code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __magic_name__( lowerCamelCase = 6_0_0_8_5_1_4_7_5_1_4_3): try: __lowerCAmelCase = int(lowerCamelCase) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''') if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''') __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: while n % i == 0: __lowerCAmelCase = i n //= i i += 1 if n > 1: __lowerCAmelCase = n return int(lowerCamelCase) if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : int = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = 'roformer' def __init__(self , __lowercase=5_00_00 , __lowercase=None , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=15_36 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase=False , __lowercase=True , **__lowercase , ): super().__init__(pad_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size if embedding_size is None else embedding_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = rotary_value __lowerCAmelCase = use_cache class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = '''ylacombe/bark-small''' __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = '''en_speaker_1''' __lowerCAmelCase = '''This is a test string''' __lowerCAmelCase = '''speaker_embeddings_path.json''' __lowerCAmelCase = '''speaker_embeddings''' def _snake_case (self , **__lowercase ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BarkProcessor(tokenizer=__lowercase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _snake_case (self ): __lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _snake_case (self ): __lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCAmelCase = 35 __lowerCAmelCase = 2 __lowerCAmelCase = 8 __lowerCAmelCase = { '''semantic_prompt''': np.ones(__lowercase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCAmelCase = processor(text=self.input_string , voice_preset=__lowercase ) __lowerCAmelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowercase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCAmelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__lowercase , **__lowercase ) __lowerCAmelCase = processor(text=self.input_string , voice_preset=__lowercase ) __lowerCAmelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowercase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BarkProcessor(tokenizer=__lowercase ) __lowerCAmelCase = processor(text=self.input_string ) __lowerCAmelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=__lowercase , return_attention_mask=__lowercase , return_token_type_ids=__lowercase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() # edges = list of graph's edges __lowerCAmelCase = get_edges(lowerCamelCase) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __lowerCAmelCase , __lowerCAmelCase = edges.pop() chosen_vertices.add(lowerCamelCase) chosen_vertices.add(lowerCamelCase) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase) return chosen_vertices def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __magic_name__( ): __lowerCAmelCase = ArgumentParser('''Transformers CLI tool''', usage='''transformers-cli <command> [<args>]''') __lowerCAmelCase = parser.add_subparsers(help='''transformers-cli command helpers''') # Register commands ConvertCommand.register_subcommand(lowerCamelCase) DownloadCommand.register_subcommand(lowerCamelCase) EnvironmentCommand.register_subcommand(lowerCamelCase) RunCommand.register_subcommand(lowerCamelCase) ServeCommand.register_subcommand(lowerCamelCase) UserCommands.register_subcommand(lowerCamelCase) AddNewModelCommand.register_subcommand(lowerCamelCase) AddNewModelLikeCommand.register_subcommand(lowerCamelCase) LfsCommands.register_subcommand(lowerCamelCase) PTtoTFCommand.register_subcommand(lowerCamelCase) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowerCamelCase, '''func'''): parser.print_help() exit(1) # Run __lowerCAmelCase = args.func(lowerCamelCase) service.run() if __name__ == "__main__": main()
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _UpperCAmelCase : str = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_56} __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase , param_name='''crop_size''' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCAmelCase = get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(__lowercase , param_name='''crop_size''' ) __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): __lowerCAmelCase = target_sizes.numpy() __lowerCAmelCase = [] for idx in range(len(__lowercase ) ): __lowerCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) __lowerCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: __lowerCAmelCase = logits.argmax(dim=1 ) __lowerCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase = " "): __lowerCAmelCase = [] __lowerCAmelCase = 0 for index, char in enumerate(lowerCamelCase): if char == separator: split_words.append(string[last_index:index]) __lowerCAmelCase = index + 1 elif index + 1 == len(lowerCamelCase): split_words.append(string[last_index : index + 1]) return split_words if __name__ == "__main__": from doctest import testmod testmod()
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class a__ : """simple docstring""" @staticmethod def _snake_case (*__lowercase , **__lowercase ): pass def __magic_name__( lowerCamelCase): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _UpperCAmelCase : Tuple = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) __lowerCAmelCase = '''What is the placebo?''' __lowerCAmelCase = [ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''How many cats are there?''' __lowerCAmelCase = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes __lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def _snake_case (self ): pass
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''', [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0]) @pytest.mark.parametrize('''input_in_memory_max_size''', ['''default''', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0]) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, '''IN_MEMORY_MAX_SIZE''', lowerCamelCase) __lowerCAmelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __lowerCAmelCase = dataset_size < in_memory_max_size else: __lowerCAmelCase = False __lowerCAmelCase = is_small_dataset(lowerCamelCase) assert result == expected
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False): if isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = len(set_a.intersection(lowerCamelCase)) if alternative_union: __lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase) else: __lowerCAmelCase = len(set_a.union(lowerCamelCase)) return intersection / union if isinstance(lowerCamelCase, (list, tuple)) and isinstance(lowerCamelCase, (list, tuple)): __lowerCAmelCase = [element for element in set_a if element in set_b] if alternative_union: __lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase) return len(lowerCamelCase) / union else: __lowerCAmelCase = set_a + [element for element in set_b if element not in set_a] return len(lowerCamelCase) / len(lowerCamelCase) return len(lowerCamelCase) / len(lowerCamelCase) return None if __name__ == "__main__": _UpperCAmelCase : List[str] = {"""a""", """b""", """c""", """d""", """e"""} _UpperCAmelCase : List[Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCAmelCase : Optional[int] = data_utils.TransfoXLTokenizer _UpperCAmelCase : Union[str, Any] = data_utils.TransfoXLCorpus _UpperCAmelCase : List[str] = data_utils _UpperCAmelCase : Union[str, Any] = data_utils def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCamelCase, '''rb''') as fp: __lowerCAmelCase = pickle.load(lowerCamelCase, encoding='''latin1''') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""") __lowerCAmelCase = corpus.vocab.__dict__ torch.save(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''', lowerCamelCase) __lowerCAmelCase = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""") torch.save(lowerCamelCase, lowerCamelCase) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase = os.path.abspath(lowerCamelCase) __lowerCAmelCase = os.path.abspath(lowerCamelCase) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""") # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase = TransfoXLConfig() else: __lowerCAmelCase = TransfoXLConfig.from_json_file(lowerCamelCase) print(F"""Building PyTorch model from configuration: {config}""") __lowerCAmelCase = TransfoXLLMHeadModel(lowerCamelCase) __lowerCAmelCase = load_tf_weights_in_transfo_xl(lowerCamelCase, lowerCamelCase, lowerCamelCase) # Save pytorch-model __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) print(F"""Save PyTorch model to {os.path.abspath(lowerCamelCase)}""") torch.save(model.state_dict(), lowerCamelCase) print(F"""Save configuration file to {os.path.abspath(lowerCamelCase)}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _UpperCAmelCase : List[str] = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _UpperCAmelCase : List[Any] = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = SavedModel() __lowerCAmelCase = [] with open(os.path.join(lowerCamelCase, '''utils''', '''tf_ops''', '''onnx.json''')) as f: __lowerCAmelCase = json.load(lowerCamelCase)['''opsets'''] for i in range(1, opset + 1): onnx_ops.extend(onnx_opsets[str(lowerCamelCase)]) with open(lowerCamelCase, '''rb''') as f: saved_model.ParseFromString(f.read()) __lowerCAmelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def) # Convert to list, sorted if you want __lowerCAmelCase = sorted(lowerCamelCase) __lowerCAmelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCamelCase) if strict and len(lowerCamelCase) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops) elif len(lowerCamelCase) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""") print(*lowerCamelCase, sep='''\n''') else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""") if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=1_2, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) _UpperCAmelCase : List[Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Optional[int] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" def __init__(self , *__lowercase , **__lowercase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase) if number < 1: __lowerCAmelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase) __lowerCAmelCase = 1 for i in range(1, lowerCamelCase): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' _UpperCAmelCase : List[Any] = """Input must be a string of 8 numbers plus letter""" _UpperCAmelCase : Any = """TRWAGMYFPDXBNJZSQVHLCKE""" def __magic_name__( lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""Expected string as input, found {type(lowerCamelCase).__name__}""" raise TypeError(lowerCamelCase) __lowerCAmelCase = spanish_id.replace('''-''', '''''').upper() if len(lowerCamelCase) != 9: raise ValueError(lowerCamelCase) try: __lowerCAmelCase = int(spanish_id_clean[0:8]) __lowerCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase) from ex if letter.isdigit(): raise ValueError(lowerCamelCase) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = MobileBertTokenizer __UpperCamelCase : Tuple = MobileBertTokenizerFast __UpperCamelCase : Optional[int] = True __UpperCamelCase : Tuple = True __UpperCamelCase : Optional[int] = filter_non_english __UpperCamelCase : List[str] = 'google/mobilebert-uncased' def _snake_case (self ): super().setUp() __lowerCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowerCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case (self , __lowercase ): __lowerCAmelCase = '''UNwant\u00E9d,running''' __lowerCAmelCase = '''unwanted, running''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 12, 10, 11] ) def _snake_case (self ): if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = '''UNwant\u00E9d,running''' __lowerCAmelCase = tokenizer.tokenize(__lowercase ) __lowerCAmelCase = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # With lower casing __lowerCAmelCase = self.get_tokenizer(do_lower_case=__lowercase ) __lowerCAmelCase = self.get_rust_tokenizer(do_lower_case=__lowercase ) __lowerCAmelCase = '''UNwant\u00E9d,running''' __lowerCAmelCase = tokenizer.tokenize(__lowercase ) __lowerCAmelCase = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = BasicTokenizer(do_lower_case=__lowercase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _snake_case (self ): __lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __lowerCAmelCase = {} for i, token in enumerate(__lowercase ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=__lowercase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def _snake_case (self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _snake_case (self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _snake_case (self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def _snake_case (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus( __lowercase , return_attention_mask=__lowercase , return_token_type_ids=__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase , ) __lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(__lowercase , '''do_lower_case''' ) else False __lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def _snake_case (self ): __lowerCAmelCase = ['''的''', '''人''', '''有'''] __lowerCAmelCase = ''''''.join(__lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tokenizer_p.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer_r.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(__lowercase ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(__lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = False __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tokenizer_r.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer_p.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(__lowercase ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(__lowercase ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCAmelCase = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__lowercase ) ] self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _UpperCAmelCase : Optional[Any] = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class a__ : """simple docstring""" __UpperCamelCase : str __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[Union[str, int]] = None __UpperCamelCase : Optional[Union[str, int]] = None __UpperCamelCase : Optional[Union[str, int]] = None def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = _str_to_version_tuple(self.version_str ) def __repr__(self ): return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _snake_case (self ): return self.major, self.minor, self.patch def _snake_case (self , __lowercase ): if isinstance(__lowercase , __lowercase ): return Version(__lowercase ) elif isinstance(__lowercase , __lowercase ): return other raise TypeError(F"""{other} (type {type(__lowercase )}) cannot be compared to version.""" ) def __eq__(self , __lowercase ): try: __lowerCAmelCase = self._validate_operand(__lowercase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , __lowercase ): __lowerCAmelCase = self._validate_operand(__lowercase ) return self.tuple < other.tuple def __hash__(self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _snake_case (cls , __lowercase ): __lowerCAmelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _snake_case (self ): return self.version_str def __magic_name__( lowerCamelCase): __lowerCAmelCase = _VERSION_REG.match(lowerCamelCase) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""") return tuple(int(lowerCamelCase) for v in [res.group('''major'''), res.group('''minor'''), res.group('''patch''')]) def __magic_name__( lowerCamelCase): return ".".join(str(lowerCamelCase) for v in version_tuple)
