code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = '''ylacombe/bark-small''' __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = '''en_speaker_1''' __lowerCAmelCase = '''This is a test string''' __lowerCAmelCase = '''speaker_embeddings_path.json''' __lowerCAmelCase = '''speaker_embeddings''' def _snake_case (self , **__lowercase ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BarkProcessor(tokenizer=__lowercase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _snake_case (self ): __lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _snake_case (self ): __lowerCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCAmelCase = 35 __lowerCAmelCase = 2 __lowerCAmelCase = 8 __lowerCAmelCase = { '''semantic_prompt''': np.ones(__lowercase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCAmelCase = processor(text=self.input_string , voice_preset=__lowercase ) __lowerCAmelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowercase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCAmelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__lowercase , **__lowercase ) __lowerCAmelCase = processor(text=self.input_string , voice_preset=__lowercase ) __lowerCAmelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowercase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BarkProcessor(tokenizer=__lowercase ) __lowerCAmelCase = processor(text=self.input_string ) __lowerCAmelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=__lowercase , return_attention_mask=__lowercase , return_token_type_ids=__lowercase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0, lowerCamelCase = 1_0_0_0, lowerCamelCase = True): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''') return min_val if option else max_val def __magic_name__( lowerCamelCase, lowerCamelCase): return int((number_a + number_a) / 2) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''') if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''') def answer(lowerCamelCase) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''') __lowerCAmelCase = lower __lowerCAmelCase = higher __lowerCAmelCase = [] while True: __lowerCAmelCase = get_avg(lowerCamelCase, lowerCamelCase) last_numbers.append(lowerCamelCase) if answer(lowerCamelCase) == "low": __lowerCAmelCase = number elif answer(lowerCamelCase) == "high": __lowerCAmelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""") print(F"""details : {last_numbers!s}""") def __magic_name__( ): __lowerCAmelCase = int(input('''Enter lower value : ''').strip()) __lowerCAmelCase = int(input('''Enter high value : ''').strip()) __lowerCAmelCase = int(input('''Enter value to guess : ''').strip()) guess_the_number(lowerCamelCase, lowerCamelCase, lowerCamelCase) if __name__ == "__main__": main()
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
class a__ : """simple docstring""" def __init__(self , __lowercase ): # we need a list not a string, so do something to change the type __lowerCAmelCase = arr.split(''',''' ) def _snake_case (self ): __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCAmelCase : List[str] = input("""please input some numbers:""") _UpperCAmelCase : Tuple = SubArray(whole_array) _UpperCAmelCase : List[Any] = array.solve_sub_array() print(("""the results is:""", re))
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'data2vec-vision' def __init__(self , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=2_24 , __lowercase=16 , __lowercase=3 , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=0.1 , __lowercase=0.1 , __lowercase=True , __lowercase=[3, 5, 7, 11] , __lowercase=[1, 2, 3, 6] , __lowercase=True , __lowercase=0.4 , __lowercase=2_56 , __lowercase=1 , __lowercase=False , __lowercase=2_55 , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = version.parse('1.11' ) @property def _snake_case (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case (self ): return 1e-4
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = parent def _snake_case (self ): return {} def __magic_name__( ): __lowerCAmelCase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __lowerCAmelCase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = MarkupLMFeatureExtractor if is_bsa_available() else None def _snake_case (self ): __lowerCAmelCase = MarkupLMFeatureExtractionTester(self ) @property def _snake_case (self ): return self.feature_extract_tester.prepare_feat_extract_dict() def _snake_case (self ): # Initialize feature_extractor __lowerCAmelCase = self.feature_extraction_class() # Test not batched input __lowerCAmelCase = get_html_strings()[0] __lowerCAmelCase = feature_extractor(__lowercase ) # fmt: off __lowerCAmelCase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __lowerCAmelCase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , __lowercase ) self.assertEqual(encoding.xpaths , __lowercase ) # Test batched __lowerCAmelCase = get_html_strings() __lowerCAmelCase = feature_extractor(__lowercase ) # fmt: off __lowerCAmelCase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __lowerCAmelCase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __lowercase ) self.assertEqual(encoding.xpaths , __lowercase )
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
_UpperCAmelCase : List[Any] = """Input must be a string of 8 numbers plus letter""" _UpperCAmelCase : Any = """TRWAGMYFPDXBNJZSQVHLCKE""" def __magic_name__( lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""Expected string as input, found {type(lowerCamelCase).__name__}""" raise TypeError(lowerCamelCase) __lowerCAmelCase = spanish_id.replace('''-''', '''''').upper() if len(lowerCamelCase) != 9: raise ValueError(lowerCamelCase) try: __lowerCAmelCase = int(spanish_id_clean[0:8]) __lowerCAmelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase) from ex if letter.isdigit(): raise ValueError(lowerCamelCase) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : str = 5_0_0_0_0_0 _UpperCAmelCase : Union[str, Any] = os.path.split(__file__) _UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __magic_name__( lowerCamelCase, **lowerCamelCase): __lowerCAmelCase = dataset.map(**lowerCamelCase) @get_duration def __magic_name__( lowerCamelCase, **lowerCamelCase): __lowerCAmelCase = dataset.filter(**lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = datasets.Features({'''text''': datasets.Value('''string'''), '''numbers''': datasets.Value('''float32''')}) __lowerCAmelCase = generate_example_dataset( os.path.join(lowerCamelCase, '''dataset.arrow'''), lowerCamelCase, num_examples=lowerCamelCase) __lowerCAmelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=lowerCamelCase) def tokenize(lowerCamelCase): return tokenizer(examples['''text''']) __lowerCAmelCase = map(lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, batched=lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''numpy'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''pandas'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''torch''', columns='''numbers'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) with dataset.formatted_as(type='''tensorflow''', columns='''numbers'''): __lowerCAmelCase = map(lowerCamelCase, function=lambda lowerCamelCase: None, batched=lowerCamelCase) __lowerCAmelCase = map(lowerCamelCase, function=lowerCamelCase, batched=lowerCamelCase) __lowerCAmelCase = filter(lowerCamelCase) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase, '''wb''') as f: f.write(json.dumps(lowerCamelCase).encode('''utf-8''')) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = LongformerTokenizer __UpperCamelCase : Dict = True __UpperCamelCase : List[str] = LongformerTokenizerFast __UpperCamelCase : Optional[Any] = True def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) # , add_prefix_space=True) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowercase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''Encode this sequence.''' __lowerCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowercase , __lowercase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowercase , __lowercase ) # Testing spaces after special tokens __lowerCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase )} ) # mask token has a left space __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) __lowerCAmelCase = '''Encode <mask> sequence''' __lowerCAmelCase = '''Encode <mask>sequence''' __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = encoded.index(__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase ) __lowerCAmelCase = encoded.index(__lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowercase , __lowercase ) def _snake_case (self ): pass def _snake_case (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = '''A, <mask> AllenNLP sentence.''' __lowerCAmelCase = tokenizer_r.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase ) __lowerCAmelCase = tokenizer_p.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _snake_case (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowercase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowercase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __lowercase ) def _snake_case (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCAmelCase = F"""{text_of_1_token} {text_of_1_token}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ) + 1, len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowercase ), len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ) + 1, 1 + len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowercase , use_fast=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase ) __lowerCAmelCase = tokenizer_r(__lowercase , return_offsets_mapping=__lowercase , add_special_tokens=__lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowercase ), 1 + len(__lowercase ) + 1 + len(__lowercase )) , )
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = image.size __lowerCAmelCase = 0 __lowerCAmelCase = image.load() for i in range(lowerCamelCase): for j in range(lowerCamelCase): __lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCamelCase): for i in range(lowerCamelCase): __lowerCAmelCase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase : List[str] = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _UpperCAmelCase : Tuple = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _UpperCAmelCase : Union[str, Any] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase = CHRF.CHAR_ORDER , __lowercase = CHRF.WORD_ORDER , __lowercase = CHRF.BETA , __lowercase = False , __lowercase = False , __lowercase = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__lowercase )] __lowerCAmelCase = CHRF(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = sb_chrf.corpus_score(__lowercase , __lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : Any = None try: import msvcrt except ImportError: _UpperCAmelCase : Any = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : str = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Any = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _UpperCAmelCase : int = """3.0.12""" _UpperCAmelCase : Optional[int] = None def __magic_name__( ): global _logger __lowerCAmelCase = _logger or logging.getLogger(__name__) return _logger class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock_file return None def __str__(self ): __lowerCAmelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = lock return None def __enter__(self ): return self.lock def __exit__(self , __lowercase , __lowercase , __lowercase ): self.lock.release() return None class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __lowerCAmelCase = self.hash_filename_if_too_long(__lowercase , __lowercase ) # The path to the lock file. __lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCAmelCase = None # The default timeout value. __lowerCAmelCase = timeout # We use this lock primarily for the lock counter. __lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCAmelCase = 0 return None @property def _snake_case (self ): return self._lock_file @property def _snake_case (self ): return self._timeout @timeout.setter def _snake_case (self , __lowercase ): __lowerCAmelCase = float(__lowercase ) return None def _snake_case (self ): raise NotImplementedError() def _snake_case (self ): raise NotImplementedError() @property def _snake_case (self ): return self._lock_file_fd is not None def _snake_case (self , __lowercase=None , __lowercase=0.0_5 ): # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file __lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__lowercase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _snake_case (self , __lowercase=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCAmelCase = id(self ) __lowerCAmelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCAmelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): self.acquire() return self def __exit__(self , __lowercase , __lowercase , __lowercase ): self.release() return None def __del__(self ): self.release(force=__lowercase ) return None def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = os.path.basename(__lowercase ) if len(__lowercase ) > max_length and max_length > 0: __lowerCAmelCase = os.path.dirname(__lowercase ) __lowerCAmelCase = str(hash(__lowercase ) ) __lowerCAmelCase = filename[: max_length - len(__lowercase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__lowercase , __lowercase ) else: return path class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): from .file_utils import relative_to_absolute_path super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) __lowerCAmelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: try: msvcrt.locking(__lowercase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None msvcrt.locking(__lowercase , msvcrt.LK_UNLCK , 1 ) os.close(__lowercase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=-1 , __lowercase=None ): __lowerCAmelCase = os.statvfs(os.path.dirname(__lowercase ) ).f_namemax super().__init__(__lowercase , timeout=__lowercase , max_filename_length=__lowercase ) def _snake_case (self ): __lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCAmelCase = os.open(self._lock_file , __lowercase ) try: fcntl.flock(__lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__lowercase ) else: __lowerCAmelCase = fd return None def _snake_case (self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCAmelCase = self._lock_file_fd __lowerCAmelCase = None fcntl.flock(__lowercase , fcntl.LOCK_UN ) os.close(__lowercase ) return None class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCAmelCase = os.open(self._lock_file , __lowercase ) except OSError: pass else: __lowerCAmelCase = fd return None def _snake_case (self ): os.close(self._lock_file_fd ) __lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Any = None if msvcrt: _UpperCAmelCase : Any = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : List[Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCAmelCase : List[Any] = 2_5_0_0_0_4 _UpperCAmelCase : Union[str, Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = MBartTokenizer __UpperCamelCase : Union[str, Any] = MBartTokenizerFast __UpperCamelCase : int = True __UpperCamelCase : Tuple = True def _snake_case (self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = MBartTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case (self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase , __lowercase ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__lowercase , legacy_format=__lowercase ) __lowerCAmelCase = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__lowercase ) __lowerCAmelCase = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase , __lowercase ) ) shutil.rmtree(__lowercase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = 'facebook/mbart-large-en-ro' __UpperCamelCase : Tuple = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _snake_case (cls ): __lowerCAmelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowerCAmelCase = 1 return cls def _snake_case (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def _snake_case (self ): self.assertIn(__lowercase , self.tokenizer.all_special_ids ) __lowerCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowerCAmelCase = self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def _snake_case (self ): __lowerCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __lowercase ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def _snake_case (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) __lowerCAmelCase = MBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=10 , return_tensors='''pt''' ) __lowerCAmelCase = targets['''input_ids'''] __lowerCAmelCase = shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case (self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
