCase = []
for image in image_inputs:
__lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0]
__lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __A , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None
def _snake_case (self ):
__lowerCAmelCase = BridgeTowerImageProcessingTester(self )
@property
def _snake_case (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case (self ):
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , '''image_mean''' ) )
self.assertTrue(hasattr(__lowercase , '''image_std''' ) )
self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) )
self.assertTrue(hasattr(__lowercase , '''do_resize''' ) )
self.assertTrue(hasattr(__lowercase , '''size''' ) )
self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) )
def _snake_case (self ):
pass
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case (self ):
# Initialize image processor
__lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
__lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values
__lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 9 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.