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(lowerCamelCase))[2:] # remove the leading "0b" __lowerCAmelCase = max(len(lowerCamelCase), len(lowerCamelCase)) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''')) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase), b_binary.zfill(lowerCamelCase))) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) return torch.mm(lowerCamelCase, normalized_text_embeds.t()) class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = CLIPConfig __UpperCamelCase : Optional[Any] = ['CLIPEncoderLayer'] def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = CLIPVisionModel(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=__lowercase ) @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ).cpu().float().numpy() __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ).cpu().float().numpy() __lowerCAmelCase = [] __lowerCAmelCase = image_embeds.shape[0] for i in range(__lowercase ): __lowerCAmelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __lowerCAmelCase = special_cos_dist[i][concept_idx] __lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __lowerCAmelCase = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __lowerCAmelCase = cos_dist[i][concept_idx] __lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowercase ) result.append(__lowercase ) __lowerCAmelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) __lowerCAmelCase = special_care * 0.0_1 __lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCAmelCase : Optional[Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } _UpperCAmelCase : str = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } _UpperCAmelCase : Union[str, Any] = """▁""" class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase = None , **__lowercase , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) __lowerCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __lowerCAmelCase = len(self.sp_model ) - 1 __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case (self ): return len(self.sp_model ) def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__lowercase ) return spm_id if spm_id else self.unk_token_id def _snake_case (self , __lowercase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) __lowerCAmelCase = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase): # This function is recursive __lowerCAmelCase = len(lowerCamelCase) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __lowerCAmelCase = array[0] __lowerCAmelCase = False __lowerCAmelCase = 1 __lowerCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: __lowerCAmelCase = True __lowerCAmelCase = [element for element in array[i:] if element >= array[i]] __lowerCAmelCase = longest_subsequence(lowerCamelCase) if len(lowerCamelCase) > len(lowerCamelCase): __lowerCAmelCase = temp_array else: i += 1 __lowerCAmelCase = [element for element in array[1:] if element >= pivot] __lowerCAmelCase = [pivot, *longest_subsequence(lowerCamelCase)] if len(lowerCamelCase) > len(lowerCamelCase): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' from importlib import import_module from .logging import get_logger _UpperCAmelCase : Tuple = get_logger(__name__) class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=None ): __lowerCAmelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , __lowercase , getattr(__lowercase , __lowercase ) ) __lowerCAmelCase = module._original_module if isinstance(__lowercase , _PatchedModuleObj ) else module class a__ : """simple docstring""" __UpperCamelCase : str = [] def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase=None ): __lowerCAmelCase = obj __lowerCAmelCase = target __lowerCAmelCase = new __lowerCAmelCase = target.split('''.''' )[0] __lowerCAmelCase = {} __lowerCAmelCase = attrs or [] def __enter__(self ): *__lowerCAmelCase , __lowerCAmelCase = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__lowercase ) ): try: __lowerCAmelCase = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowerCAmelCase = getattr(self.obj , __lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowerCAmelCase = obj_attr # patch at top level setattr(self.obj , __lowercase , _PatchedModuleObj(__lowercase , attrs=self.attrs ) ) __lowerCAmelCase = getattr(self.obj , __lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__lowercase , __lowercase , _PatchedModuleObj(getattr(__lowercase , __lowercase , __lowercase ) , attrs=self.attrs ) ) __lowerCAmelCase = getattr(__lowercase , __lowercase ) # finally set the target attribute setattr(__lowercase , __lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowerCAmelCase = getattr(import_module('''.'''.join(__lowercase ) ) , __lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __lowercase ) is attr_value: __lowerCAmelCase = getattr(self.obj , __lowercase ) setattr(self.obj , __lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowerCAmelCase = globals()['''__builtins__'''][target_attr] setattr(self.obj , __lowercase , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__(self , *__lowercase ): for attr in list(self.original ): setattr(self.obj , __lowercase , self.original.pop(__lowercase ) ) def _snake_case (self ): self.__enter__() self._active_patches.append(self ) def _snake_case (self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Any = """pt""" elif is_tf_available(): _UpperCAmelCase : List[str] = """tf""" else: _UpperCAmelCase : int = """jax""" class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = PerceiverTokenizer __UpperCamelCase : int = False def _snake_case (self ): super().setUp() __lowerCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case (self ): return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def _snake_case (self , **__lowercase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=20 , __lowercase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCAmelCase = [] for i in range(len(__lowercase ) ): try: __lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) __lowerCAmelCase = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: __lowerCAmelCase = ''' ''' + output_txt __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = '''Unicode €.''' __lowerCAmelCase = tokenizer(__lowercase ) __lowerCAmelCase = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) __lowerCAmelCase = tokenizer('''e è é ê ë''' ) __lowerCAmelCase = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowerCAmelCase = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer __lowerCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] __lowerCAmelCase = tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _snake_case (self ): # safety check on max_len default value so we are sure the test works __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase ) __lowerCAmelCase = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) __lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase ) __lowerCAmelCase = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def _snake_case (self ): __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCAmelCase = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCAmelCase = json.load(__lowercase ) __lowerCAmelCase = [F"""<extra_id_{i}>""" for i in range(1_25 )] __lowerCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowerCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] __lowerCAmelCase = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _snake_case (self ): __lowerCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , '''�''' ) def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCAmelCase = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __lowerCAmelCase = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'blip_2_vision_model' def __init__(self , __lowercase=14_08 , __lowercase=61_44 , __lowercase=39 , __lowercase=16 , __lowercase=2_24 , __lowercase=14 , __lowercase="gelu" , __lowercase=0.0_0_0_0_1 , __lowercase=0.0 , __lowercase=1e-10 , __lowercase=True , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = patch_size __lowerCAmelCase = image_size __lowerCAmelCase = initializer_range __lowerCAmelCase = attention_dropout __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = hidden_act __lowerCAmelCase = qkv_bias @classmethod def _snake_case (cls , __lowercase , **__lowercase ): cls._set_token_in_kwargs(__lowercase ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__lowercase , **__lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __lowerCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase , **__lowercase ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = 'blip_2_qformer' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase="absolute" , __lowercase=2 , __lowercase=14_08 , **__lowercase , ): super().__init__(pad_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = cross_attention_frequency __lowerCAmelCase = encoder_hidden_size @classmethod def _snake_case (cls , __lowercase , **__lowercase ): cls._set_token_in_kwargs(__lowercase ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__lowercase , **__lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __lowerCAmelCase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase , **__lowercase ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = 'blip-2' __UpperCamelCase : Optional[Any] = True def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=32 , **__lowercase ): super().__init__(**__lowercase ) if vision_config is None: __lowerCAmelCase = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __lowerCAmelCase = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __lowerCAmelCase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __lowerCAmelCase = BlipaVisionConfig(**__lowercase ) __lowerCAmelCase = BlipaQFormerConfig(**__lowercase ) __lowerCAmelCase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __lowerCAmelCase = CONFIG_MAPPING[text_model_type](**__lowercase ) __lowerCAmelCase = self.text_config.tie_word_embeddings __lowerCAmelCase = self.text_config.is_encoder_decoder __lowerCAmelCase = num_query_tokens __lowerCAmelCase = self.vision_config.hidden_size __lowerCAmelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowerCAmelCase = 1.0 __lowerCAmelCase = 0.0_2 @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase , **__lowercase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowercase , ) def _snake_case (self ): __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.vision_config.to_dict() __lowerCAmelCase = self.qformer_config.to_dict() __lowerCAmelCase = self.text_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _UpperCAmelCase : Dict = """__DUMMY_TRANSFORMERS_USER__""" _UpperCAmelCase : str = """Dummy User""" _UpperCAmelCase : Optional[int] = """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""" _UpperCAmelCase : Any = """https://hub-ci.huggingface.co""" _UpperCAmelCase : Any = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" _UpperCAmelCase : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" _UpperCAmelCase : Optional[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''', lowerCamelCase) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase, lowerCamelCase): HfFolder.save_token(lowerCamelCase) yield HfFolder.delete_token() @pytest.fixture(scope='''session''') def __magic_name__( ): return HfApi(endpoint=lowerCamelCase) @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase): __lowerCAmelCase = HfFolder.get_token() HfFolder.save_token(lowerCamelCase) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): def _cleanup_repo(lowerCamelCase): hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') return _cleanup_repo @pytest.fixture def __magic_name__( lowerCamelCase): @contextmanager def _temporary_repo(lowerCamelCase): try: yield repo_id finally: cleanup_repo(lowerCamelCase) return _temporary_repo @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data/text_data.txt''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data.zip''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data.zip''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_zipped_img_data_
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCAmelCase : Any = """src/diffusers""" # Matches is_xxx_available() _UpperCAmelCase : Dict = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla _UpperCAmelCase : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") _UpperCAmelCase : Tuple = """ {0} = None """ _UpperCAmelCase : Optional[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _UpperCAmelCase : Optional[int] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __magic_name__( lowerCamelCase): __lowerCAmelCase = _re_backend.findall(lowerCamelCase) if len(lowerCamelCase) == 0: return None return "_and_".join(lowerCamelCase) def __magic_name__( ): with open(os.path.join(lowerCamelCase, '''__init__.py'''), '''r''', encoding='''utf-8''', newline='''\n''') as f: __lowerCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking __lowerCAmelCase = 0 __lowerCAmelCase = {} # Go through the end of the file while line_index < len(lowerCamelCase): # If the line contains is_backend_available, we grab all objects associated with the `else` block __lowerCAmelCase = find_backend(lines[line_index]) if backend is not None: while not lines[line_index].startswith('''else:'''): line_index += 1 line_index += 1 __lowerCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCamelCase) and len(lines[line_index]) > 1: __lowerCAmelCase = lines[line_index] __lowerCAmelCase = _re_single_line_import.search(lowerCamelCase) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''')) elif line.startswith(''' ''' * 8): objects.append(line[8:-2]) line_index += 1 if len(lowerCamelCase) > 0: __lowerCAmelCase = objects else: line_index += 1 return backend_specific_objects def __magic_name__( lowerCamelCase, lowerCamelCase): if name.isupper(): return DUMMY_CONSTANT.format(lowerCamelCase) elif name.islower(): return DUMMY_FUNCTION.format(lowerCamelCase, lowerCamelCase) else: return DUMMY_CLASS.format(lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase=None): if backend_specific_objects is None: __lowerCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __lowerCAmelCase = {} for backend, objects in backend_specific_objects.items(): __lowerCAmelCase = '''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''')) + ''']''' __lowerCAmelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCamelCase, lowerCamelCase) for o in objects]) __lowerCAmelCase = dummy_file return dummy_files def __magic_name__( lowerCamelCase=False): __lowerCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __lowerCAmelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __lowerCAmelCase = os.path.join(lowerCamelCase, '''utils''') __lowerCAmelCase = { backend: os.path.join(lowerCamelCase, F"""dummy_{short_names.get(lowerCamelCase, lowerCamelCase)}_objects.py""") for backend in dummy_files.keys() } __lowerCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCamelCase): with open(lowerCamelCase, '''r''', encoding='''utf-8''', newline='''\n''') as f: __lowerCAmelCase = f.read() else: __lowerCAmelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(lowerCamelCase, lowerCamelCase)}_objects.py as the main """ '''__init__ has new objects.''') with