'''simple docstring''' import math def __magic_name__( lowerCamelCase = 1_0_0): __lowerCAmelCase = sum(i * i for i in range(1, n + 1)) __lowerCAmelCase = int(math.pow(sum(range(1, n + 1)), 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
351
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : List[str] = 1_6 _UpperCAmelCase : int = 3_2 def __magic_name__( lowerCamelCase, lowerCamelCase = 1_6): __lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''') def tokenize_function(lowerCamelCase): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCamelCase, padding='''longest''', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) __lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : str = mocked_dataloaders # noqa: F811 def __magic_name__( lowerCamelCase, lowerCamelCase): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowerCamelCase) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['''lr'''] __lowerCAmelCase = int(config['''num_epochs''']) __lowerCAmelCase = int(config['''seed''']) __lowerCAmelCase = int(config['''batch_size''']) __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCamelCase, lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCamelCase) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase, num_warmup_steps=1_0_0, num_training_steps=(len(lowerCamelCase) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # Now we train the model for epoch in range(lowerCamelCase): model.train() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCAmelCase = 0 for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather((predictions, batch['''labels'''])) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCamelCase) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCAmelCase = predictions[: len(eval_dataloader.dataset) - samples_seen] __lowerCAmelCase = references[: len(eval_dataloader.dataset) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCamelCase, references=lowerCamelCase, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''', type=lowerCamelCase, default=lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase, lowerCamelCase) if __name__ == "__main__": main()
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : Dict = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase): if a < 0: raise ValueError('''Input value must be a positive integer''') elif isinstance(lowerCamelCase, lowerCamelCase): raise TypeError('''Input value must be a \'int\' type''') return bin(lowerCamelCase).count('''1''') if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _UpperCAmelCase : Dict = """__DUMMY_TRANSFORMERS_USER__""" _UpperCAmelCase : str = """Dummy User""" _UpperCAmelCase : Optional[int] = """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""" _UpperCAmelCase : Any = """https://hub-ci.huggingface.co""" _UpperCAmelCase : Any = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" _UpperCAmelCase : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" _UpperCAmelCase : Optional[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''', lowerCamelCase) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''', lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase, lowerCamelCase): HfFolder.save_token(lowerCamelCase) yield HfFolder.delete_token() @pytest.fixture(scope='''session''') def __magic_name__( ): return HfApi(endpoint=lowerCamelCase) @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase): __lowerCAmelCase = HfFolder.get_token() HfFolder.save_token(lowerCamelCase) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase) @pytest.fixture def __magic_name__( lowerCamelCase): def _cleanup_repo(lowerCamelCase): hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') return _cleanup_repo @pytest.fixture def __magic_name__( lowerCamelCase): @contextmanager def _temporary_repo(lowerCamelCase): try: yield repo_id finally: cleanup_repo(lowerCamelCase) return _temporary_repo @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data/text_data.txt''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data.zip''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowerCAmelCase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''', private=lowerCamelCase) hf_api.upload_file( token=lowerCamelCase, path_or_fileobj=str(lowerCamelCase), path_in_repo='''data.zip''', repo_id=lowerCamelCase, repo_type='''dataset''', ) yield repo_id try: hf_api.delete_repo(lowerCamelCase, token=lowerCamelCase, repo_type='''dataset''') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return hf_private_dataset_repo_zipped_img_data_
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = self.vocab_size - 1 def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase ) __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTDoubleHeadsModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = OpenAIGPTForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCamelCase : Union[str, Any] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case (self , __lowercase , __lowercase , __lowercase=False ): __lowerCAmelCase = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def _snake_case (self ): __lowerCAmelCase = OpenAIGPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , n_embd=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowercase ) @slow def _snake_case (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = OpenAIGPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(__lowercase ) __lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=__lowercase ) # the president is __lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCAmelCase = model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].tolist() , __lowercase )
357
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''Input must be a positive integer''') __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, lowerCamelCase): __lowerCAmelCase = False p += 1 return [prime for prime in range(2, num + 1) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Tuple = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
0
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __magic_name__( ): __lowerCAmelCase = ArgumentParser('''Transformers CLI tool''', usage='''transformers-cli <command> [<args>]''') __lowerCAmelCase = parser.add_subparsers(help='''transformers-cli command helpers''') # Register commands ConvertCommand.register_subcommand(lowerCamelCase) DownloadCommand.register_subcommand(lowerCamelCase) EnvironmentCommand.register_subcommand(lowerCamelCase) RunCommand.register_subcommand(lowerCamelCase) ServeCommand.register_subcommand(lowerCamelCase) UserCommands.register_subcommand(lowerCamelCase) AddNewModelCommand.register_subcommand(lowerCamelCase) AddNewModelLikeCommand.register_subcommand(lowerCamelCase) LfsCommands.register_subcommand(lowerCamelCase) PTtoTFCommand.register_subcommand(lowerCamelCase) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowerCamelCase, '''func'''): parser.print_help() exit(1) # Run __lowerCAmelCase = args.func(lowerCamelCase) service.run() if __name__ == "__main__": main()
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
_UpperCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCAmelCase : str = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCAmelCase : str = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class a__ ( __A ): """simple docstring""" def __init__(self ): # test for the above condition self.test() def _snake_case (self ): __lowerCAmelCase = 0 __lowerCAmelCase = False while not completed: if counter == 1: self.reset() __lowerCAmelCase = self.advance() if not self.does_advance(__lowercase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.update(__lowercase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case (self , __lowercase=False ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __lowerCAmelCase = token_ids __lowerCAmelCase = len(self.token_ids ) __lowerCAmelCase = -1 # the index of the currently fulfilled step __lowerCAmelCase = False def _snake_case (self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__lowercase ): self.fulfilled_idx += 1 __lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCAmelCase = True __lowerCAmelCase = completed else: # failed to make progress. __lowerCAmelCase = True self.reset() return stepped, completed, reset def _snake_case (self ): __lowerCAmelCase = False __lowerCAmelCase = 0 def _snake_case (self ): return self.seqlen - (self.fulfilled_idx + 1) def _snake_case (self , __lowercase=False ): __lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.fulfilled_idx __lowerCAmelCase = self.completed return new_constraint class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=True ): __lowerCAmelCase = max([len(__lowercase ) for one in nested_token_ids] ) __lowerCAmelCase = {} for token_ids in nested_token_ids: __lowerCAmelCase = root for tidx, token_id in enumerate(__lowercase ): if token_id not in level: __lowerCAmelCase = {} __lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(__lowercase , __lowercase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) __lowerCAmelCase = root def _snake_case (self , __lowercase ): __lowerCAmelCase = self.trie for current_token in current_seq: __lowerCAmelCase = start[current_token] __lowerCAmelCase = list(start.keys() ) return next_tokens def _snake_case (self , __lowercase ): __lowerCAmelCase = self.next_tokens(__lowercase ) return len(__lowercase ) == 0 def _snake_case (self , __lowercase ): __lowerCAmelCase = list(root.values() ) if len(__lowercase ) == 0: return 1 else: return sum([self.count_leaves(__lowercase ) for nn in next_nodes] ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.count_leaves(__lowercase ) return len(__lowercase ) != leaf_count class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super(__lowercase , self ).__init__() if not isinstance(__lowercase , __lowercase ) or len(__lowercase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(__lowercase , __lowercase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(__lowercase , __lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __lowerCAmelCase = DisjunctiveTrie(__lowercase ) __lowerCAmelCase = nested_token_ids __lowerCAmelCase = self.trie.max_height __lowerCAmelCase = [] __lowerCAmelCase = False def _snake_case (self ): __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(__lowercase ) == 0: return None else: return token_list def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowercase )}""" ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(__lowercase ): self.current_seq.append(__lowercase ) __lowerCAmelCase = True else: __lowerCAmelCase = True self.reset() __lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) __lowerCAmelCase = completed return stepped, completed, reset def _snake_case (self ): __lowerCAmelCase = False __lowerCAmelCase = [] def _snake_case (self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _snake_case (self , __lowercase=False ): __lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.current_seq __lowerCAmelCase = self.completed return new_constraint class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint __lowerCAmelCase = max([c.seqlen for c in constraints] ) __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = False self.init_state() def _snake_case (self ): __lowerCAmelCase = [] __lowerCAmelCase = None __lowerCAmelCase = [constraint.copy(stateful=__lowercase ) for constraint in self.constraints] def _snake_case (self ): __lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _snake_case (self ): __lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCAmelCase = constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) else: __lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(__lowercase , __lowercase ): token_list.append(__lowercase ) elif isinstance(__lowercase , __lowercase ): token_list.extend(__lowercase ) if len(__lowercase ) == 0: return None else: return token_list def _snake_case (self , __lowercase ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCAmelCase , __lowerCAmelCase = self.add(__lowercase ) # the entire list of constraints are fulfilled if self.completed: break def _snake_case (self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) __lowerCAmelCase , __lowerCAmelCase = False, False if self.completed: __lowerCAmelCase = True __lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.inprogress_constraint.update(__lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowercase ) ) __lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! __lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowercase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = pending_constraint.update(__lowercase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowercase ) __lowerCAmelCase = None if not complete and stepped: __lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _snake_case (self , __lowercase=True ): __lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCAmelCase = [ constraint.copy(stateful=__lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCAmelCase = self.inprogress_constraint.copy(stateful=__lowercase ) __lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _UpperCAmelCase : Optional[Any] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') return (preds == labels).mean() def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') __lowerCAmelCase = simple_accuracy(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = fa_score(y_true=lowerCamelCase, y_pred=lowerCamelCase) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __magic_name__( lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') __lowerCAmelCase = pearsonr(lowerCamelCase, lowerCamelCase)[0] __lowerCAmelCase = spearmanr(lowerCamelCase, lowerCamelCase)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') assert len(lowerCamelCase) == len(lowerCamelCase), F"""Predictions and labels have mismatched lengths {len(lowerCamelCase)} and {len(lowerCamelCase)}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase, lowerCamelCase)} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase, lowerCamelCase) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase, lowerCamelCase) elif task_name == "qqp": return acc_and_fa(lowerCamelCase, lowerCamelCase) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} else: raise KeyError(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): warnings.warn(lowerCamelCase, lowerCamelCase) requires_backends(lowerCamelCase, '''sklearn''') if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCamelCase)} and {len(lowerCamelCase)}""") if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase, lowerCamelCase)} else: raise KeyError(lowerCamelCase)
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _UpperCAmelCase : Optional[Any] = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class a__ : """simple docstring""" __UpperCamelCase : str __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[Union[str, int]] = None __UpperCamelCase : Optional[Union[str, int]] = None __UpperCamelCase : Optional[Union[str, int]] = None def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = _str_to_version_tuple(self.version_str ) def __repr__(self ): return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _snake_case (self ): return self.major, self.minor, self.patch def _snake_case (self , __lowercase ): if isinstance(__lowercase , __lowercase ): return Version(__lowercase ) elif isinstance(__lowercase , __lowercase ): return other raise TypeError(F"""{other} (type {type(__lowercase )}) cannot be compared to version.""" ) def __eq__(self , __lowercase ): try: __lowerCAmelCase = self._validate_operand(__lowercase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , __lowercase ): __lowerCAmelCase = self._validate_operand(__lowercase ) return self.tuple < other.tuple def __hash__(self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _snake_case (cls , __lowercase ): __lowerCAmelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _snake_case (self ): return self.version_str def __magic_name__( lowerCamelCase): __lowerCAmelCase = _VERSION_REG.match(lowerCamelCase) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""") return tuple(int(lowerCamelCase) for v in [res.group('''major'''), res.group('''minor'''), res.group('''patch''')]) def __magic_name__( lowerCamelCase): return ".".join(str(lowerCamelCase) for v in version_tuple)
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=1E-12): __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T __lowerCAmelCase = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1), a_min=lowerCamelCase)).T return jnp.matmul(lowerCamelCase, norm_emb_a.T) class a__ ( nn.Module ): """simple docstring""" __UpperCamelCase : CLIPConfig __UpperCamelCase : jnp.dtype = jnp.floataa def _snake_case (self ): __lowerCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) __lowerCAmelCase = nn.Dense(self.config.projection_dim , use_bias=__lowercase , dtype=self.dtype ) __lowerCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __lowerCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __lowerCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __lowerCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = jax_cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowercase ) # Use a lower threshold if an image has any special care concept __lowerCAmelCase = is_special_care * 0.0_1 __lowerCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __lowerCAmelCase = jnp.round(__lowercase , 3 ) __lowerCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = CLIPConfig __UpperCamelCase : Dict = 'clip_input' __UpperCamelCase : str = FlaxStableDiffusionSafetyCheckerModule def __init__(self , __lowercase , __lowercase = None , __lowercase = 0 , __lowercase = jnp.floataa , __lowercase = True , **__lowercase , ): if input_shape is None: __lowerCAmelCase = (1, 2_24, 2_24, 3) __lowerCAmelCase = self.module_class(config=__lowercase , dtype=__lowercase , **__lowercase ) super().__init__(__lowercase , __lowercase , input_shape=__lowercase , seed=__lowercase , dtype=__lowercase , _do_init=_do_init ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None ): # init input tensor __lowerCAmelCase = jax.random.normal(__lowercase , __lowercase ) __lowerCAmelCase , __lowerCAmelCase = jax.random.split(__lowercase ) __lowerCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} __lowerCAmelCase = self.module.init(__lowercase , __lowercase )['''params'''] return random_params def __call__(self , __lowercase , __lowercase = None , ): __lowerCAmelCase = jnp.transpose(__lowercase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(__lowercase , dtype=jnp.floataa ) , rngs={} , )
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class a__ ( __A ): __UpperCamelCase : Optional[Any] = 'markuplm' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=0 , __lowercase=0 , __lowercase=2 , __lowercase=2_56 , __lowercase=10_24 , __lowercase=2_16 , __lowercase=10_01 , __lowercase=32 , __lowercase=50 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout # additional properties __lowerCAmelCase = max_depth __lowerCAmelCase = max_xpath_tag_unit_embeddings __lowerCAmelCase = max_xpath_subs_unit_embeddings __lowerCAmelCase = tag_pad_id __lowerCAmelCase = subs_pad_id __lowerCAmelCase = xpath_unit_hidden_size
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __magic_name__( lowerCamelCase, lowerCamelCase=False): try: __lowerCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCAmelCase = default else: # KEY is set, convert it to True or False. try: __lowerCAmelCase = strtobool(lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""") return _value _UpperCAmelCase : Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False) def __magic_name__( lowerCamelCase): return unittest.skip('''Test was skipped''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(_run_slow_tests, '''test is slow''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(not torch.cuda.is_available(), '''test requires only a CPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.is_available(), '''test requires a GPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_xpu_available(), '''test requires a XPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_mps_available(), '''test requires a `mps` backend support in `torch`''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless( is_transformers_available() and is_datasets_available(), '''test requires the Hugging Face suite''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_bnb_available(), '''test requires the bitsandbytes library''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_tpu_available(), '''test requires TPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.device_count() == 1, '''test requires a GPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.xpu.device_count() == 1, '''test requires a XPU''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.cuda.device_count() > 1, '''test requires multiple GPUs''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(torch.xpu.device_count() > 1, '''test requires multiple XPUs''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_safetensors_available(), '''test requires safetensors''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_deepspeed_available(), '''test requires DeepSpeed''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_torch_version('''>=''', '''1.12.0'''), '''test requires torch version >= 1.12.0''')(lowerCamelCase) def __magic_name__( lowerCamelCase=None, lowerCamelCase=None): if test_case is None: return partial(lowerCamelCase, version=lowerCamelCase) return unittest.skipUnless(is_torch_version('''>=''', lowerCamelCase), F"""test requires torch version >= {version}""")(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_tensorboard_available(), '''test requires Tensorboard''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_wandb_available(), '''test requires wandb''')(lowerCamelCase) def __magic_name__( lowerCamelCase): return unittest.skipUnless(is_comet_ml_available(), '''test requires comet_ml''')(lowerCamelCase) _UpperCAmelCase : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __magic_name__( lowerCamelCase): return unittest.skipUnless( _atleast_one_tracker_available, '''test requires at least one tracker to be available and for `comet_ml` to not be installed''', )(lowerCamelCase) class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : int = True @classmethod def _snake_case (cls ): __lowerCAmelCase = tempfile.mkdtemp() @classmethod def _snake_case (cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _snake_case (self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowercase ) class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self , __lowercase ): __lowerCAmelCase = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = AcceleratorState() __lowerCAmelCase = tensor[None].clone().to(state.device) __lowerCAmelCase = gather(lowerCamelCase).cpu() __lowerCAmelCase = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i], lowerCamelCase): return False return True class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = returncode __lowerCAmelCase = stdout __lowerCAmelCase = stderr async def __magic_name__( lowerCamelCase, lowerCamelCase): while True: __lowerCAmelCase = await stream.readline() if line: callback(lowerCamelCase) else: break async def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=False): if echo: print('''\nRunning: ''', ''' '''.join(lowerCamelCase)) __lowerCAmelCase = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=lowerCamelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=lowerCamelCase, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCAmelCase = [] __lowerCAmelCase = [] def tee(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=""): __lowerCAmelCase = line.decode('''utf-8''').rstrip() sink.append(lowerCamelCase) if not quiet: print(lowerCamelCase, lowerCamelCase, file=lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda lowerCamelCase: tee(lowerCamelCase, lowerCamelCase, sys.stdout, label='''stdout:'''))), asyncio.create_task(_read_stream(p.stderr, lambda lowerCamelCase: tee(lowerCamelCase, lowerCamelCase, sys.stderr, label='''stderr:'''))), ], timeout=lowerCamelCase, ) return _RunOutput(await p.wait(), lowerCamelCase, lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=1_8_0, lowerCamelCase=False, lowerCamelCase=True): __lowerCAmelCase = asyncio.get_event_loop() __lowerCAmelCase = loop.run_until_complete( _stream_subprocess(lowerCamelCase, env=lowerCamelCase, stdin=lowerCamelCase, timeout=lowerCamelCase, quiet=lowerCamelCase, echo=lowerCamelCase)) __lowerCAmelCase = ''' '''.join(lowerCamelCase) if result.returncode > 0: __lowerCAmelCase = '''\n'''.join(result.stderr) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""") return result class a__ ( __A ): """simple docstring""" pass def __magic_name__( lowerCamelCase, lowerCamelCase=False): try: __lowerCAmelCase = subprocess.check_output(lowerCamelCase, stderr=subprocess.STDOUT) if return_stdout: if hasattr(lowerCamelCase, '''decode'''): __lowerCAmelCase = output.decode('''utf-8''') return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}""") from e
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' from typing import Any import numpy as np def __magic_name__( lowerCamelCase): return np.array_equal(lowerCamelCase, matrix.conjugate().T) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = v.conjugate().T __lowerCAmelCase = v_star.dot(lowerCamelCase) assert isinstance(lowerCamelCase, np.ndarray) return (v_star_dot.dot(lowerCamelCase)) / (v_star.dot(lowerCamelCase)) def __magic_name__( ): __lowerCAmelCase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]]) __lowerCAmelCase = np.array([[1], [2], [3]]) assert is_hermitian(lowerCamelCase), F"""{a} is not hermitian.""" print(rayleigh_quotient(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]]) assert is_hermitian(lowerCamelCase), F"""{a} is not hermitian.""" assert rayleigh_quotient(lowerCamelCase, lowerCamelCase) == float(3) if __name__ == "__main__": import doctest doctest.testmod() tests()
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = ['image_processor', 'tokenizer'] __UpperCamelCase : Optional[int] = 'LayoutLMv2ImageProcessor' __UpperCamelCase : List[Any] = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__(self , __lowercase=None , __lowercase=None , **__lowercase ): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) __lowerCAmelCase = kwargs.pop('''feature_extractor''' ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__(self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = 0 , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = None , **__lowercase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __lowerCAmelCase = self.image_processor(images=__lowercase , return_tensors=__lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase = features['''words'''] __lowerCAmelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) # add pixel values __lowerCAmelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __lowerCAmelCase = self.get_overflowing_images(__lowercase , encoded_inputs['''overflow_to_sample_mapping'''] ) __lowerCAmelCase = images return encoded_inputs def _snake_case (self , __lowercase , __lowercase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(__lowercase )} and {len(__lowercase )}""" ) return images_with_overflow def _snake_case (self , *__lowercase , **__lowercase ): return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def _snake_case (self , *__lowercase , **__lowercase ): return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def _snake_case (self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def _snake_case (self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowercase , ) return self.image_processor_class @property def _snake_case (self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowercase , ) return self.image_processor
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Tuple = 1_6 _UpperCAmelCase : List[Any] = 3_2 def __magic_name__( lowerCamelCase, lowerCamelCase = 1_6): __lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''') def tokenize_function(lowerCamelCase): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCamelCase, padding='''longest''', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='''pt''', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) __lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : Dict = mocked_dataloaders # noqa: F811 def __magic_name__( lowerCamelCase, lowerCamelCase): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowerCamelCase) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=lowerCamelCase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['''lr'''] __lowerCAmelCase = int(config['''num_epochs''']) __lowerCAmelCase = int(config['''seed''']) __lowerCAmelCase = int(config['''batch_size''']) __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') set_seed(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCamelCase, lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowerCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCamelCase) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase, num_warmup_steps=1_0_0, num_training_steps=(len(lowerCamelCase) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # Now we train the model for epoch in range(lowerCamelCase): model.train() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = output.loss accelerator.backward(lowerCamelCase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=lowerCamelCase, references=lowerCamelCase, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCamelCase) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''', type=lowerCamelCase, default=lowerCamelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=lowerCamelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase, lowerCamelCase) if __name__ == "__main__": main()