open(dummy_file_paths[backend], '''w''', encoding='''utf-8''', newline='''\n''') as f: f.write(dummy_files[backend]) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(lowerCamelCase, lowerCamelCase)}_objects.py. Run `make fix-copies` """ '''to fix this.''') if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : Optional[int] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } _UpperCAmelCase : int = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] __UpperCamelCase : List[int] = [] def __init__(self , __lowercase , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="[SEP]" , __lowercase="[MASK]" , __lowercase="[CLS]" , __lowercase = None , **__lowercase , ): __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , sep_token=__lowercase , mask_token=__lowercase , cls_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @property def _snake_case (self ): return self.sp_model.get_piece_size() def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): return self.sp_model.piece_to_id(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.sp_model.IdToPiece(__lowercase ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) __lowerCAmelCase = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = True , **__lowercase , ): __lowerCAmelCase = kwargs.pop('''use_source_tokenizer''' , __lowercase ) __lowerCAmelCase = self.convert_ids_to_tokens(__lowercase , skip_special_tokens=__lowercase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCAmelCase = [] __lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowercase ) ) __lowerCAmelCase = [] sub_texts.append(__lowercase ) else: current_sub_text.append(__lowercase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowercase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowerCAmelCase = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(__lowercase ) ) else: __lowerCAmelCase = ''''''.join(__lowercase ) __lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCAmelCase = self.clean_up_tokenization(__lowercase ) return clean_text else: return text def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import datasets from .evaluate import evaluate _UpperCAmelCase : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ _UpperCAmelCase : Any = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ _UpperCAmelCase : int = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __lowerCAmelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __lowerCAmelCase = evaluate(dataset=__lowercase , predictions=__lowercase ) return score
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''README.md''') print(F"""Generating {path}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(lowerCamelCase) # make sure we are under the root of the project _UpperCAmelCase : Any = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Any = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = model_name.split("""-""") _UpperCAmelCase : List[str] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _UpperCAmelCase : Dict = """base_with_context""" def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''])) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=lowerCamelCase) for lyr_num, lyr in enumerate(model.encoders): __lowerCAmelCase = weights[F"""layers_{lyr_num}"""] __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''])) __lowerCAmelCase = ly_weight['''attention'''] __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''])) return model def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=lowerCamelCase) for lyr_num, lyr in enumerate(model.encoders): __lowerCAmelCase = weights[F"""layers_{lyr_num}"""] __lowerCAmelCase = ly_weight['''attention'''] __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''])) return model def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding''']), requires_grad=lowerCamelCase) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T)) for lyr_num, lyr in enumerate(model.decoders): __lowerCAmelCase = weights[F"""layers_{lyr_num}"""] __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T)) __lowerCAmelCase = ly_weight['''self_attention'''] __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T)) __lowerCAmelCase = ly_weight['''MultiHeadDotProductAttention_0'''] __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T)) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''])) __lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T)) return model def __magic_name__( lowerCamelCase): __lowerCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path) __lowerCAmelCase = jnp.tree_util.tree_map(onp.array, lowerCamelCase) __lowerCAmelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] __lowerCAmelCase = os.path.join(args.checkpoint_path, '''..''', '''config.gin''') __lowerCAmelCase = inference.parse_training_gin_file(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = inference.InferenceModel(args.checkpoint_path, lowerCamelCase) __lowerCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''') __lowerCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) __lowerCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) __lowerCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) __lowerCAmelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], lowerCamelCase) __lowerCAmelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], lowerCamelCase) __lowerCAmelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''], lowerCamelCase) __lowerCAmelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''') __lowerCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=lowerCamelCase, continuous_encoder=lowerCamelCase, decoder=lowerCamelCase, scheduler=lowerCamelCase, melgan=lowerCamelCase, ) if args.save: pipe.save_pretrained(args.output_path) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _UpperCAmelCase : str = parser.parse_args() main(args)
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowercase ): __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowercase ): __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) __lowerCAmelCase = FlaxBertModel.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowercase ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() @slow def _snake_case (self ): for model_name in ["roberta-base", "roberta-large"]: __lowerCAmelCase = AutoTokenizer.from_pretrained(__lowercase ) __lowerCAmelCase = FlaxRobertaModel.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowercase ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() def _snake_case (self ): with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('''bert-base''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained(__lowercase , revision='''aaaaaa''' ) def _snake_case (self ): with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _snake_case (self ): with self.assertRaisesRegex(__lowercase , '''Use `from_pt=True` to load this model''' ): __lowerCAmelCase = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=64 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.0_2 , __lowercase=[1, 16, 4, 4] , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCAmelCase = (self.image_size // 32) ** 2 __lowerCAmelCase = num_patches + 1 def _snake_case (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case (self ): __lowerCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__lowercase , ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = ViTHybridModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = ViTHybridForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCamelCase : Optional[int] = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = False __UpperCamelCase : Tuple = False def _snake_case (self ): __lowerCAmelCase = ViTHybridModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def _snake_case (self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__lowercase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCAmelCase = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _snake_case (self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ViTHybridModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__( ): __lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case (self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case (self ): __lowerCAmelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__lowercase ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) __lowerCAmelCase = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) ) @slow @require_accelerate def _snake_case (self ): __lowerCAmelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __lowerCAmelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = model(**__lowercase ) __lowerCAmelCase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCAmelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if a < 0: raise ValueError('''Input value must be a positive integer''') elif isinstance(lowerCamelCase, lowerCamelCase): raise TypeError('''Input value must be a \'int\' type''') return bin(lowerCamelCase).count('''1''') if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __magic_name__( ): __lowerCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw).convert('''RGB''') return image def __magic_name__( lowerCamelCase): __lowerCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''')) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''')) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''')) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''')) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''')) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''')) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""")) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""")) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""")) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""")) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""")) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",)) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""")) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""")) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""")) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""")) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""")) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''')) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''')) # fmt: on return rename_keys def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = dct.pop(lowerCamelCase) __lowerCAmelCase = val def __magic_name__( lowerCamelCase, lowerCamelCase): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases __lowerCAmelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""") __lowerCAmelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""") # next, set bias in the state dict __lowerCAmelCase = torch.cat((q_bias, torch.zeros_like(lowerCamelCase, requires_grad=lowerCamelCase), v_bias)) __lowerCAmelCase = qkv_bias def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = 3_6_4 if '''coco''' in model_name else 2_2_4 __lowerCAmelCase = BlipaVisionConfig(image_size=lowerCamelCase).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __lowerCAmelCase = OPTConfig.from_pretrained('''facebook/opt-2.7b''', eos_token_id=lowerCamelCase).to_dict() elif "opt-6.7b" in model_name: __lowerCAmelCase = OPTConfig.from_pretrained('''facebook/opt-6.7b''', eos_token_id=lowerCamelCase).to_dict() elif "t5-xl" in model_name: __lowerCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1).to_dict() elif "t5-xxl" in model_name: __lowerCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1).to_dict() __lowerCAmelCase = BlipaConfig(vision_config=lowerCamelCase, text_config=lowerCamelCase) return config, image_size @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False): __lowerCAmelCase = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''') if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''') ) __lowerCAmelCase = tokenizer('''\n''', add_special_tokens=lowerCamelCase).input_ids[0] __lowerCAmelCase , __lowerCAmelCase = get_blipa_config(lowerCamelCase, eos_token_id=lowerCamelCase) __lowerCAmelCase = BlipaForConditionalGeneration(lowerCamelCase).eval() __lowerCAmelCase = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __lowerCAmelCase , __lowerCAmelCase = model_name_to_original[model_name] # load original model print('''Loading original model...''') __lowerCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = load_model_and_preprocess( name=lowerCamelCase, model_type=lowerCamelCase, is_eval=lowerCamelCase, device=lowerCamelCase) original_model.eval() print('''Done!''') # update state dict keys __lowerCAmelCase = original_model.state_dict() __lowerCAmelCase = create_rename_keys(lowerCamelCase) for src, dest in rename_keys: rename_key(lowerCamelCase, lowerCamelCase, lowerCamelCase) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCAmelCase = state_dict.pop(lowerCamelCase) if key.startswith('''Qformer.bert'''): __lowerCAmelCase = key.replace('''Qformer.bert''', '''qformer''') if "attention.self" in key: __lowerCAmelCase = key.replace('''self''', '''attention''') if "opt_proj" in key: __lowerCAmelCase = key.replace('''opt_proj''', '''language_projection''') if "t5_proj" in key: __lowerCAmelCase = key.replace('''t5_proj''', '''language_projection''') if key.startswith('''opt'''): __lowerCAmelCase = key.replace('''opt''', '''language''') if key.startswith('''t5'''): __lowerCAmelCase = key.replace('''t5''', '''language''') __lowerCAmelCase = val # read in qv biases read_in_q_v_bias(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = hf_model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) assert len(lowerCamelCase) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __lowerCAmelCase = load_demo_image() __lowerCAmelCase = vis_processors['''eval'''](lowerCamelCase).unsqueeze(0).to(lowerCamelCase) __lowerCAmelCase = tokenizer(['''\n'''], return_tensors='''pt''').input_ids.to(lowerCamelCase) # create processor __lowerCAmelCase = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size}, image_mean=lowerCamelCase, image_std=lowerCamelCase) __lowerCAmelCase = BlipaProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values.to(lowerCamelCase) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase, lowerCamelCase) original_model.to(lowerCamelCase) hf_model.to(lowerCamelCase) with torch.no_grad(): if "opt" in model_name: __lowerCAmelCase = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']}).logits __lowerCAmelCase = hf_model(lowerCamelCase, lowerCamelCase).logits else: __lowerCAmelCase = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']}).logits __lowerCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -1_0_0) __lowerCAmelCase = hf_model(lowerCamelCase, lowerCamelCase, labels=lowerCamelCase).logits assert original_logits.shape == logits.shape print('''First values of original logits:''', original_logits[0, :3, :3]) print('''First values of HF logits:''', logits[0, :3, :3]) # assert values if model_name == "blip2-flan-t5-xl": __lowerCAmelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=lowerCamelCase) assert torch.allclose(logits[0, :3, :3], lowerCamelCase, atol=1E-4) elif model_name == "blip2-flan-t5-xl-coco": __lowerCAmelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=lowerCamelCase) else: # cast to same type __lowerCAmelCase = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase), lowerCamelCase, atol=1E-2) print('''Looks ok!''') print('''Generating a caption...''') __lowerCAmelCase = '''''' __lowerCAmelCase = tokenizer(lowerCamelCase, return_tensors='''pt''').input_ids.to(lowerCamelCase) __lowerCAmelCase = original_model.generate({'''image''': original_pixel_values}) __lowerCAmelCase = hf_model.generate( lowerCamelCase, lowerCamelCase, do_sample=lowerCamelCase, num_beams=5, max_length=3_0, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, ) print('''Original generation:''', lowerCamelCase) __lowerCAmelCase = input_ids.shape[1] __lowerCAmelCase = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=lowerCamelCase) __lowerCAmelCase = [text.strip() for text in output_text] print('''HF generation:''', lowerCamelCase) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase) hf_model.save_pretrained(lowerCamelCase) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""") hf_model.push_to_hub(F"""nielsr/{model_name}""") if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() _UpperCAmelCase : str = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) _UpperCAmelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = 'unispeech-sat' def __init__(self , __lowercase=32 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=1e-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=1_28 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.0_5 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=3_20 , __lowercase=2 , __lowercase=0.1 , __lowercase=1_00 , __lowercase=2_56 , __lowercase=2_56 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=2_56 , __lowercase=(5_12, 5_12, 5_12, 5_12, 15_00) , __lowercase=(5, 3, 3, 1, 1) , __lowercase=(1, 2, 3, 1, 1) , __lowercase=5_12 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=5_04 , **__lowercase , ): super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_norm __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = num_clusters __lowerCAmelCase = do_stable_layer_norm __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = apply_spec_augment __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCAmelCase = num_codevectors_per_group __lowerCAmelCase = num_codevector_groups __lowerCAmelCase = contrastive_logits_temperature __lowerCAmelCase = feat_quantizer_dropout __lowerCAmelCase = num_negatives __lowerCAmelCase = codevector_dim __lowerCAmelCase = proj_codevector_dim __lowerCAmelCase = diversity_loss_weight # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = xvector_output_dim @property def _snake_case (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' from math import ceil def __magic_name__( lowerCamelCase = 1_0_0_1): __lowerCAmelCase = 1 for i in range(1, int(ceil(n / 2.0))): __lowerCAmelCase = 2 * i + 1 __lowerCAmelCase = 2 * i __lowerCAmelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _UpperCAmelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError('''String lengths must match!''') __lowerCAmelCase = 0 for chara, chara in zip(lowerCamelCase, lowerCamelCase): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Dict = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : Tuple = { """unc-nlp/lxmert-base-uncased""": 5_1_2, } _UpperCAmelCase : Optional[Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = LxmertTokenizer def __init__(self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(__lowercase , normalizer_state.pop('''type''' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**__lowercase ) __lowerCAmelCase = do_lower_case def _snake_case (self , __lowercase , __lowercase=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _UpperCAmelCase : Tuple = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _UpperCAmelCase : Union[str, Any] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase = CHRF.CHAR_ORDER , __lowercase = CHRF.WORD_ORDER , __lowercase = CHRF.BETA , __lowercase = False , __lowercase = False , __lowercase = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__lowercase )] __lowerCAmelCase = CHRF(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = sb_chrf.corpus_score(__lowercase , __lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = 'ssube/stable-diffusion-x4-upscaler-onnx' def _snake_case (self , __lowercase=0 ): __lowerCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__lowercase ) ) __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _snake_case (self ): __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case (self ): __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case (self ): __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _snake_case (self ): __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" @property def _snake_case (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _snake_case (self ): __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def _snake_case (self ): __lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowerCAmelCase = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = '''A fantasy landscape, trending on artstation''' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__lowercase , image=__lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowercase , output_type='''np''' , ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowerCAmelCase = init_image.resize((1_28, 1_28) ) __lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) __lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = '''A fantasy landscape, trending on artstation''' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__lowercase , image=__lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowercase , output_type='''np''' , ) __lowerCAmelCase = output.images __lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase): __lowerCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 9_6 elif "small" in model_name: __lowerCAmelCase = 9_6 elif "base" in model_name: __lowerCAmelCase = 1_2_8 elif "large" in model_name: __lowerCAmelCase = 1_9_2 elif "xlarge" in model_name: __lowerCAmelCase = 2_5_6 elif "huge" in model_name: __lowerCAmelCase = 3_5_2 # set label information __lowerCAmelCase = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __lowerCAmelCase = '''imagenet-22k-id2label.json''' else: __lowerCAmelCase = '''imagenet-1k-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=lowerCamelCase, depths=lowerCamelCase, focal_levels=lowerCamelCase, focal_windows=lowerCamelCase, use_conv_embed=lowerCamelCase, idalabel=lowerCamelCase, labelaid=lowerCamelCase, use_post_layernorm=lowerCamelCase, use_layerscale=lowerCamelCase, ) return config def __magic_name__( lowerCamelCase): if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('''patch_embed.norm''', '''embeddings.norm''') if "layers" in name: __lowerCAmelCase = '''encoder.''' + name if "encoder.layers" in name: __lowerCAmelCase = name.replace('''encoder.layers''', '''encoder.stages''') if "downsample.proj" in name: __lowerCAmelCase = name.replace('''downsample.proj''', '''downsample.projection''') if "blocks" in name: __lowerCAmelCase = name.replace('''blocks''', '''layers''') if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace('''modulation.f''', '''modulation.projection_in''') if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace('''modulation.h''', '''modulation.projection_context''') if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace('''modulation.proj''', '''modulation.projection_out''') if name == "norm.weight": __lowerCAmelCase = '''layernorm.weight''' if name == "norm.bias": __lowerCAmelCase = '''layernorm.bias''' if "head" in name: __lowerCAmelCase = name.replace('''head''', '''classifier''') else: __lowerCAmelCase = '''focalnet.''' + name return name def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False): # fmt: off __lowerCAmelCase = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print('''Checkpoint URL: ''', lowerCamelCase) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''')['''model'''] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(lowerCamelCase) __lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase) model.eval() # load state dict model.load_state_dict(lowerCamelCase) # verify conversion __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = BitImageProcessor( do_resize=lowerCamelCase, size={'''shortest_edge''': 2_5_6}, resample=PILImageResampling.BILINEAR, do_center_crop=lowerCamelCase, crop_size=2_2_4, do_normalize=lowerCamelCase, image_mean=lowerCamelCase, image_std=lowerCamelCase, ) __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_5_6), transforms.CenterCrop(2_2_4), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25]), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) # verify pixel_values assert torch.allclose(inputs.pixel_values, lowerCamelCase, atol=1E-4) __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(-1).item() print('''Predicted class:''', model.config.idalabel[predicted_class_idx]) print('''First values of logits:''', outputs.logits[0, :3]) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91]) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95]) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41]) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31]) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30]) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28]) assert torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""") model.push_to_hub(F"""{model_name}""") processor.push_to_hub(F"""{model_name}""") if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] create_all_state(1, lowerCamelCase, lowerCamelCase, [], lowerCamelCase) return result def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): if level == 0: total_list.append(current_list[:]) return for i in range(lowerCamelCase, total_number - level + 2): current_list.append(lowerCamelCase) create_all_state(i + 1, lowerCamelCase, level - 1, lowerCamelCase, lowerCamelCase) current_list.pop() def __magic_name__( lowerCamelCase): for i in total_list: print(*lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : str = 4 _UpperCAmelCase : List[Any] = 2 _UpperCAmelCase : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'markuplm' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase=0 , __lowercase=2 , __lowercase=2_56 , __lowercase=10_24 , __lowercase=2_16 , __lowercase=10_01 , __lowercase=32 , __lowercase=50 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout # additional properties __lowerCAmelCase = max_depth __lowerCAmelCase = max_xpath_tag_unit_embeddings __lowerCAmelCase = max_xpath_subs_unit_embeddings __lowerCAmelCase = tag_pad_id __lowerCAmelCase = subs_pad_id __lowerCAmelCase = xpath_unit_hidden_size
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = 'imagegpt' __UpperCamelCase : Dict = ['past_key_values'] __UpperCamelCase : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , __lowercase=5_12 + 1 , __lowercase=32 * 32 , __lowercase=5_12 , __lowercase=24 , __lowercase=8 , __lowercase=None , __lowercase="quick_gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , **__lowercase , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=__lowercase , **__lowercase ) class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def _snake_case (self , __lowercase , __lowercase = 1 , __lowercase = -1 , __lowercase = False , __lowercase = None , __lowercase = 3 , __lowercase = 32 , __lowercase = 32 , ): __lowerCAmelCase = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = dict(preprocessor(images=__lowercase , return_tensors=__lowercase ) ) return inputs
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sorted(zip(lowerCamelCase, lowerCamelCase), key=lambda lowerCamelCase: x[0] / x[1], reverse=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = [i[0] for i in r], [i[1] for i in r] __lowerCAmelCase = list(accumulate(lowerCamelCase)) __lowerCAmelCase = bisect(lowerCamelCase, lowerCamelCase) return ( 0 if k == 0 else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k]) ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _UpperCAmelCase : Optional[Any] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') return (preds == labels).mean() def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') __lowerCAmelCase = simple_accuracy(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = fa_score(y_true=lowerCamelCase, y_pred=lowerCamelCase) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') __lowerCAmelCase = pearsonr(lowerCamelCase, lowerCamelCase)[0] __lowerCAmelCase = spearmanr(lowerCamelCase, lowerCamelCase)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') assert len(lowerCamelCase) == len(lowerCamelCase), F"""Predictions and labels have mismatched lengths {len(lowerCamelCase)} and {len(lowerCamelCase)}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase, lowerCamelCase)} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase, lowerCamelCase) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase, lowerCamelCase) elif task_name == "qqp": return acc_and_fa(lowerCamelCase, lowerCamelCase) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} else: raise KeyError(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCamelCase)} and {len(lowerCamelCase)}""") if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} else: raise KeyError(lowerCamelCase)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__( lowerCamelCase): if "cls_token" in name: __lowerCAmelCase = name.replace('''cls_token''', '''vit.embeddings.cls_token''') if "mask_token" in name: __lowerCAmelCase = name.replace('''mask_token''', '''decoder.mask_token''') if "decoder_pos_embed" in name: __lowerCAmelCase = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''') if "pos_embed" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''pos_embed''', '''vit.embeddings.position_embeddings''') if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('''patch_embed.proj''', '''vit.embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('''patch_embed.norm''', '''vit.embeddings.norm''') if "decoder_blocks" in name: __lowerCAmelCase = name.replace('''decoder_blocks''', '''decoder.decoder_layers''') if "blocks" in name: __lowerCAmelCase = name.replace('''blocks''', '''vit.encoder.layer''') if "attn.proj" in name: __lowerCAmelCase = name.replace('''attn.proj''', '''attention.output.dense''') if "attn" in name: __lowerCAmelCase = name.replace('''attn''', '''attention.self''') if "norm1" in name: __lowerCAmelCase = name.replace('''norm1''', '''layernorm_before''') if "norm2" in name: __lowerCAmelCase = name.replace('''norm2''', '''layernorm_after''') if "mlp.fc1" in name: __lowerCAmelCase = name.replace('''mlp.fc1''', '''intermediate.dense''') if "mlp.fc2" in name: __lowerCAmelCase = name.replace('''mlp.fc2''', '''output.dense''') if "decoder_embed" in name: __lowerCAmelCase = name.replace('''decoder_embed''', '''decoder.decoder_embed''') if "decoder_norm" in name: __lowerCAmelCase = name.replace('''decoder_norm''', '''decoder.decoder_norm''') if "decoder_pred" in name: __lowerCAmelCase = name.replace('''decoder_pred''', '''decoder.decoder_pred''') if "norm.weight" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''norm.weight''', '''vit.layernorm.weight''') if "norm.bias" in name and "decoder" not in name: __lowerCAmelCase = name.replace('''norm.bias''', '''vit.layernorm.bias''') return name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowerCamelCase) if "qkv" in key: __lowerCAmelCase = key.split('''.''') __lowerCAmelCase = int(key_split[1]) if "decoder_blocks" in key: __lowerCAmelCase = config.decoder_hidden_size __lowerCAmelCase = '''decoder.decoder_layers.''' if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] elif "bias" in key: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = config.hidden_size __lowerCAmelCase = '''vit.encoder.layer.''' if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] elif "bias" in key: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = val return orig_state_dict def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: __lowerCAmelCase = 1_0_2_4 __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = 2_4 __lowerCAmelCase = 1_6 elif "huge" in checkpoint_url: __lowerCAmelCase = 1_4 __lowerCAmelCase = 1_2_8_0 __lowerCAmelCase = 5_1_2_0 __lowerCAmelCase = 3_2 __lowerCAmelCase = 1_6 __lowerCAmelCase = ViTMAEForPreTraining(lowerCamelCase) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size) __lowerCAmelCase = convert_state_dict(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) __lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size) __lowerCAmelCase = image_processor(images=lowerCamelCase, return_tensors='''pt''') # forward pass torch.manual_seed(2) __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits if "large" in checkpoint_url: __lowerCAmelCase = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]]) elif "huge" in checkpoint_url: __lowerCAmelCase = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]]) else: __lowerCAmelCase = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]]) # verify logits assert torch.allclose(logits[0, :3, :3], lowerCamelCase, atol=1E-4) print(F"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : str = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''math domain error''') return quad(lowerCamelCase, 0, lowerCamelCase, args=(lowerCamelCase))[0] def __magic_name__( lowerCamelCase, lowerCamelCase): return math.pow(lowerCamelCase, z - 1) * math.exp(-x) if __name__ == "__main__": from doctest import testmod testmod()