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = WavaVecaPhonemeCTCTokenizer __UpperCamelCase : Tuple = False def _snake_case (self ): super().setUp() __lowerCAmelCase = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=20 , __lowercase=5 ): __lowerCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase )) for i in range(len(__lowercase ) )] __lowerCAmelCase = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: __lowerCAmelCase = ''' ''' + output_txt __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) __lowerCAmelCase = tokenizer('''m xxx ɪ''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) __lowerCAmelCase = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa __lowerCAmelCase = tokenizer('''maɪ c''' , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids ) self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowercase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter __lowerCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer.phonemize(__lowercase , phonemizer_lang='''en-us''' ) __lowerCAmelCase = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowercase ) __lowerCAmelCase = '''Hello how are you''' __lowerCAmelCase = tokenizer(__lowercase , phonemizer_lang='''en-us''' ).input_ids __lowerCAmelCase = tokenizer(__lowercase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.decode(__lowercase ) __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowercase , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) __lowerCAmelCase = '''Hello how Are you''' __lowerCAmelCase = '''hello how are you''' __lowerCAmelCase = tokenizer(__lowercase ).input_ids __lowerCAmelCase = tokenizer(__lowercase ).input_ids self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case (__lowercase , __lowercase ): __lowerCAmelCase = [d[key] for d in offsets] return retrieved_list def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __lowerCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __lowerCAmelCase = tokenizer.decode(__lowercase , output_char_offsets=__lowercase , filter_word_delimiter_token=__lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowercase , __lowercase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__lowercase , __lowercase ): self.assertTrue(isinstance(__lowercase , __lowercase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowercase ) ) # transform list to ModelOutput __lowerCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__lowercase , __lowercase ): if isinstance(__lowercase , __lowercase ): [recursive_check(__lowercase , __lowercase ) for la, la in zip(__lowercase , __lowercase )] self.assertEqual(__lowercase , __lowercase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off __lowerCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __lowerCAmelCase = tokenizer.batch_decode(__lowercase , output_char_offsets=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , output_char_offsets=__lowercase ) for ids in sample_ids] check_list_tuples_equal(__lowercase , __lowercase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case (self ): pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case (self ): pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case (self ): pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCAmelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __lowerCAmelCase = tokenizer.add_tokens(__lowercase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) __lowerCAmelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCAmelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __lowerCAmelCase = tokenizer.add_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.vocab_size __lowerCAmelCase = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) __lowerCAmelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case (self ): pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case (self ): pass def _snake_case (self ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __lowerCAmelCase = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] __lowerCAmelCase = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(output['''text'''] , __lowercase )
351
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
0
from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Dict = tuple[int, int] class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase ): __lowerCAmelCase = vertices __lowerCAmelCase = { (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def _snake_case (self , __lowercase , __lowercase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCAmelCase = weight def _snake_case (self ): __lowerCAmelCase = Graph({min(self.vertices )} , {} ) __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): __lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCAmelCase = edge __lowerCAmelCase = weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def __magic_name__( lowerCamelCase = "p107_network.txt"): __lowerCAmelCase = os.path.abspath(os.path.dirname(lowerCamelCase)) __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = {} __lowerCAmelCase = 4_2 __lowerCAmelCase = 4_2 __lowerCAmelCase = 4_2 with open(lowerCamelCase) as f: __lowerCAmelCase = f.read().strip().split('''\n''') __lowerCAmelCase = [line.split(''',''') for line in data] for edgea in range(1, len(lowerCamelCase)): for edgea in range(lowerCamelCase): if adjaceny_matrix[edgea][edgea] != "-": __lowerCAmelCase = int(adjaceny_matrix[edgea][edgea]) __lowerCAmelCase = Graph(set(range(len(lowerCamelCase))), lowerCamelCase) __lowerCAmelCase = graph.prims_algorithm() __lowerCAmelCase = sum(graph.edges.values()) __lowerCAmelCase = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): __lowerCAmelCase , __lowerCAmelCase = coefficient_matrix.shape __lowerCAmelCase , __lowerCAmelCase = constant_matrix.shape if rowsa != colsa: __lowerCAmelCase = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase) if colsa != 1: __lowerCAmelCase = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase) if rowsa != rowsa: __lowerCAmelCase = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase) if len(lowerCamelCase) != rowsa: __lowerCAmelCase = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(lowerCamelCase)} and {rowsa}""" ) raise ValueError(lowerCamelCase) if iterations <= 0: raise ValueError('''Iterations must be at least 1''') __lowerCAmelCase = np.concatenate( (coefficient_matrix, constant_matrix), axis=1) __lowerCAmelCase , __lowerCAmelCase = table.shape strictly_diagonally_dominant(lowerCamelCase) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase): __lowerCAmelCase = [] for row in range(lowerCamelCase): __lowerCAmelCase = 0 for col in range(lowerCamelCase): if col == row: __lowerCAmelCase = table[row][col] elif col == cols - 1: __lowerCAmelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowerCAmelCase = (temp + val) / denom new_val.append(lowerCamelCase) __lowerCAmelCase = new_val return [float(lowerCamelCase) for i in new_val] def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = table.shape __lowerCAmelCase = True for i in range(0, lowerCamelCase): __lowerCAmelCase = 0 for j in range(0, cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''') return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 30.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = len(lowerCamelCase) for i in range(1, lowerCamelCase): __lowerCAmelCase = collection[i] __lowerCAmelCase = 0 __lowerCAmelCase = i - 1 while low <= high: __lowerCAmelCase = (low + high) // 2 if val < collection[mid]: __lowerCAmelCase = mid - 1 else: __lowerCAmelCase = mid + 1 for j in range(lowerCamelCase, lowerCamelCase, -1): __lowerCAmelCase = collection[j - 1] __lowerCAmelCase = val return collection if __name__ == "__main__": _UpperCAmelCase : Any = input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase : int = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
0
'''simple docstring''' class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = name __lowerCAmelCase = value __lowerCAmelCase = weight def __repr__(self ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _snake_case (self ): return self.value def _snake_case (self ): return self.name def _snake_case (self ): return self.weight def _snake_case (self ): return self.value / self.weight def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): menu.append(Things(name[i], value[i], weight[i])) return menu def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = sorted(lowerCamelCase, key=lowerCamelCase, reverse=lowerCamelCase) __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0 for i in range(len(lowerCamelCase)): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i]) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __magic_name__( ): pass if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCAmelCase : Optional[int] = data_utils.TransfoXLTokenizer _UpperCAmelCase : Union[str, Any] = data_utils.TransfoXLCorpus _UpperCAmelCase : List[str] = data_utils _UpperCAmelCase : Union[str, Any] = data_utils def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCamelCase, '''rb''') as fp: __lowerCAmelCase = pickle.load(lowerCamelCase, encoding='''latin1''') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""") __lowerCAmelCase = corpus.vocab.__dict__ torch.save(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''', lowerCamelCase) __lowerCAmelCase = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""") torch.save(lowerCamelCase, lowerCamelCase) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase = os.path.abspath(lowerCamelCase) __lowerCAmelCase = os.path.abspath(lowerCamelCase) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""") # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase = TransfoXLConfig() else: __lowerCAmelCase = TransfoXLConfig.from_json_file(lowerCamelCase) print(F"""Building PyTorch model from configuration: {config}""") __lowerCAmelCase = TransfoXLLMHeadModel(lowerCamelCase) __lowerCAmelCase = load_tf_weights_in_transfo_xl(lowerCamelCase, lowerCamelCase, lowerCamelCase) # Save pytorch-model __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) print(F"""Save PyTorch model to {os.path.abspath(lowerCamelCase)}""") torch.save(model.state_dict(), lowerCamelCase) print(F"""Save configuration file to {os.path.abspath(lowerCamelCase)}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _UpperCAmelCase : Any = """path-to-your-trained-model""" _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _UpperCAmelCase : Optional[int] = """A photo of sks dog in a bucket""" _UpperCAmelCase : Dict = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
359
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0_0_0_0_0_0): __lowerCAmelCase = set(range(3, lowerCamelCase, 2)) primes.add(2) for p in range(3, lowerCamelCase, 2): if p not in primes: continue primes.difference_update(set(range(p * p, lowerCamelCase, lowerCamelCase))) __lowerCAmelCase = [float(lowerCamelCase) for n in range(limit + 1)] for p in primes: for n in range(lowerCamelCase, limit + 1, lowerCamelCase): phi[n] *= 1 - 1 / p return int(sum(phi[2:])) if __name__ == "__main__": print(f"""{solution() = }""")
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCAmelCase : List[str] = """\ Text data. Second line of data.""" _UpperCAmelCase : Any = """file""" @pytest.fixture(scope='''session''') def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / (FILE_PATH + '''.zstd''') __lowerCAmelCase = bytes(lowerCamelCase, '''utf-8''') with zstd.open(lowerCamelCase, '''wb''') as f: f.write(lowerCamelCase) return path @pytest.fixture def __magic_name__( lowerCamelCase): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase), '''w''') as f: f.write(lowerCamelCase) return FILE_PATH @pytest.mark.parametrize('''compression_format''', ['''gzip''', '''xz''', '''zstd''']) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowerCAmelCase = input_paths[compression_format] __lowerCAmelCase = tmp_path / '''cache''' __lowerCAmelCase = DownloadConfig(cache_dir=lowerCamelCase, extract_compressed_file=lowerCamelCase) __lowerCAmelCase = cached_path(lowerCamelCase, download_config=lowerCamelCase) with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''', [True, False]) @pytest.mark.parametrize('''default_cache_dir''', [True, False]) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = '''custom_cache''' __lowerCAmelCase = '''custom_extracted_dir''' __lowerCAmelCase = tmp_path / '''custom_extracted_path''' if default_extracted: __lowerCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''', lowerCamelCase) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(lowerCamelCase)) __lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCAmelCase = xz_file __lowerCAmelCase = ( DownloadConfig(extract_compressed_file=lowerCamelCase) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase) ) __lowerCAmelCase = cached_path(lowerCamelCase, download_config=lowerCamelCase) assert Path(lowerCamelCase).parent.parts[-2:] == expected def __magic_name__( lowerCamelCase): # absolute path __lowerCAmelCase = str(Path(lowerCamelCase).resolve()) assert cached_path(lowerCamelCase) == text_file # relative path __lowerCAmelCase = str(Path(lowerCamelCase).resolve().relative_to(Path(os.getcwd()))) assert cached_path(lowerCamelCase) == text_file def __magic_name__( lowerCamelCase): # absolute path __lowerCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''') with pytest.raises(lowerCamelCase): cached_path(lowerCamelCase) # relative path __lowerCAmelCase = '''./__missing_file__.txt''' with pytest.raises(lowerCamelCase): cached_path(lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = get_from_cache(F"""tmp://{tmpfs_file}""") with open(lowerCamelCase) as f: __lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( ): with pytest.raises(lowerCamelCase): cached_path('''https://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): http_get('''https://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): http_head('''https://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): ftp_get('''ftp://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): ftp_head('''ftp://huggingface.co''') @patch('''datasets.config.HF_DATASETS_OFFLINE''', lowerCamelCase) def __magic_name__( lowerCamelCase): __lowerCAmelCase = tmp_path_factory.mktemp('''data''') / '''file.html''' with pytest.raises(lowerCamelCase): fsspec_get('''s3://huggingface.co''', temp_file=lowerCamelCase) with pytest.raises(lowerCamelCase): fsspec_head('''s3://huggingface.co''')