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase, lowerCamelCase): if b == 0: return (1, 0) ((__lowerCAmelCase) , (__lowerCAmelCase)) = extended_euclid(lowerCamelCase, a % b) __lowerCAmelCase = a // b return (y, x - k * y) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): ((__lowerCAmelCase) , (__lowerCAmelCase)) = extended_euclid(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = na * na __lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m def __magic_name__( lowerCamelCase, lowerCamelCase): ((__lowerCAmelCase) , (__lowerCAmelCase)) = extended_euclid(lowerCamelCase, lowerCamelCase) if b < 0: __lowerCAmelCase = (b % n + n) % n return b def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = invert_modulo(lowerCamelCase, lowerCamelCase), invert_modulo(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = na * na __lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
9
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _UpperCAmelCase : Tuple = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
9
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } _UpperCAmelCase : List[str] = { """b0""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 2_2_4, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_2_8_0, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 2_4_0, """dropout_rate""": 0.2, """dw_padding""": [1_6], }, """b2""": { """hidden_dim""": 1_4_0_8, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 2_6_0, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 1_6], }, """b3""": { """hidden_dim""": 1_5_3_6, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 3_0_0, """dropout_rate""": 0.3, """dw_padding""": [5, 1_8], }, """b4""": { """hidden_dim""": 1_7_9_2, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 3_8_0, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_0_4_8, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 4_5_6, """dropout_rate""": 0.4, """dw_padding""": [1_3, 2_7], }, """b6""": { """hidden_dim""": 2_3_0_4, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 5_2_8, """dropout_rate""": 0.5, """dw_padding""": [3_1], }, """b7""": { """hidden_dim""": 2_5_6_0, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 6_0_0, """dropout_rate""": 0.5, """dw_padding""": [1_8], }, } def __magic_name__( lowerCamelCase): __lowerCAmelCase = EfficientNetConfig() __lowerCAmelCase = CONFIG_MAP[model_name]['''hidden_dim'''] __lowerCAmelCase = CONFIG_MAP[model_name]['''width_coef'''] __lowerCAmelCase = CONFIG_MAP[model_name]['''depth_coef'''] __lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] __lowerCAmelCase = CONFIG_MAP[model_name]['''dropout_rate'''] __lowerCAmelCase = CONFIG_MAP[model_name]['''dw_padding'''] __lowerCAmelCase = '''huggingface/label-files''' __lowerCAmelCase = '''imagenet-1k-id2label.json''' __lowerCAmelCase = 1_0_0_0 __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return im def __magic_name__( lowerCamelCase): __lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] __lowerCAmelCase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.4_85, 0.4_56, 0.4_06], image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63], do_center_crop=lowerCamelCase, ) return preprocessor def __magic_name__( lowerCamelCase): __lowerCAmelCase = [v.split('''_''')[0].split('''block''')[1] for v in original_param_names if v.startswith('''block''')] __lowerCAmelCase = sorted(set(lowerCamelCase)) __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = {b: str(lowerCamelCase) for b, i in zip(lowerCamelCase, range(lowerCamelCase))} __lowerCAmelCase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''')) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''')) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''')) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''')) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''')) for b in block_names: __lowerCAmelCase = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""")) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""")) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""")) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""")) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""")) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""")) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""")) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""")) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""")) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""")) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""")) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""")) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""")) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""")) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""")) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""")) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""")) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""")) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""")) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''')) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''')) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''')) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''')) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''')) __lowerCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: __lowerCAmelCase = '''efficientnet.''' + item[1] __lowerCAmelCase = '''classifier.weight''' __lowerCAmelCase = '''classifier.bias''' return key_mapping def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): for key, value in tf_params.items(): if "normalization" in key: continue __lowerCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: __lowerCAmelCase = torch.from_numpy(lowerCamelCase).permute(3, 2, 0, 1) elif "depthwise_kernel" in key: __lowerCAmelCase = torch.from_numpy(lowerCamelCase).permute(2, 3, 0, 1) elif "kernel" in key: __lowerCAmelCase = torch.from_numpy(np.transpose(lowerCamelCase)) else: __lowerCAmelCase = torch.from_numpy(lowerCamelCase) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase) @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = model_classes[model_name]( include_top=lowerCamelCase, weights='''imagenet''', input_tensor=lowerCamelCase, input_shape=lowerCamelCase, pooling=lowerCamelCase, classes=1_0_0_0, classifier_activation='''softmax''', ) __lowerCAmelCase = original_model.trainable_variables __lowerCAmelCase = original_model.non_trainable_variables __lowerCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowerCAmelCase = param.numpy() __lowerCAmelCase = list(tf_params.keys()) # Load HuggingFace model __lowerCAmelCase = get_efficientnet_config(lowerCamelCase) __lowerCAmelCase = EfficientNetForImageClassification(lowerCamelCase).eval() __lowerCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''') __lowerCAmelCase = rename_keys(lowerCamelCase) replace_params(lowerCamelCase, lowerCamelCase, lowerCamelCase) # Initialize preprocessor and preprocess input image __lowerCAmelCase = convert_image_processor(lowerCamelCase) __lowerCAmelCase = preprocessor(images=prepare_img(), return_tensors='''pt''') # HF model inference hf_model.eval() with torch.no_grad(): __lowerCAmelCase = hf_model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.detach().numpy() # Original model inference __lowerCAmelCase = False __lowerCAmelCase = CONFIG_MAP[model_name]['''image_size'''] __lowerCAmelCase = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST) __lowerCAmelCase = image.img_to_array(lowerCamelCase) __lowerCAmelCase = np.expand_dims(lowerCamelCase, axis=0) __lowerCAmelCase = original_model.predict(lowerCamelCase) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3), "The predicted logits are not the same." print('''Model outputs match!''') if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase): os.mkdir(lowerCamelCase) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase) preprocessor.save_pretrained(lowerCamelCase) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""") __lowerCAmelCase = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCamelCase) hf_model.push_to_hub(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") _UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _UpperCAmelCase : str = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase : List[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __magic_name__( lowerCamelCase): re.sub('''<n>''', '''''', lowerCamelCase) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase))
9
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
1
'''simple docstring''' import math def __magic_name__( lowerCamelCase = 1_0_0): __lowerCAmelCase = sum(i * i for i in range(1, n + 1)) __lowerCAmelCase = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
9
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
1
'''simple docstring''' from typing import Any import numpy as np def __magic_name__( lowerCamelCase): return np.array_equal(lowerCamelCase, matrix.conjugate().T) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = v.conjugate().T __lowerCAmelCase = v_star.dot(lowerCamelCase) assert isinstance(lowerCamelCase, np.ndarray) return (v_star_dot.dot(lowerCamelCase)) / (v_star.dot(lowerCamelCase)) def __magic_name__( ): __lowerCAmelCase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]]) __lowerCAmelCase = np.array([[1], [2], [3]]) assert is_hermitian(lowerCamelCase), F"""{a} is not hermitian.""" print(rayleigh_quotient(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]]) assert is_hermitian(lowerCamelCase), F"""{a} is not hermitian.""" assert rayleigh_quotient(lowerCamelCase, lowerCamelCase) == float(3) if __name__ == "__main__": import doctest doctest.testmod() tests()
9
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : int = """▁""" _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : List[str] = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _UpperCAmelCase : List[str] = { """google/pegasus-xsum""": 5_1_2, } _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase="<pad>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<mask_2>" , __lowercase="<mask_1>" , __lowercase=None , __lowercase=1_03 , __lowercase = None , **__lowercase , ): __lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(__lowercase , __lowercase ): raise TypeError( F"""additional_special_tokens should be of type {type(__lowercase )}, but is""" F""" {type(__lowercase )}""" ) __lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(__lowercase ) , self.offset - 1 ) ] if len(set(__lowercase ) ) != len(__lowercase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __lowerCAmelCase = additional_special_tokens_extended else: __lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , mask_token=__lowercase , pad_token=__lowercase , mask_token_sent=__lowercase , offset=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = mask_token_sent __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) # add special tokens to encoder dict __lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case (self ): return len(self.sp_model ) + self.offset def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowerCAmelCase = self.sp_model.piece_to_id(__lowercase ) return sp_id + self.offset def _snake_case (self , __lowercase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase=False ): return 1 def _snake_case (self , __lowercase ): __lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return self._special_token_mask(__lowercase ) elif token_ids_a is None: return self._special_token_mask(__lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case (self , __lowercase , __lowercase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
9
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCAmelCase : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): for attribute in key.split('''.'''): __lowerCAmelCase = getattr(lowerCamelCase, lowerCamelCase) if weight_type is not None: __lowerCAmelCase = getattr(lowerCamelCase, lowerCamelCase).shape else: __lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""") def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowerCAmelCase = None for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, hf_model.config.feat_extract_norm == '''group''', ) __lowerCAmelCase = True elif name.split('''.''')[0] == "proj": __lowerCAmelCase = fairseq_model.proj __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(lowerCamelCase)[0].split('''.''')[-2] __lowerCAmelCase = mapped_key.replace('''*''', lowerCamelCase) if "weight_g" in name: __lowerCAmelCase = '''weight_g''' elif "weight_v" in name: __lowerCAmelCase = '''weight_v''' elif "bias" in name: __lowerCAmelCase = '''bias''' elif "weight" in name: __lowerCAmelCase = '''weight''' else: __lowerCAmelCase = None set_recursively(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) continue if not is_used: unused_weights.append(lowerCamelCase) logger.warning(F"""Unused weights: {unused_weights}""") return proj_weight def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = full_name.split('''conv_layers.''')[-1] __lowerCAmelCase = name.split('''.''') __lowerCAmelCase = int(items[0]) __lowerCAmelCase = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") else: unused_weights.append(lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(lowerCamelCase, lowerCamelCase, bias=lowerCamelCase) __lowerCAmelCase = emb.weight.data return lin_layer def __magic_name__( lowerCamelCase): with open(lowerCamelCase, '''r''', encoding='''utf-8''') as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.split(''' ''')[0] for line in lines] __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCamelCase, range(4, num_words + 4)))) return vocab_dict @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): __lowerCAmelCase = WavaVecaConfig.from_pretrained(lowerCamelCase) __lowerCAmelCase = SpeechaTextaConfig.from_pretrained( lowerCamelCase, vocab_size=lowerCamelCase, decoder_layers=lowerCamelCase, do_stable_layer_norm=lowerCamelCase) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0, do_normalize=lowerCamelCase, return_attention_mask=lowerCamelCase, ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1])}) __lowerCAmelCase = model[0].eval() # set weights for wav2vec2 encoder __lowerCAmelCase = WavaVecaModel(lowerCamelCase) __lowerCAmelCase = recursively_load_weights_wavaveca(model.encoder, lowerCamelCase) __lowerCAmelCase = SpeechaTextaForCausalLM(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=lowerCamelCase) # set output linear layer unexpected_keys.remove('''embed_out''') __lowerCAmelCase = nn.Parameter(model.decoder.embed_out.detach()) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""") logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""") __lowerCAmelCase = SpeechEncoderDecoderModel(encoder=lowerCamelCase, decoder=lowerCamelCase) __lowerCAmelCase = False # add projection layer __lowerCAmelCase = nn.Parameter(projection_layer.weight) __lowerCAmelCase = nn.Parameter(projection_layer.bias) __lowerCAmelCase = create_vocab_dict(lowerCamelCase) with open(os.path.join(lowerCamelCase, '''vocab.json'''), '''w''') as fp: json.dump(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = SpeechaTextaTokenizer(os.path.join(lowerCamelCase, '''vocab.json''')) tokenizer.save_pretrained(lowerCamelCase) __lowerCAmelCase = hf_wavavec.config.to_dict() __lowerCAmelCase = tokenizer.pad_token_id __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = tokenizer.eos_token_id __lowerCAmelCase = '''speech_to_text_2''' __lowerCAmelCase = '''wav2vec2''' __lowerCAmelCase = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase) hf_wavavec.save_pretrained(lowerCamelCase) feature_extractor.save_pretrained(lowerCamelCase) if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") _UpperCAmelCase : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = None , **__lowercase , ): super().__init__( __lowercase , split=__lowercase , features=__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase , streaming=__lowercase , num_proc=__lowercase , **__lowercase , ) __lowerCAmelCase = path_or_paths if isinstance(__lowercase , __lowercase ) else {self.split: path_or_paths} __lowerCAmelCase = Text( cache_dir=__lowercase , data_files=__lowercase , features=__lowercase , **__lowercase , ) def _snake_case (self ): # Build iterable dataset if self.streaming: __lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None self.builder.download_and_prepare( download_config=__lowercase , download_mode=__lowercase , verification_mode=__lowercase , base_path=__lowercase , num_proc=self.num_proc , ) __lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=__lowercase , in_memory=self.keep_in_memory ) return dataset
9
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' from maths.prime_factors import prime_factors def __magic_name__( lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(lowerCamelCase)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
1
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = WavaVecaPhonemeCTCTokenizer __UpperCamelCase : Tuple = False def _snake_case (self ): super().setUp() __lowerCAmelCase = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=20 , __lowercase=5 ): __lowerCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase )) for i in range(len(__lowercase ) )] __lowerCAmelCase = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: __lowerCAmelCase = ''' ''' + output_txt __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) __lowerCAmelCase = tokenizer('''m xxx ɪ''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) __lowerCAmelCase = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa __lowerCAmelCase = tokenizer('''maɪ c''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids ) self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowercase ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer(__lowercase , phonemizer_lang='''en-us''' ).input_ids __lowerCAmelCase = tokenizer(__lowercase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.decode(__lowercase ) __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowercase , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how Are you''' __lowerCAmelCase = '''hello how are you''' __lowerCAmelCase = tokenizer(__lowercase ).input_ids __lowerCAmelCase = tokenizer(__lowercase ).input_ids self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = [d[key] for d in offsets] return retrieved_list def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __lowerCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __lowerCAmelCase = tokenizer.decode(__lowercase , output_char_offsets=__lowercase , filter_word_delimiter_token=__lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowercase , __lowercase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__lowercase , __lowercase ): self.assertTrue(isinstance(__lowercase , __lowercase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowercase ) ) # transform list to ModelOutput __lowerCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__lowercase , __lowercase ): if isinstance(__lowercase , __lowercase ): [recursive_check(__lowercase , __lowercase ) for la, la in zip(__lowercase , __lowercase )] self.assertEqual(__lowercase , __lowercase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __lowerCAmelCase = tokenizer.batch_decode(__lowercase , output_char_offsets=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , output_char_offsets=__lowercase ) for ids in sample_ids] check_list_tuples_equal(__lowercase , __lowercase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case (self ): pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case (self ): pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case (self ): pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCAmelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __lowerCAmelCase = tokenizer.add_tokens(__lowercase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) __lowerCAmelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCAmelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __lowerCAmelCase = tokenizer.add_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) __lowerCAmelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case (self ): pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case (self ): pass def _snake_case (self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __lowerCAmelCase = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] __lowerCAmelCase = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(output['''text'''] , __lowercase )
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Any = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : str = 5_0_0_0_0_0 _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = os.path.split(__file__) _UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __magic_name__( lowerCamelCase, **lowerCamelCase): __lowerCAmelCase = dataset.map(**lowerCamelCase) @get_duration def __magic_name__( lowerCamelCase, **lowerCamelCase): __lowerCAmelCase = dataset.filter(**lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = datasets.Features({'''text''': datasets.Value('''string'''), '''numbers''': datasets.Value('''float32''')}) __lowerCAmelCase = generate_example_dataset( os.path.join(lowerCamelCase, '''dataset.arrow'''), lowerCamelCase, num_examples=lowerCamelCase) __lowerCAmelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=lowerCamelCase) def tokenize(lowerCamelCase): return tokenizer(examples['''text''']) __lowerCAmelCase = map(lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, batched=lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''numpy'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''pandas'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''torch''', columns='''numbers'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''tensorflow''', columns='''numbers'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, function=lowerCamelCase, batched=lowerCamelCase) __lowerCAmelCase = filter(lowerCamelCase) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase, '''wb''') as f: f.write(json.dumps(lowerCamelCase).encode('''utf-8''')) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _UpperCAmelCase : Optional[int] = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""") if not ops[op](version.parse(lowerCamelCase), version.parse(lowerCamelCase)): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""") def __magic_name__( lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = F"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''', lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = requirement, None, None else: __lowerCAmelCase = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''', lowerCamelCase) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F""" got {requirement}""") __lowerCAmelCase , __lowerCAmelCase = match[0] __lowerCAmelCase = want_full.split(''',''') # there could be multiple requirements __lowerCAmelCase = {} for w in want_range: __lowerCAmelCase = re.findall(r'''^([\s!=<>]{1,2})(.+)''', lowerCamelCase) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F""" but got {requirement}""") __lowerCAmelCase , __lowerCAmelCase = match[0] __lowerCAmelCase = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys())}, but got {op}""") # special case if pkg == "python": __lowerCAmelCase = '''.'''.join([str(lowerCamelCase) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) return # check if any version is installed try: __lowerCAmelCase = importlib.metadata.version(lowerCamelCase) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""") # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCamelCase, lowerCamelCase)
9
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'xmod' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , __lowercase=False , __lowercase=2 , __lowercase=False , __lowercase=True , __lowercase=True , __lowercase=("en_XX",) , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout __lowerCAmelCase = pre_norm __lowerCAmelCase = adapter_reduction_factor __lowerCAmelCase = adapter_layer_norm __lowerCAmelCase = adapter_reuse_layer_norm __lowerCAmelCase = ln_before_adapter __lowerCAmelCase = list(__lowercase ) __lowerCAmelCase = default_language class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
'''simple docstring''' import numpy as np import qiskit def __magic_name__( lowerCamelCase = 8, lowerCamelCase = None): __lowerCAmelCase = np.random.default_rng(seed=lowerCamelCase) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # The set of states Alice will prepare. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # Measurement basis for Bob's qubits. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # Quantum Circuit to simulate BB84 __lowerCAmelCase = qiskit.QuantumCircuit(lowerCamelCase, name='''BB84''') # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCamelCase): if alice_state[index] == 1: bbaa_circ.x(lowerCamelCase) if alice_basis[index] == 1: bbaa_circ.h(lowerCamelCase) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCamelCase): if bob_basis[index] == 1: bbaa_circ.h(lowerCamelCase) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowerCAmelCase = qiskit.Aer.get_backend('''aer_simulator''') # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowerCAmelCase = qiskit.execute(lowerCamelCase, lowerCamelCase, shots=1, seed_simulator=lowerCamelCase) # Returns the result of measurement. __lowerCAmelCase = job.result().get_counts(lowerCamelCase).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowerCAmelCase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCamelCase, lowerCamelCase, lowerCamelCase) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. __lowerCAmelCase = gen_key[:key_len] if len(lowerCamelCase) >= key_len else gen_key.ljust(lowerCamelCase, '''0''') return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
9
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
1
'''simple docstring''' import pprint import requests _UpperCAmelCase : str = """https://zenquotes.io/api""" def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/today''').json() def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/random''').json() if __name__ == "__main__": _UpperCAmelCase : Any = random_quotes() pprint.pprint(response)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
9
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Union[str, Any] = { """gpt-neox-20b""": 2_0_4_8, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase=False , **__lowercase , ): super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: __lowerCAmelCase = getattr(__lowercase , pre_tok_state.pop('''type''' ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**__lowercase ) __lowerCAmelCase = add_prefix_space def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids
9
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class a__ : """simple docstring""" __UpperCamelCase : Union[str, Any] = BlenderbotSmallConfig __UpperCamelCase : List[Any] = {} __UpperCamelCase : Tuple = 'gelu' def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=False , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=20 , __lowercase=2 , __lowercase=1 , __lowercase=0 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_blenderbot_small_inputs_dict(__a , __a , __a ) return config, inputs_dict def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = TFBlenderbotSmallModel(config=__a ).get_decoder() __lowerCAmelCase = inputs_dict['input_ids'] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict['attention_mask'][:1, :] __lowerCAmelCase = inputs_dict['head_mask'] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(__a , attention_mask=__a )[0] __lowerCAmelCase = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(_UpperCAmelCase, config.pad_token_id), tf.inta) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.inta), ], axis=-1, ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCamelCase : List[str] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Optional[Any] = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[str] = True __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def _snake_case (self ): __lowerCAmelCase = TFBlenderbotSmallModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __UpperCamelCase : Tuple = 'facebook/blenderbot_small-90M' @cached_property def _snake_case (self ): return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def _snake_case (self ): __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , return_tensors='''tf''' ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _UpperCAmelCase : Tuple = logging.get_logger(__name__) class a__ ( A__ ): """simple docstring""" def __init__(self , *__lowercase , **__lowercase ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
351