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' import numpy as np import qiskit def __magic_name__( lowerCamelCase = 8, lowerCamelCase = None): __lowerCAmelCase = np.random.default_rng(seed=lowerCamelCase) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # The set of states Alice will prepare. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # Measurement basis for Bob's qubits. __lowerCAmelCase = rng.integers(2, size=lowerCamelCase) # Quantum Circuit to simulate BB84 __lowerCAmelCase = qiskit.QuantumCircuit(lowerCamelCase, name='''BB84''') # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowerCamelCase): if alice_state[index] == 1: bbaa_circ.x(lowerCamelCase) if alice_basis[index] == 1: bbaa_circ.h(lowerCamelCase) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowerCamelCase): if bob_basis[index] == 1: bbaa_circ.h(lowerCamelCase) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowerCAmelCase = qiskit.Aer.get_backend('''aer_simulator''') # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowerCAmelCase = qiskit.execute(lowerCamelCase, lowerCamelCase, shots=1, seed_simulator=lowerCamelCase) # Returns the result of measurement. __lowerCAmelCase = job.result().get_counts(lowerCamelCase).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowerCAmelCase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowerCamelCase, lowerCamelCase, lowerCamelCase) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. __lowerCAmelCase = gen_key[:key_len] if len(lowerCamelCase) >= key_len else gen_key.ljust(lowerCamelCase, '''0''') return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = 10 def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) def _snake_case (self ): __lowerCAmelCase = '''''' __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) self.assertEqual(__lowercase , [] ) def _snake_case (self ): __lowerCAmelCase = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) __lowerCAmelCase = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__lowercase , __lowercase ) __lowerCAmelCase = ['''It was the best of times.'''] self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowercase , 0 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 23 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 1 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = 1_01 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(__lowercase , __lowercase ) np.testing.assert_array_equal(__lowercase , __lowercase )
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : "DiagonalGaussianDistribution" class a__ ( __A , __A ): """simple docstring""" __UpperCamelCase : List[str] = True @register_to_config def __init__(self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 4 , __lowercase = 32 , __lowercase = 32 , __lowercase = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , norm_num_groups=__lowercase , act_fn=__lowercase , ) __lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCAmelCase = 0.2_5 def _snake_case (self , __lowercase , __lowercase=False ): if isinstance(__lowercase , (Encoder, Decoder) ): __lowerCAmelCase = value def _snake_case (self , __lowercase = True ): __lowerCAmelCase = use_tiling def _snake_case (self ): self.enable_tiling(__lowercase ) def _snake_case (self ): __lowerCAmelCase = True def _snake_case (self ): __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case (self ): __lowerCAmelCase = {} def fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , '''set_processor''' ): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def _snake_case (self , __lowercase ): __lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ): if hasattr(__lowercase , '''set_processor''' ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def _snake_case (self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowercase , return_dict=__lowercase ) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(__lowercase ) for x_slice in x.split(1 )] __lowerCAmelCase = torch.cat(__lowercase ) else: __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) __lowerCAmelCase = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowercase , return_dict=__lowercase ) __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) @apply_forward_hook def _snake_case (self , __lowercase , __lowercase = True ): if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(__lowercase ).sample for z_slice in z.split(1 )] __lowerCAmelCase = torch.cat(__lowercase ) else: __lowerCAmelCase = self._decode(__lowercase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = min(a.shape[2] , b.shape[2] , __lowercase ) for y in range(__lowercase ): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = min(a.shape[3] , b.shape[3] , __lowercase ) for x in range(__lowercase ): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0 , x.shape[2] , __lowercase ): __lowerCAmelCase = [] for j in range(0 , x.shape[3] , __lowercase ): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(__lowercase ) __lowerCAmelCase = self.quant_conv(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) __lowerCAmelCase = [] for i, row in enumerate(__lowercase ): __lowerCAmelCase = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) __lowerCAmelCase = torch.cat(__lowercase , dim=2 ) __lowerCAmelCase = DiagonalGaussianDistribution(__lowercase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowercase ) def _snake_case (self , __lowercase , __lowercase = True ): __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0 , z.shape[2] , __lowercase ): __lowerCAmelCase = [] for j in range(0 , z.shape[3] , __lowercase ): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(__lowercase ) __lowerCAmelCase = self.decoder(__lowercase ) row.append(__lowercase ) rows.append(__lowercase ) __lowerCAmelCase = [] for i, row in enumerate(__lowercase ): __lowerCAmelCase = [] for j, tile in enumerate(__lowercase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , __lowercase , __lowercase ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , __lowercase , __lowercase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowercase , dim=3 ) ) __lowerCAmelCase = torch.cat(__lowercase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def _snake_case (self , __lowercase , __lowercase = False , __lowercase = True , __lowercase = None , ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(__lowercase ).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=__lowercase ) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Any = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' from __future__ import annotations def __magic_name__( lowerCamelCase): # This function is recursive __lowerCAmelCase = len(lowerCamelCase) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __lowerCAmelCase = array[0] __lowerCAmelCase = False __lowerCAmelCase = 1 __lowerCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: __lowerCAmelCase = True __lowerCAmelCase = [element for element in array[i:] if element >= array[i]] __lowerCAmelCase = longest_subsequence(lowerCamelCase) if len(lowerCamelCase) > len(lowerCamelCase): __lowerCAmelCase = temp_array else: i += 1 __lowerCAmelCase = [element for element in array[1:] if element >= pivot] __lowerCAmelCase = [pivot, *longest_subsequence(lowerCamelCase)] if len(lowerCamelCase) > len(lowerCamelCase): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" def __init__(self , *__lowercase , **__lowercase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _UpperCAmelCase : int = logging.get_logger(__name__) # General docstring _UpperCAmelCase : List[Any] = """PoolFormerConfig""" # Base docstring _UpperCAmelCase : Optional[int] = """sail/poolformer_s12""" _UpperCAmelCase : Union[str, Any] = [1, 5_1_2, 7, 7] # Image classification docstring _UpperCAmelCase : Tuple = """sail/poolformer_s12""" _UpperCAmelCase : Tuple = """tabby, tabby cat""" _UpperCAmelCase : str = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __magic_name__( lowerCamelCase, lowerCamelCase = 0.0, lowerCamelCase = False): if drop_prob == 0.0 or not training: return input __lowerCAmelCase = 1 - drop_prob __lowerCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase = keep_prob + torch.rand(lowerCamelCase, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize __lowerCAmelCase = input.div(lowerCamelCase) * random_tensor return output class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase = None ): super().__init__() __lowerCAmelCase = drop_prob def _snake_case (self , __lowercase ): return drop_path(__lowercase , self.drop_prob , self.training ) def _snake_case (self ): return "p={}".format(self.drop_prob ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): super().__init__() __lowerCAmelCase = patch_size if isinstance(__lowercase , collections.abc.Iterable ) else (patch_size, patch_size) __lowerCAmelCase = stride if isinstance(__lowercase , collections.abc.Iterable ) else (stride, stride) __lowerCAmelCase = padding if isinstance(__lowercase , collections.abc.Iterable ) else (padding, padding) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase ) __lowerCAmelCase = norm_layer(__lowercase ) if norm_layer else nn.Identity() def _snake_case (self , __lowercase ): __lowerCAmelCase = self.projection(__lowercase ) __lowerCAmelCase = self.norm(__lowercase ) return embeddings class a__ ( nn.GroupNorm ): """simple docstring""" def __init__(self , __lowercase , **__lowercase ): super().__init__(1 , __lowercase , **__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = nn.AvgPoolad(__lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowercase ) def _snake_case (self , __lowercase ): return self.pool(__lowercase ) - hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = nn.Convad(__lowercase , __lowercase , 1 ) __lowerCAmelCase = PoolFormerDropPath(__lowercase ) if isinstance(config.hidden_act , __lowercase ): __lowerCAmelCase = ACTaFN[config.hidden_act] else: __lowerCAmelCase = config.hidden_act def _snake_case (self , __lowercase ): __lowerCAmelCase = self.conva(__lowercase ) __lowerCAmelCase = self.act_fn(__lowercase ) __lowerCAmelCase = self.drop(__lowercase ) __lowerCAmelCase = self.conva(__lowercase ) __lowerCAmelCase = self.drop(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = PoolFormerPooling(__lowercase ) __lowerCAmelCase = PoolFormerOutput(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = PoolFormerGroupNorm(__lowercase ) __lowerCAmelCase = PoolFormerGroupNorm(__lowercase ) # Useful for training neural nets __lowerCAmelCase = PoolFormerDropPath(__lowercase ) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowercase) ) , requires_grad=__lowercase ) def _snake_case (self , __lowercase ): if self.use_layer_scale: __lowerCAmelCase = self.pooling(self.before_norm(__lowercase ) ) __lowerCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowerCAmelCase = hidden_states + self.drop_path(__lowercase ) __lowerCAmelCase = () __lowerCAmelCase = self.output(self.after_norm(__lowercase ) ) __lowerCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowerCAmelCase = hidden_states + self.drop_path(__lowercase ) __lowerCAmelCase = (output,) + outputs return outputs else: __lowerCAmelCase = self.drop_path(self.pooling(self.before_norm(__lowercase ) ) ) # First residual connection __lowerCAmelCase = pooling_output + hidden_states __lowerCAmelCase = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase = self.drop_path(self.output(self.after_norm(__lowercase ) ) ) __lowerCAmelCase = hidden_states + layer_output __lowerCAmelCase = (output,) + outputs return outputs class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = config # stochastic depth decay rule __lowerCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowerCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowerCAmelCase = nn.ModuleList(__lowercase ) # Transformer blocks __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowerCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowercase ) ) __lowerCAmelCase = nn.ModuleList(__lowercase ) def _snake_case (self , __lowercase , __lowercase=False , __lowercase=True ): __lowerCAmelCase = () if output_hidden_states else None __lowerCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowerCAmelCase , __lowerCAmelCase = layers # Get patch embeddings from hidden_states __lowerCAmelCase = embedding_layer(__lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowercase ): __lowerCAmelCase = blk(__lowercase ) __lowerCAmelCase = layer_outputs[0] if output_hidden_states: __lowerCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : int = PoolFormerConfig __UpperCamelCase : Union[str, Any] = 'poolformer' __UpperCamelCase : Tuple = 'pixel_values' __UpperCamelCase : Tuple = True def _snake_case (self , __lowercase ): if isinstance(__lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case (self , __lowercase , __lowercase=False ): if isinstance(__lowercase , __lowercase ): __lowerCAmelCase = value _UpperCAmelCase : Any = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : List[Any] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config __lowerCAmelCase = PoolFormerEncoder(__lowercase ) # Initialize weights and apply final processing self.post_init() def _snake_case (self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case (self , __lowercase = None , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __lowerCAmelCase = self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) __lowerCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowercase , hidden_states=encoder_outputs.hidden_states , ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.dense(__lowercase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = PoolFormerModel(__lowercase ) # Final norm __lowerCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowerCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case (self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.poolformer( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , ) __lowerCAmelCase = outputs[0] __lowerCAmelCase = self.classifier(self.norm(__lowercase ).mean([-2, -1] ) ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = '''single_label_classification''' else: __lowerCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase = loss_fct(__lowercase , __lowercase ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(__lowercase , __lowercase ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _UpperCAmelCase : str = """sshleifer/mar_enro_6_3_student""" class a__ ( __A ): """simple docstring""" def _snake_case (self ): super().setUp() __lowerCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=__lowercase , ) __lowerCAmelCase = F"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def _snake_case (self ): MarianMTModel.from_pretrained(__lowercase ) @slow @require_torch_gpu def _snake_case (self ): __lowerCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __lowerCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__lowercase , str(__lowercase ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __lowerCAmelCase = F""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __lowerCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(__lowercase , '''argv''' , __lowercase ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__lowercase ) __lowerCAmelCase = SummarizationModule.add_model_specific_args(__lowercase , os.getcwd() ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = main(__lowercase ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics['''val'''][0] __lowerCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __lowercase ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.0_1 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__lowercase ) __lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __lowerCAmelCase = os.path.join(args.output_dir , __lowercase ) __lowerCAmelCase = torch.load(__lowercase , map_location='''cpu''' ) __lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class a__ ( __A ): """simple docstring""" @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def _snake_case (self ): __lowerCAmelCase = F"""{self.test_file_dir_str}/test_data/wmt_en_ro""" __lowerCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_28, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __lowerCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __lowerCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __lowerCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __lowerCAmelCase = bash_script.replace(__lowercase , str(__lowercase ) ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = bash_script.replace('''--fp16''' , '''''' ) __lowerCAmelCase = 6 __lowerCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ F"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', F"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(__lowercase , '''argv''' , __lowercase ): __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = pl.Trainer.add_argparse_args(__lowercase ) __lowerCAmelCase = SummarizationDistiller.add_model_specific_args(__lowercase , os.getcwd() ) __lowerCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __lowerCAmelCase = distill_main(__lowercase ) # Check metrics __lowerCAmelCase = load_json(model.metrics_save_path ) __lowerCAmelCase = metrics['''val'''][0] __lowerCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.0_1 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"""val_avg_{model.val_metric}"""] , __lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict __lowerCAmelCase = os.listdir(__lowercase ) __lowerCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __lowerCAmelCase = os.path.join(args.output_dir , __lowercase ) __lowerCAmelCase = torch.load(__lowercase , map_location='''cpu''' ) __lowerCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __lowerCAmelCase = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = """▁""" _UpperCAmelCase : str = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _UpperCAmelCase : Any = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase="</s>" , __lowercase="<unk>" , __lowercase=[] , __lowercase = None , **__lowercase , ): __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @property def _snake_case (self ): return self.sp_model.get_piece_size() def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): return self.sp_model.piece_to_id(__lowercase ) def _snake_case (self , __lowercase ): if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(__lowercase ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) @require_multi_gpu def _snake_case (self ): print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) __lowerCAmelCase = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(__lowercase , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase : Any = Accelerator() _UpperCAmelCase : Tuple = (accelerator.state.process_index + 2, 1_0) _UpperCAmelCase : Optional[int] = torch.randint(0, 1_0, shape).to(accelerator.device) _UpperCAmelCase : Tuple = """""" _UpperCAmelCase : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCAmelCase : Union[str, Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCAmelCase : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
351
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : Any = ['flax', 'transformers'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : List[Any] = ['flax', 'transformers'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['flax', 'transformers'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : Dict = ['flax', 'transformers'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''flax''', '''transformers'''] )
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=64 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=10 , __lowercase=0.0_2 , __lowercase=[1, 16, 4, 4] , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCAmelCase = (self.image_size // 32) ** 2 __lowerCAmelCase = num_patches + 1 def _snake_case (self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case (self ): __lowerCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__lowercase , ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = ViTHybridModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = ViTHybridForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCamelCase : Optional[int] = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = False __UpperCamelCase : Tuple = False def _snake_case (self ): __lowerCAmelCase = ViTHybridModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def _snake_case (self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__lowercase ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def _snake_case (self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(__lowercase ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=__lowercase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCAmelCase = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _snake_case (self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ViTHybridModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__( ): __lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case (self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case (self ): __lowerCAmelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**__lowercase ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) __lowerCAmelCase = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) ) @slow @require_accelerate def _snake_case (self ): __lowerCAmelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __lowerCAmelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ) __lowerCAmelCase = model(**__lowercase ) __lowerCAmelCase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCAmelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''README.md''') print(F"""Generating {path}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(lowerCamelCase) # make sure we are under the root of the project _UpperCAmelCase : Any = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Any = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase : str = model_name.split("""-""") _UpperCAmelCase : List[str] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
'''simple docstring''' import datasets from .evaluate import evaluate _UpperCAmelCase : List[Any] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ _UpperCAmelCase : Any = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ _UpperCAmelCase : int = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __lowerCAmelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __lowerCAmelCase = evaluate(dataset=__lowercase , predictions=__lowercase ) return score
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase): __lowerCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 9_6 elif "small" in model_name: __lowerCAmelCase = 9_6 elif "base" in model_name: __lowerCAmelCase = 1_2_8 elif "large" in model_name: __lowerCAmelCase = 1_9_2 elif "xlarge" in model_name: __lowerCAmelCase = 2_5_6 elif "huge" in model_name: __lowerCAmelCase = 3_5_2 # set label information __lowerCAmelCase = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __lowerCAmelCase = '''imagenet-22k-id2label.json''' else: __lowerCAmelCase = '''imagenet-1k-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=lowerCamelCase, depths=lowerCamelCase, focal_levels=lowerCamelCase, focal_windows=lowerCamelCase, use_conv_embed=lowerCamelCase, idalabel=lowerCamelCase, labelaid=lowerCamelCase, use_post_layernorm=lowerCamelCase, use_layerscale=lowerCamelCase, ) return config def __magic_name__( lowerCamelCase): if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('''patch_embed.norm''', '''embeddings.norm''') if "layers" in name: __lowerCAmelCase = '''encoder.''' + name if "encoder.layers" in name: __lowerCAmelCase = name.replace('''encoder.layers''', '''encoder.stages''') if "downsample.proj" in name: __lowerCAmelCase = name.replace('''downsample.proj''', '''downsample.projection''') if "blocks" in name: __lowerCAmelCase = name.replace('''blocks''', '''layers''') if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace('''modulation.f''', '''modulation.projection_in''') if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace('''modulation.h''', '''modulation.projection_context''') if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace('''modulation.proj''', '''modulation.projection_out''') if name == "norm.weight": __lowerCAmelCase = '''layernorm.weight''' if name == "norm.bias": __lowerCAmelCase = '''layernorm.bias''' if "head" in name: __lowerCAmelCase = name.replace('''head''', '''classifier''') else: __lowerCAmelCase = '''focalnet.''' + name return name def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False): # fmt: off __lowerCAmelCase = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print('''Checkpoint URL: ''', lowerCamelCase) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''')['''model'''] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(lowerCamelCase) __lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase) model.eval() # load state dict model.load_state_dict(lowerCamelCase) # verify conversion __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = BitImageProcessor( do_resize=lowerCamelCase, size={'''shortest_edge''': 2_5_6}, resample=PILImageResampling.BILINEAR, do_center_crop=lowerCamelCase, crop_size=2_2_4, do_normalize=lowerCamelCase, image_mean=lowerCamelCase, image_std=lowerCamelCase, ) __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_5_6), transforms.CenterCrop(2_2_4), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25]), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) # verify pixel_values assert torch.allclose(inputs.pixel_values, lowerCamelCase, atol=1E-4) __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(-1).item() print('''Predicted class:''', model.config.idalabel[predicted_class_idx]) print('''First values of logits:''', outputs.logits[0, :3]) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91]) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95]) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41]) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31]) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30]) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28]) assert torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""") model.push_to_hub(F"""{model_name}""") processor.push_to_hub(F"""{model_name}""") if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
357
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) __lowerCAmelCase , __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def _snake_case (self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def _snake_case (self ): __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) __lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase=0.0 , __lowercase = None , __lowercase = "geglu" , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = "layer_norm" , __lowercase = False , ): super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(__lowercase , __lowercase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(__lowercase , __lowercase ) else: __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) __lowerCAmelCase = Attention( query_dim=__lowercase , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(__lowercase , __lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) ) __lowerCAmelCase = Attention( query_dim=__lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowercase , dim_head=__lowercase , dropout=__lowercase , bias=__lowercase , upcast_attention=__lowercase , ) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) __lowerCAmelCase = FeedForward(__lowercase , dropout=__lowercase , activation_fn=__lowercase , final_dropout=__lowercase ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def _snake_case (self , __lowercase , __lowercase ): # Sets chunk feed-forward __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(__lowercase , __lowercase ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( __lowercase , __lowercase , __lowercase , hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(__lowercase ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( __lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowercase , **__lowercase , ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(__lowercase , __lowercase ) if self.use_ada_layer_norm else self.norma(__lowercase ) ) __lowerCAmelCase = self.attna( __lowercase , encoder_hidden_states=__lowercase , attention_mask=__lowercase , **__lowercase , ) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(__lowercase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(__lowercase ) for hid_slice in norm_hidden_states.chunk(__lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __lowerCAmelCase = self.ff(__lowercase ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase = None , __lowercase = 4 , __lowercase = 0.0 , __lowercase = "geglu" , __lowercase = False , ): super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(__lowercase , __lowercase ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(__lowercase , __lowercase , approximate='''tanh''' ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(__lowercase , __lowercase ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(__lowercase , __lowercase ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(__lowercase ) # project dropout self.net.append(nn.Dropout(__lowercase ) ) # project out self.net.append(nn.Linear(__lowercase , __lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowercase ) ) def _snake_case (self , __lowercase ): for module in self.net: __lowerCAmelCase = module(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase = "none" ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) __lowerCAmelCase = approximate def _snake_case (self , __lowercase ): if gate.device.type != "mps": return F.gelu(__lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.proj(__lowercase ) __lowerCAmelCase = self.gelu(__lowercase ) return hidden_states class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , dim_out * 2 ) def _snake_case (self , __lowercase ): if gate.device.type != "mps": return F.gelu(__lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = self.proj(__lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.proj(__lowercase ) return x * torch.sigmoid(1.7_0_2 * x ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = nn.Embedding(__lowercase , __lowercase ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__lowercase , embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__lowercase , 2 ) __lowerCAmelCase = self.norm(__lowercase ) * (1 + scale) + shift return x class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(__lowercase , __lowercase ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__lowercase , 6 * embedding_dim , bias=__lowercase ) __lowerCAmelCase = nn.LayerNorm(__lowercase , elementwise_affine=__lowercase , eps=1e-6 ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase=None ): __lowerCAmelCase = self.linear(self.silu(self.emb(__lowercase , __lowercase , hidden_dtype=__lowercase ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6 , dim=1 ) __lowerCAmelCase = self.norm(__lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = 1e-5 ): super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(__lowercase ) __lowerCAmelCase = nn.Linear(__lowercase , out_dim * 2 ) def _snake_case (self , __lowercase , __lowercase ): if self.act: __lowerCAmelCase = self.act(__lowercase ) __lowerCAmelCase = self.linear(__lowercase ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2 , dim=1 ) __lowerCAmelCase = F.group_norm(__lowercase , self.num_groups , eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