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=99 , __lowercase=13 , __lowercase=16 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=2 , __lowercase=32 , __lowercase=4 , __lowercase=4 , __lowercase=30 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = decoder_seq_length # For common tests __lowerCAmelCase = self.decoder_seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_model __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = eos_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = decoder_start_token_id __lowerCAmelCase = use_cache __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = None __lowerCAmelCase = decoder_seq_length __lowerCAmelCase = 2 __lowerCAmelCase = 1 def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __lowerCAmelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , ): __lowerCAmelCase = True __lowerCAmelCase = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __lowerCAmelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __lowerCAmelCase = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) __lowerCAmelCase = model(_UpperCAmelCase ) __lowerCAmelCase = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) __lowerCAmelCase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = model(_UpperCAmelCase )['''last_hidden_state'''] __lowerCAmelCase = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class a__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __UpperCamelCase : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () __UpperCamelCase : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __UpperCamelCase : int = True __UpperCamelCase : Any = False def _snake_case (self ): __lowerCAmelCase = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) __lowerCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): pass def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def _snake_case (self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case (self ): pass
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __magic_name__( lowerCamelCase): __lowerCAmelCase = filter(lambda lowerCamelCase: p.requires_grad, model.parameters()) __lowerCAmelCase = sum([np.prod(p.size()) for p in model_parameters]) return params _UpperCAmelCase : str = logging.getLogger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase): if metric == "rouge2": __lowerCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowerCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowerCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''') __lowerCAmelCase = ModelCheckpoint( dirpath=__lowerCAmelCase, filename=__lowerCAmelCase, monitor=F"""val_{metric}""", mode='''max''', save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def __magic_name__( lowerCamelCase, lowerCamelCase): return EarlyStopping( monitor=F"""val_{metric}""", mode='''min''' if '''loss''' in metric else '''max''', patience=__lowerCAmelCase, verbose=__lowerCAmelCase, ) class a__ ( pl.Callback ): """simple docstring""" def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__snake_case ) @rank_zero_only def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase = od / '''test_results.txt''' __lowerCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__snake_case ) generations_file.parent.mkdir(exist_ok=__snake_case ) with open(__snake_case , '''a+''' ) as writer: for key in sorted(__snake_case ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase = metrics[key] if isinstance(__snake_case , torch.Tensor ): __lowerCAmelCase = val.item() __lowerCAmelCase = F"""{key}: {val:.6f}\n""" writer.write(__snake_case ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__snake_case ) @rank_zero_only def _snake_case (self , __lowercase , __lowercase ): try: __lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase = pl_module.model.num_parameters() __lowerCAmelCase = count_trainable_parameters(__snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def _snake_case (self , __lowercase , __lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__snake_case , __snake_case , '''test''' ) @rank_zero_only def _snake_case (self , __lowercase , __lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=1_00 , __lowercase=13 , __lowercase=30 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.0_2 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = vocab_size __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 1 def _snake_case (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = FlaxBeitModel(config=_lowerCamelCase ) __lowerCAmelCase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = FlaxBeitForMaskedImageModeling(config=_lowerCamelCase ) __lowerCAmelCase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = FlaxBeitForImageClassification(config=_lowerCamelCase ) __lowerCAmelCase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = FlaxBeitForImageClassification(_lowerCamelCase ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_lowerCamelCase ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( __lowerCAmelCase ) = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class a__ ( a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _snake_case (self ): __lowerCAmelCase = FlaxBeitModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_lowerCamelCase ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase = model_class(_lowerCamelCase ) @jax.jit def model_jitted(__lowercase , **__lowercase ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): __lowerCAmelCase = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _snake_case (self ): for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __lowerCAmelCase = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(_lowerCamelCase ) def __magic_name__( ): __lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @require_flax class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case (self ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _snake_case (self ): __lowerCAmelCase = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_lowerCamelCase , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __lowerCAmelCase = np.ones((1, 1_96) , dtype=_lowerCamelCase ) # forward pass __lowerCAmelCase = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) __lowerCAmelCase = outputs.logits # verify the logits __lowerCAmelCase = (1, 1_96, 81_92) self.assertEqual(logits.shape , _lowerCamelCase ) __lowerCAmelCase = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) ) @slow def _snake_case (self ): __lowerCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) # forward pass __lowerCAmelCase = model(**_lowerCamelCase ) __lowerCAmelCase = outputs.logits # verify the logits __lowerCAmelCase = (1, 10_00) self.assertEqual(logits.shape , _lowerCamelCase ) __lowerCAmelCase = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) __lowerCAmelCase = 2_81 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _snake_case (self ): __lowerCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) # forward pass __lowerCAmelCase = model(**_lowerCamelCase ) __lowerCAmelCase = outputs.logits # verify the logits __lowerCAmelCase = (1, 2_18_41) self.assertEqual(logits.shape , _lowerCamelCase ) __lowerCAmelCase = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) __lowerCAmelCase = 23_96 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCAmelCase : Optional[int] = """docs/source/en/_toctree.yml""" def __magic_name__( lowerCamelCase): __lowerCAmelCase = defaultdict(__a) for doc in model_doc: counts[doc["local"]] += 1 __lowerCAmelCase = [key for key, value in counts.items() if value > 1] __lowerCAmelCase = [] for duplicate_key in duplicates: __lowerCAmelCase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key}) if len(__a) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''') # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1]) # Sort return sorted(__a, key=lambda lowerCamelCase: s["title"].lower()) def __magic_name__( lowerCamelCase=False): with open(__a, encoding='''utf-8''') as f: __lowerCAmelCase = yaml.safe_load(f.read()) # Get to the API doc __lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc __lowerCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __lowerCAmelCase = api_doc[model_idx]['sections'] __lowerCAmelCase = [(idx, section) for idx, section in enumerate(__a) if 'sections' in section] __lowerCAmelCase = False for idx, modality_doc in modalities_docs: __lowerCAmelCase = modality_doc['sections'] __lowerCAmelCase = clean_model_doc_toc(__a) if old_modality_doc != new_modality_doc: __lowerCAmelCase = True if overwrite: __lowerCAmelCase = new_modality_doc if diff: if overwrite: __lowerCAmelCase = model_doc __lowerCAmelCase = api_doc with open(__a, '''w''', encoding='''utf-8''') as f: f.write(yaml.dump(__a, allow_unicode=__a)) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''') if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=[]): __lowerCAmelCase = size[0] - overlap_pixels * 2 __lowerCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase = np.ones((size_y, size_x), dtype=np.uinta) * 2_5_5 __lowerCAmelCase = np.pad(__snake_case, mode='''linear_ramp''', pad_width=__snake_case, end_values=0) if "l" in remove_borders: __lowerCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return max(__snake_case, min(__snake_case, __snake_case)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return ( clamp(rect[0], min[0], max[0]), clamp(rect[1], min[1], max[1]), clamp(rect[2], min[0], max[0]), clamp(rect[3], min[1], max[1]), ) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = list(__snake_case) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase = clamp_rect(__snake_case, [0, 0], [image_size[0], image_size[1]]) return rect def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Image.new('''RGB''', (tile.size[0] + original_slice, tile.size[1])) result.paste( original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC).crop( (slice_x, 0, slice_x + original_slice, tile.size[1])), (0, 0), ) result.paste(__snake_case, (original_slice, 0)) return result def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase = tile.crop(__snake_case) return tile def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = n % d return n - divisor class a__ ( lowerCamelCase__ ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = 3_50 , ): super().__init__( vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , unet=__lowercase , low_res_scheduler=__lowercase , scheduler=__lowercase , max_noise_level=__lowercase , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ): torch.manual_seed(0 ) __lowerCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase = add_overlap_rect(__lowercase , __lowercase , image.size ) __lowerCAmelCase = image.crop(__lowercase ) __lowerCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase = max(0 , __lowercase ) __lowerCAmelCase = squeeze_tile(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = to_input.size __lowerCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase = super(__lowercase , self ).__call__(image=__lowercase , **__lowercase ).images[0] __lowerCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase = unsqueeze_tile(__lowercase , __lowercase ) __lowerCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) __lowerCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowercase ) , mode='''L''' , ) final_image.paste( __lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowercase ) @torch.no_grad() def __call__(self , __lowercase , __lowercase , __lowercase = 75 , __lowercase = 9.0 , __lowercase = 50 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = 1 , __lowercase = 1_28 , __lowercase = 32 , __lowercase = 32 , ): __lowerCAmelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase = tcx * tcy __lowerCAmelCase = 0 for y in range(__lowercase ): for x in range(__lowercase ): self._process_tile( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , prompt=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , noise_level=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def __magic_name__( ): __lowerCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' __lowerCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(__snake_case, revision='''fp16''', torch_dtype=torch.floataa) __lowerCAmelCase = pipe.to('''cuda''') __lowerCAmelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''') def callback(lowerCamelCase): print(F"""progress: {obj["progress"]:.4f}""") obj["image"].save('''diffusers_library_progress.jpg''') __lowerCAmelCase = pipe(image=__snake_case, prompt='''Black font, white background, vector''', noise_level=4_0, callback=__snake_case) final_image.save('''diffusers_library.jpg''') if __name__ == "__main__": main()
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _UpperCAmelCase : int = False @skip_mps class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = StableDiffusionAttendAndExcitePipeline __UpperCamelCase : int = False __UpperCamelCase : Tuple = TEXT_TO_IMAGE_PARAMS __UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) __UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _snake_case (cls ): super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _snake_case (cls ): super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowerCAmelCase = CLIPTextModel(_snake_case ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(_snake_case ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(_snake_case ) else: __lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCAmelCase = __lowerCAmelCase = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCAmelCase = self.get_dummy_inputs(_snake_case ) __lowerCAmelCase = pipe(**_snake_case ).images __lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __lowerCAmelCase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def _snake_case (self ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def _snake_case (self ): self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case (self ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def _snake_case (self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case (self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def _snake_case (self ): super().test_save_load_local(expected_max_difference=5e-4 ) def _snake_case (self ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): """simple docstring""" @classmethod def _snake_case (cls ): super().setUpClass() torch.use_deterministic_algorithms(_snake_case ) @classmethod def _snake_case (cls ): super().tearDownClass() torch.use_deterministic_algorithms(_snake_case ) def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self ): __lowerCAmelCase = torch.manual_seed(51 ) __lowerCAmelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=_snake_case , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __lowerCAmelCase = '''a painting of an elephant with glasses''' __lowerCAmelCase = [5, 7] __lowerCAmelCase = pipe( prompt=_snake_case , token_indices=_snake_case , guidance_scale=7.5 , generator=_snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-1
357