359
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
0
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _UpperCAmelCase : Union[str, Any] = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'facebook/nllb-200-distilled-600M' __UpperCamelCase : Dict = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase : Optional[int] = 'translator' __UpperCamelCase : Any = AutoTokenizer __UpperCamelCase : Any = AutoModelForSeqaSeqLM __UpperCamelCase : Optional[Any] = LANGUAGE_CODES __UpperCamelCase : Optional[int] = ['text', 'text', 'text'] __UpperCamelCase : Union[str, Any] = ['text'] def _snake_case (self , __lowercase , __lowercase , __lowercase ): if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) __lowerCAmelCase = self.lang_to_code[src_lang] __lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowercase , return_tensors='''pt''' , src_lang=__lowercase , tgt_lang=__lowercase ) def _snake_case (self , __lowercase ): return self.model.generate(**__lowercase ) def _snake_case (self , __lowercase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowercase )
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _UpperCAmelCase : Any = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[Any] = ['audio_values', 'audio_mask'] def __init__(self , __lowercase=20_48 , __lowercase=1 , __lowercase=[16, 16] , __lowercase=1_28 , __lowercase=4_41_00 , __lowercase=86 , __lowercase=20_48 , __lowercase=0.0 , **__lowercase , ): super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase , ) __lowerCAmelCase = spectrogram_length __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = feature_size // self.patch_size[1] __lowerCAmelCase = n_fft __lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate __lowerCAmelCase = sampling_rate __lowerCAmelCase = padding_value __lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowercase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__lowercase , norm='''slaney''' , mel_scale='''slaney''' , ).T def _snake_case (self , __lowercase ): __lowerCAmelCase = spectrogram( __lowercase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) __lowerCAmelCase = log_spec[:, :-1] __lowerCAmelCase = log_spec - 20.0 __lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , __lowercase , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = False , __lowercase = False , **__lowercase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowerCAmelCase = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) __lowerCAmelCase = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): __lowerCAmelCase = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowercase ): __lowerCAmelCase = [np.asarray(__lowercase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowerCAmelCase = np.array(__lowercase ).astype(np.floataa ) # convert into correct format for padding __lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCAmelCase = np.ones([len(__lowercase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(__lowercase ) ): __lowerCAmelCase = audio_features[i] __lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: __lowerCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: __lowerCAmelCase = {'''audio_values''': padded_audio_features} __lowerCAmelCase = BatchFeature(data=__lowercase , tensor_type=__lowercase ) return encoded_inputs
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = CTRLTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = False def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt react readapt apt''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''adapt react readapt apt''' __lowerCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase )
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' _UpperCAmelCase : Dict = 8.31_44_62 # Unit - J mol-1 K-1 def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Any = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a__ ( __A , __A ): """simple docstring""" __UpperCamelCase : Dict = 'resnet' __UpperCamelCase : int = ['basic', 'bottleneck'] def __init__(self , __lowercase=3 , __lowercase=64 , __lowercase=[2_56, 5_12, 10_24, 20_48] , __lowercase=[3, 4, 6, 3] , __lowercase="bottleneck" , __lowercase="relu" , __lowercase=False , __lowercase=None , __lowercase=None , **__lowercase , ): super().__init__(**__lowercase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = downsample_in_first_stage __lowerCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowercase ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__lowercase , out_indices=__lowercase , stage_names=self.stage_names ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = version.parse('1.11' ) @property def _snake_case (self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case (self ): return 1e-3
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : Optional[int] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } _UpperCAmelCase : int = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] __UpperCamelCase : List[int] = [] def __init__(self , __lowercase , __lowercase="<unk>" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="[SEP]" , __lowercase="[MASK]" , __lowercase="[CLS]" , __lowercase = None , **__lowercase , ): __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , sep_token=__lowercase , mask_token=__lowercase , cls_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @property def _snake_case (self ): return self.sp_model.get_piece_size() def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): return self.sp_model.piece_to_id(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.sp_model.IdToPiece(__lowercase ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) __lowerCAmelCase = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = True , **__lowercase , ): __lowerCAmelCase = kwargs.pop('''use_source_tokenizer''' , __lowercase ) __lowerCAmelCase = self.convert_ids_to_tokens(__lowercase , skip_special_tokens=__lowercase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCAmelCase = [] __lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowercase ) ) __lowerCAmelCase = [] sub_texts.append(__lowercase ) else: current_sub_text.append(__lowercase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowercase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowerCAmelCase = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(__lowercase ) ) else: __lowerCAmelCase = ''''''.join(__lowercase ) __lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCAmelCase = self.clean_up_tokenization(__lowercase ) return clean_text else: return text def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase : List[str] = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False): if isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = len(set_a.intersection(lowerCamelCase)) if alternative_union: __lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase) else: __lowerCAmelCase = len(set_a.union(lowerCamelCase)) return intersection / union if isinstance(lowerCamelCase, (list, tuple)) and isinstance(lowerCamelCase, (list, tuple)): __lowerCAmelCase = [element for element in set_a if element in set_b] if alternative_union: __lowerCAmelCase = len(lowerCamelCase) + len(lowerCamelCase) return len(lowerCamelCase) / union else: __lowerCAmelCase = set_a + [element for element in set_b if element not in set_a] return len(lowerCamelCase) / len(lowerCamelCase) return len(lowerCamelCase) / len(lowerCamelCase) return None if __name__ == "__main__": _UpperCAmelCase : List[str] = {"""a""", """b""", """c""", """d""", """e"""} _UpperCAmelCase : List[Any] = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : Dict = ['keras_nlp'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''keras_nlp'''] )
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Dict = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : Tuple = { """unc-nlp/lxmert-base-uncased""": 5_1_2, } _UpperCAmelCase : Optional[Any] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = LxmertTokenizer def __init__(self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(__lowercase , normalizer_state.pop('''type''' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**__lowercase ) __lowerCAmelCase = do_lower_case def _snake_case (self , __lowercase , __lowercase=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _UpperCAmelCase : Union[str, Any] = True except (ImportError, AttributeError): _UpperCAmelCase : Union[str, Any] = object def __magic_name__( *lowerCamelCase, **lowerCamelCase): pass _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = logging.get_logger("""transformers-cli/serving""") def __magic_name__( lowerCamelCase): __lowerCAmelCase = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(lowerCamelCase, args.host, args.port, args.workers) class a__ ( __A ): """simple docstring""" __UpperCamelCase : dict class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] __UpperCamelCase : Optional[List[int]] class a__ ( __A ): """simple docstring""" __UpperCamelCase : str class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any class a__ ( __A ): """simple docstring""" @staticmethod def _snake_case (__lowercase ): __lowerCAmelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__lowercase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__lowercase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__lowercase , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__lowercase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__lowercase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__lowercase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__lowercase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__lowercase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__lowercase ) def __init__(self , __lowercase , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = pipeline __lowerCAmelCase = host __lowerCAmelCase = port __lowerCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowerCAmelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__lowercase , response_class=__lowercase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__lowercase , response_class=__lowercase , methods=['''POST'''] , ), ] , timeout=6_00 , ) def _snake_case (self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def _snake_case (self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _snake_case (self , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) ): try: __lowerCAmelCase = self._pipeline.tokenizer.tokenize(__lowercase ) if return_ids: __lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(__lowercase ) return ServeTokenizeResult(tokens=__lowercase , tokens_ids=__lowercase ) else: return ServeTokenizeResult(tokens=__lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(__lowercase )} ) def _snake_case (self , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) , __lowercase = Body(__lowercase , embed=__lowercase ) , ): try: __lowerCAmelCase = self._pipeline.tokenizer.decode(__lowercase , __lowercase , __lowercase ) return ServeDeTokenizeResult(model='''''' , text=__lowercase ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(__lowercase )} ) async def _snake_case (self , __lowercase=Body(__lowercase , embed=__lowercase ) ): # Check we don't have empty string if len(__lowercase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowerCAmelCase = self._pipeline(__lowercase ) return ServeForwardResult(output=__lowercase ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(__lowercase )} )
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__( *lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = list(lowerCamelCase) for i in range(len(lowerCamelCase)): __lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__( lowerCamelCase): __lowerCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(lowerCamelCase, lowerCamelCase) and len(exception.args) == 1: return any(err in exception.args[0] for err in _statements) return False def __magic_name__( lowerCamelCase = None, lowerCamelCase = 1_2_8): if function is None: return functools.partial(lowerCamelCase, starting_batch_size=lowerCamelCase) __lowerCAmelCase = starting_batch_size def decorator(*lowerCamelCase, **lowerCamelCase): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowerCAmelCase = list(inspect.signature(lowerCamelCase).parameters.keys()) # Guard against user error if len(lowerCamelCase) < (len(lowerCamelCase) + 1): __lowerCAmelCase = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:])]) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""") while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''') try: return function(lowerCamelCase, *lowerCamelCase, **lowerCamelCase) except Exception as e: if should_reduce_batch_size(lowerCamelCase): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
350