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : Optional[Any] = 5_0_0_0_0 _UpperCAmelCase : str = 5_0_0_0 _UpperCAmelCase : str = os.path.split(__file__) _UpperCAmelCase : Tuple = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase): for i in range(lowerCamelCase_): __lowerCAmelCase = dataset[i] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): for i in range(0, len(lowerCamelCase_), lowerCamelCase_): __lowerCAmelCase = dataset[i : i + batch_size] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): with dataset.formatted_as(type=lowerCamelCase_): for i in range(lowerCamelCase_): __lowerCAmelCase = dataset[i] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): with dataset.formatted_as(type=lowerCamelCase_): for i in range(0, lowerCamelCase_, lowerCamelCase_): __lowerCAmelCase = dataset[i : i + batch_size] def __magic_name__( ): __lowerCAmelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} __lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] __lowerCAmelCase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''') __lowerCAmelCase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''')), '''numbers''': datasets.Value('''float32''')}) __lowerCAmelCase = generate_example_dataset( os.path.join(lowerCamelCase_, '''dataset.arrow'''), lowerCamelCase_, num_examples=lowerCamelCase_, seq_shapes={'''list''': (1_0_0,)}, ) print('''first set of iterations''') for func, kwargs in functions: print(func.__name__, str(lowerCamelCase_)) __lowerCAmelCase = func(lowerCamelCase_, **lowerCamelCase_) print('''shuffling dataset''') __lowerCAmelCase = dataset.shuffle() print('''Second set of iterations (after shuffling''') for func, kwargs in functions_shuffled: print('''shuffled ''', func.__name__, str(lowerCamelCase_)) __lowerCAmelCase = func( lowerCamelCase_, **lowerCamelCase_) with open(lowerCamelCase_, '''wb''') as f: f.write(json.dumps(lowerCamelCase_).encode('''utf-8''')) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase): __lowerCAmelCase = image.size __lowerCAmelCase = 0 __lowerCAmelCase = image.load() for i in range(__lowerCamelCase): for j in range(__lowerCamelCase): __lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase): for i in range(__lowerCamelCase): __lowerCAmelCase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase : Dict = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
359
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _UpperCAmelCase : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _UpperCAmelCase : Optional[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __magic_name__( lowerCamelCase): __lowerCAmelCase = [] for i in range(len(lowerCAmelCase__)): __lowerCAmelCase = [] for j in range(len(cells[i])): # Get the number of live neighbours __lowerCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i]) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i]) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCAmelCase__) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCAmelCase__) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCAmelCase__) - 1 and j < len(cells[i]) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1) else: next_generation_row.append(0) next_generation.append(lowerCAmelCase__) return next_generation def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for _ in range(lowerCAmelCase__): # Create output image __lowerCAmelCase = Image.new('''RGB''', (len(cells[0]), len(lowerCAmelCase__))) __lowerCAmelCase = img.load() # Save cells to image for x in range(len(lowerCAmelCase__)): for y in range(len(cells[0])): __lowerCAmelCase = 2_5_5 - cells[y][x] * 2_5_5 __lowerCAmelCase = (colour, colour, colour) # Save image images.append(lowerCAmelCase__) __lowerCAmelCase = new_generation(lowerCAmelCase__) return images if __name__ == "__main__": _UpperCAmelCase : Any = generate_images(GLIDER, 1_6) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase): return np.where(vector > 0, lowercase__, (alpha * (np.exp(lowercase__) - 1))) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=4 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a__ ( __lowercase , unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = True __UpperCamelCase : List[str] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case (self ): __lowerCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _snake_case (self ): for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__lowercase ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase ) @require_flax class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__lowercase ) __lowerCAmelCase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(__lowercase )[0] __lowerCAmelCase = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , __lowercase ) # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) ) @slow def _snake_case (self ): __lowerCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__lowercase ) __lowerCAmelCase = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(__lowercase )[0] # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowercase , atol=1e-4 ) )
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __magic_name__( lowerCamelCase, lowerCamelCase=1_0): __lowerCAmelCase = [] for _ in range(a_): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def __magic_name__( lowerCamelCase, lowerCamelCase=1_0): __lowerCAmelCase = [] for step in range(a_): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(a_, '''schedule.bin''') torch.save(scheduler.state_dict(), a_) __lowerCAmelCase = torch.load(a_) scheduler.load_state_dict(a_) return lrs @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self , __lowercase , __lowercase , __lowercase ): self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) __lowerCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_00 ): __lowerCAmelCase = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowercase_ ) __lowerCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowercase_ , weight_decay=0.0 , relative_step=lowercase_ , scale_parameter=lowercase_ , warmup_init=lowercase_ , ) for _ in range(10_00 ): __lowerCAmelCase = criterion(lowercase_ , lowercase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase : Any = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase : str = 10 def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=None ): self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for a, b in zip(lowercase_ , lowercase_ ): self.assertAlmostEqual(lowercase_ , lowercase_ , delta=lowercase_ , msg=lowercase_ ) def _snake_case (self ): __lowerCAmelCase = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCAmelCase = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): __lowerCAmelCase , __lowerCAmelCase = data __lowerCAmelCase = scheduler_func(self.optimizer , **lowercase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCAmelCase = unwrap_schedule(lowercase_ , self.num_steps ) self.assertListAlmostEqual( lowercase_ , lowercase_ , tol=1e-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , ) __lowerCAmelCase = scheduler_func(self.optimizer , **lowercase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowercase_ ) # wrap to test picklability of the schedule __lowerCAmelCase = unwrap_and_save_reload_schedule(lowercase_ , self.num_steps ) self.assertListEqual(lowercase_ , lowercase_ , msg=F"""failed for {scheduler_func} in save and reload""" ) class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = fn def __call__(self , *__lowercase , **__lowercase ): return self.fn(*lowercase_ , **lowercase_ ) @classmethod def _snake_case (self , __lowercase ): __lowerCAmelCase = list(map(self , scheduler.lr_lambdas ) )
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCAmelCase : Union[str, Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCAmelCase : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _UpperCAmelCase : List[Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCAmelCase : str = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCAmelCase : Dict = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def __magic_name__( lowerCamelCase): __lowerCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''', __a) return [m.group(0) for m in matches] def __magic_name__( ): __lowerCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCAmelCase = { config.replace('''Config''', ''''''): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __lowerCAmelCase = collections.defaultdict(__a) __lowerCAmelCase = collections.defaultdict(__a) __lowerCAmelCase = collections.defaultdict(__a) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__a): __lowerCAmelCase = None if _re_tf_models.match(__a) is not None: __lowerCAmelCase = tf_models __lowerCAmelCase = _re_tf_models.match(__a).groups()[0] elif _re_flax_models.match(__a) is not None: __lowerCAmelCase = flax_models __lowerCAmelCase = _re_flax_models.match(__a).groups()[0] elif _re_pt_models.match(__a) is not None: __lowerCAmelCase = pt_models __lowerCAmelCase = _re_pt_models.match(__a).groups()[0] if lookup_dict is not None: while len(__a) > 0: if attr_name in model_prefix_to_model_type: __lowerCAmelCase = True break # Try again after removing the last word in the name __lowerCAmelCase = ''''''.join(camel_case_split(__a)[:-1]) __lowerCAmelCase = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys())) __lowerCAmelCase = list(__a) all_models.sort() __lowerCAmelCase = {'''model_type''': all_models} __lowerCAmelCase = [pt_models[t] for t in all_models] __lowerCAmelCase = [tf_models[t] for t in all_models] __lowerCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __lowerCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __lowerCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __lowerCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __lowerCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __lowerCAmelCase = '''AutoTokenizer''' __lowerCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(__a) def __magic_name__( lowerCamelCase): __lowerCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __lowerCAmelCase = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] __lowerCAmelCase = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__a, __a, __a): # The type of pipeline may not exist in this framework if not hasattr(__a, __a): continue # First extract all model_names __lowerCAmelCase = [] for name in getattr(__a, __a).values(): if isinstance(__a, __a): model_names.append(__a) else: model_names.extend(list(__a)) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names}) return table def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = get_frameworks_table() __lowerCAmelCase = Dataset.from_pandas(__a) __lowerCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''', '''pipeline_tags.json''', repo_type='''dataset''', token=__a) __lowerCAmelCase = Dataset.from_json(__a) __lowerCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__a)) } __lowerCAmelCase = update_pipeline_and_auto_class_table(__a) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __lowerCAmelCase = sorted(table.keys()) __lowerCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], }) __lowerCAmelCase = Dataset.from_pandas(__a) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__a, '''frameworks.json''')) tags_dataset.to_json(os.path.join(__a, '''pipeline_tags.json''')) if commit_sha is not None: __lowerCAmelCase = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __lowerCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''', folder_path=__a, repo_type='''dataset''', token=__a, commit_message=__a, ) def __magic_name__( ): __lowerCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __lowerCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __lowerCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __lowerCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(__a, (list, tuple)): __lowerCAmelCase = model[0] __lowerCAmelCase = model.__name__ if model not in in_table.values(): missing.append(__a) if len(__a) > 0: __lowerCAmelCase = ''', '''.join(__a) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"""`utils/update_metadata.py`: {msg}. Please add them!""") if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") _UpperCAmelCase : List[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' from statistics import mean import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = 0 # Number of processes finished __lowerCAmelCase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCAmelCase = [0] * no_of_process # List to include calculation results __lowerCAmelCase = [0] * no_of_process # Sort by arrival time. __lowerCAmelCase = [burst_time[i] for i in np.argsort(lowerCAmelCase__)] __lowerCAmelCase = [process_name[i] for i in np.argsort(lowerCAmelCase__)] arrival_time.sort() while no_of_process > finished_process_count: __lowerCAmelCase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCAmelCase = arrival_time[i] __lowerCAmelCase = 0 # Index showing the location of the process being performed __lowerCAmelCase = 0 # Saves the current response ratio. __lowerCAmelCase = 0 for i in range(0, lowerCAmelCase__): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCAmelCase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCAmelCase = temp __lowerCAmelCase = i # Calculate the turn around time __lowerCAmelCase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCAmelCase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [0] * no_of_process for i in range(0, lowerCAmelCase__): __lowerCAmelCase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCAmelCase : Tuple = 5 _UpperCAmelCase : Any = ["""A""", """B""", """C""", """D""", """E"""] _UpperCAmelCase : List[Any] = [1, 2, 3, 4, 5] _UpperCAmelCase : Optional[Any] = [1, 2, 3, 4, 5] _UpperCAmelCase : Union[str, Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCAmelCase : List[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( f"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" f"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(f"""average waiting time : {mean(waiting_time):.5f}""") print(f"""average turn around time : {mean(turn_around_time):.5f}""")
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Any = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' _UpperCAmelCase : Optional[int] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __magic_name__( lowerCamelCase): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __lowerCAmelCase = k.replace(a__, a__) if k.startswith('''encoder'''): __lowerCAmelCase = k.replace('''.attn''', '''.self_attn''') __lowerCAmelCase = k.replace('''norm1''', '''self_attn_layer_norm''') __lowerCAmelCase = k.replace('''norm2''', '''final_layer_norm''') elif k.startswith('''decoder'''): __lowerCAmelCase = k.replace('''norm1''', '''self_attn_layer_norm''') __lowerCAmelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''') __lowerCAmelCase = k.replace('''norm3''', '''final_layer_norm''') return k def __magic_name__( lowerCamelCase): __lowerCAmelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: __lowerCAmelCase = sd.pop(a__) __lowerCAmelCase = k.replace('''layernorm_embedding''', '''layer_norm''') assert new_k not in sd __lowerCAmelCase = v _UpperCAmelCase : int = ['''START'''] @torch.no_grad() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(a__, map_location='''cpu''') __lowerCAmelCase = model['''model'''] __lowerCAmelCase = BlenderbotConfig.from_json_file(a__) __lowerCAmelCase = BlenderbotForConditionalGeneration(a__) __lowerCAmelCase = m.model.state_dict().keys() __lowerCAmelCase = [] __lowerCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __lowerCAmelCase = rename_state_dict_key(a__) if new_k not in valid_keys: failures.append([k, new_k]) else: __lowerCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a__) m.model.load_state_dict(a__, strict=a__) m.half() m.save_pretrained(a__) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) _UpperCAmelCase : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase = 4_0_0_0_0_0_0): __lowerCAmelCase = [0, 1] __lowerCAmelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 __lowerCAmelCase = 0 for j in range(len(__SCREAMING_SNAKE_CASE) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0