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = old_name if "patch_embed" in old_name: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_name.split('''.''') if layer == "0": __lowerCAmelCase = old_name.replace('''0''', '''convolution1''') elif layer == "1": __lowerCAmelCase = old_name.replace('''1''', '''batchnorm_before''') elif layer == "3": __lowerCAmelCase = old_name.replace('''3''', '''convolution2''') else: __lowerCAmelCase = old_name.replace('''4''', '''batchnorm_after''') if "network" in old_name and re.search(r'''\d\.\d''', lowerCamelCase): __lowerCAmelCase = r'''\b\d{2}\b''' if bool(re.search(lowerCamelCase, lowerCamelCase)): __lowerCAmelCase = re.search(r'''\d\.\d\d.''', lowerCamelCase).group() else: __lowerCAmelCase = re.search(r'''\d\.\d.''', lowerCamelCase).group() if int(match[0]) < 6: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') __lowerCAmelCase = trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1]) __lowerCAmelCase = '''intermediate_stages.''' + trimmed_name else: __lowerCAmelCase = old_name.replace(lowerCamelCase, '''''') if int(match[2]) < num_meta4D_last_stage: __lowerCAmelCase = trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2]) else: __lowerCAmelCase = str(int(match[2]) - num_meta4D_last_stage) __lowerCAmelCase = trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index) if "norm1" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm1''', '''layernorm1''') elif "norm2" in old_name: __lowerCAmelCase = trimmed_name.replace('''norm2''', '''layernorm2''') elif "fc1" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc1''', '''linear_in''') elif "fc2" in old_name: __lowerCAmelCase = trimmed_name.replace('''fc2''', '''linear_out''') __lowerCAmelCase = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''', lowerCamelCase): __lowerCAmelCase = old_name.replace('''network''', '''intermediate_stages''') if "fc" in new_name: __lowerCAmelCase = new_name.replace('''fc''', '''convolution''') elif ("norm1" in new_name) and ("layernorm1" not in new_name): __lowerCAmelCase = new_name.replace('''norm1''', '''batchnorm_before''') elif ("norm2" in new_name) and ("layernorm2" not in new_name): __lowerCAmelCase = new_name.replace('''norm2''', '''batchnorm_after''') if "proj" in new_name: __lowerCAmelCase = new_name.replace('''proj''', '''projection''') if "dist_head" in new_name: __lowerCAmelCase = new_name.replace('''dist_head''', '''distillation_classifier''') elif "head" in new_name: __lowerCAmelCase = new_name.replace('''head''', '''classifier''') elif "patch_embed" in new_name: __lowerCAmelCase = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __lowerCAmelCase = new_name.replace('''norm''', '''layernorm''') __lowerCAmelCase = '''efficientformer.''' + new_name else: __lowerCAmelCase = '''efficientformer.encoder.''' + new_name return new_name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in checkpoint.copy().keys(): __lowerCAmelCase = checkpoint.pop(lowerCamelCase) __lowerCAmelCase = val return checkpoint def __magic_name__( ): __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) return image def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] __lowerCAmelCase = EfficientFormerConfig.from_json_file(lowerCamelCase) __lowerCAmelCase = EfficientFormerForImageClassificationWithTeacher(lowerCamelCase) __lowerCAmelCase = '''_'''.join(checkpoint_path.split('''/''')[-1].split('''.''')[0].split('''_''')[:-1]) __lowerCAmelCase = config.depths[-1] - config.num_metaad_blocks + 1 __lowerCAmelCase = convert_torch_checkpoint(lowerCamelCase, lowerCamelCase) model.load_state_dict(lowerCamelCase) model.eval() __lowerCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = 2_5_6 __lowerCAmelCase = 2_2_4 __lowerCAmelCase = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''').pixel_values # original processing pipeline __lowerCAmelCase = Compose( [ Resize(lowerCamelCase, interpolation=pillow_resamplings['''bicubic''']), CenterCrop(lowerCamelCase), ToTensor(), Normalize(lowerCamelCase, lowerCamelCase), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) assert torch.allclose(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase = outputs.logits __lowerCAmelCase = (1, 1_0_0_0) if "l1" in model_name: __lowerCAmelCase = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: __lowerCAmelCase = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :1_0], lowerCamelCase, atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: __lowerCAmelCase = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""") # Save Checkpoints Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""") processor.save_pretrained(lowerCamelCase) print(F"""Processor successfuly saved at {pytorch_dump_path}""") if push_to_hub: print('''Pushing model to the hub...''') model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add model''', use_temp_dir=lowerCamelCase, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='''Add image processor''', use_temp_dir=lowerCamelCase, ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _UpperCAmelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
9
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _UpperCAmelCase : Optional[Any] = (3, 9, -1_1, 0, 7, 5, 1, -1) _UpperCAmelCase : Any = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class a__ : """simple docstring""" __UpperCamelCase : int __UpperCamelCase : Node | None class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = None for i in sorted(__lowercase , reverse=__lowercase ): __lowerCAmelCase = Node(__lowercase , self.head ) def __iter__(self ): __lowerCAmelCase = self.head while node: yield node.data __lowerCAmelCase = node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(__lowercase ) for node in self] ) def __magic_name__( lowerCamelCase, lowerCamelCase): return SortedLinkedList(list(lowerCamelCase) + list(lowerCamelCase)) if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Dict = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
351
'''simple docstring''' from __future__ import annotations import math def __magic_name__( lowerCamelCase, lowerCamelCase): if len(lowerCamelCase) != 2 or len(a[0]) != 2 or len(lowerCamelCase) != 2 or len(b[0]) != 2: raise Exception('''Matrices are not 2x2''') __lowerCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase, lowerCamelCase): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(lowerCamelCase)) ] def __magic_name__( lowerCamelCase): if len(lowerCamelCase) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception('''Odd matrices are not supported!''') __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = matrix_length // 2 __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [ [a[i][j] for j in range(lowerCamelCase, lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase) ] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase)] __lowerCAmelCase = [[a[i][j] for j in range(lowerCamelCase)] for i in range(lowerCamelCase, lowerCamelCase)] return top_left, top_right, bot_left, bot_right def __magic_name__( lowerCamelCase): return len(lowerCamelCase), len(matrix[0]) def __magic_name__( lowerCamelCase): print('''\n'''.join(str(lowerCamelCase) for line in matrix)) def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase) == (2, 2): return default_matrix_multiplication(lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = split_matrix(lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase) __lowerCAmelCase = actual_strassen(lowerCamelCase, matrix_subtraction(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_addition(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = actual_strassen(matrix_subtraction(lowerCamelCase, lowerCamelCase), matrix_addition(lowerCamelCase, lowerCamelCase)) __lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_addition(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase, lowerCamelCase), lowerCamelCase), lowerCamelCase) # construct the new matrix from our 4 quadrants __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(lowerCamelCase)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def __magic_name__( lowerCamelCase, lowerCamelCase): if matrix_dimensions(lowerCamelCase)[1] != matrix_dimensions(lowerCamelCase)[0]: __lowerCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) __lowerCAmelCase = matrix_dimensions(lowerCamelCase) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowerCAmelCase = max(*lowerCamelCase, *lowerCamelCase) __lowerCAmelCase = int(math.pow(2, math.ceil(math.loga(lowerCamelCase)))) __lowerCAmelCase = matrixa __lowerCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): new_matrixa[i].append(0) else: new_matrixa.append([0] * maxim) __lowerCAmelCase = actual_strassen(lowerCamelCase, lowerCamelCase) # Removing the additional zeros for i in range(0, lowerCamelCase): if i < dimensiona[0]: for _ in range(dimensiona[1], lowerCamelCase): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _UpperCAmelCase : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _UpperCAmelCase : Optional[Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
0
import unittest from knapsack import greedy_knapsack as kp class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = [10, 20, 30, 40, 50, 60] __lowerCAmelCase = [2, 4, 6, 8, 10, 12] __lowerCAmelCase = 1_00 self.assertEqual(kp.calc_profit(__lowercase , __lowercase , __lowercase ) , 2_10 ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''max_weight must greater than zero.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''Weight can not be negative.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''Profit can not be negative.''' ) def _snake_case (self ): self.assertRaisesRegex(__lowercase , '''max_weight must greater than zero.''' ) def _snake_case (self ): self.assertRaisesRegex( __lowercase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
352
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __magic_name__( lowerCamelCase): return getitem, k def __magic_name__( lowerCamelCase, lowerCamelCase): return setitem, k, v def __magic_name__( lowerCamelCase): return delitem, k def __magic_name__( lowerCamelCase, lowerCamelCase, *lowerCamelCase): try: return fun(lowerCamelCase, *lowerCamelCase), None except Exception as e: return None, e _UpperCAmelCase : Dict = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) _UpperCAmelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] _UpperCAmelCase : Union[str, Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] _UpperCAmelCase : Tuple = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] _UpperCAmelCase : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _UpperCAmelCase : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( '''operations''', ( pytest.param(_add_items, id='''add items'''), pytest.param(_overwrite_items, id='''overwrite items'''), pytest.param(_delete_items, id='''delete items'''), pytest.param(_access_absent_items, id='''access absent items'''), pytest.param(_add_with_resize_up, id='''add with resize up'''), pytest.param(_add_with_resize_down, id='''add with resize down'''), ), ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = HashMap(initial_block_size=4) __lowerCAmelCase = {} for _, (fun, *args) in enumerate(lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = _run_operation(lowerCamelCase, lowerCamelCase, *lowerCamelCase) assert my_res == py_res assert str(lowerCamelCase) == str(lowerCamelCase) assert set(lowerCamelCase) == set(lowerCamelCase) assert len(lowerCamelCase) == len(lowerCamelCase) assert set(my.items()) == set(py.items()) def __magic_name__( ): def is_public(lowerCamelCase) -> bool: return not name.startswith('''_''') __lowerCAmelCase = {name for name in dir({}) if is_public(lowerCamelCase)} __lowerCAmelCase = {name for name in dir(HashMap()) if is_public(lowerCamelCase)} assert dict_public_names > hash_public_names
353
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=0 ): __lowerCAmelCase = 1.0 if scale is None else scale __lowerCAmelCase = 0.0 if loc is None else loc super().__init__(__lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowercase )] ) @property def _snake_case (self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case (self ): return self.base_dist.variance * self.scale**2 @property def _snake_case (self ): return self.variance.sqrt() class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase , **__lowercase ): super().__init__(**__lowercase ) __lowerCAmelCase = args_dim __lowerCAmelCase = nn.ModuleList([nn.Linear(__lowercase , __lowercase ) for dim in args_dim.values()] ) __lowerCAmelCase = domain_map def _snake_case (self , __lowercase ): __lowerCAmelCase = [proj(__lowercase ) for proj in self.proj] return self.domain_map(*__lowercase ) class a__ ( nn.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = function def _snake_case (self , __lowercase , *__lowercase ): return self.function(__lowercase , *__lowercase ) class a__ : """simple docstring""" __UpperCamelCase : type __UpperCamelCase : int __UpperCamelCase : Dict[str, int] def __init__(self , __lowercase = 1 ): __lowerCAmelCase = dim __lowerCAmelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case (self , __lowercase ): if self.dim == 1: return self.distribution_class(*__lowercase ) else: return Independent(self.distribution_class(*__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , ): __lowerCAmelCase = self._base_distribution(__lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowercase , loc=__lowercase , scale=__lowercase , event_dim=self.event_dim ) @property def _snake_case (self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case (self ): return len(self.event_shape ) @property def _snake_case (self ): return 0.0 def _snake_case (self , __lowercase ): return ParameterProjection( in_features=__lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case (self , *__lowercase ): raise NotImplementedError() @staticmethod def _snake_case (__lowercase ): return (x + torch.sqrt(torch.square(__lowercase ) + 4.0 )) / 2.0 class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : type = StudentT @classmethod def _snake_case (cls , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __lowerCAmelCase = 2.0 + cls.squareplus(__lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} __UpperCamelCase : type = Normal @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} __UpperCamelCase : type = NegativeBinomial @classmethod def _snake_case (cls , __lowercase , __lowercase ): __lowerCAmelCase = cls.squareplus(__lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case (self , __lowercase ): __lowerCAmelCase , __lowerCAmelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=__lowercase , logits=__lowercase ) else: return Independent(self.distribution_class(total_count=__lowercase , logits=__lowercase ) , 1 ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None ): __lowerCAmelCase , __lowerCAmelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Any = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( __A ): """simple docstring""" __UpperCamelCase : Tuple = 'naver-clova-ix/donut-base-finetuned-docvqa' __UpperCamelCase : List[str] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __UpperCamelCase : Optional[int] = 'document_qa' __UpperCamelCase : Optional[int] = AutoProcessor __UpperCamelCase : Tuple = VisionEncoderDecoderModel __UpperCamelCase : Any = ['image', 'text'] __UpperCamelCase : Optional[Any] = ['text'] def __init__(self , *__lowercase , **__lowercase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __lowerCAmelCase = task_prompt.replace('''{user_input}''' , __lowercase ) __lowerCAmelCase = self.pre_processor.tokenizer( __lowercase , add_special_tokens=__lowercase , return_tensors='''pt''' ).input_ids __lowerCAmelCase = self.pre_processor(__lowercase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case (self , __lowercase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowercase , ).sequences def _snake_case (self , __lowercase ): __lowerCAmelCase = self.pre_processor.batch_decode(__lowercase )[0] __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , __lowercase , count=1 ).strip() # remove first task start token __lowerCAmelCase = self.pre_processor.tokenajson(__lowercase ) return sequence["answer"]
9
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __magic_name__( lowerCamelCase): __lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCamelCase) __lowerCAmelCase = flatten_dict(lowerCamelCase) return flax_params def __magic_name__( lowerCamelCase): __lowerCAmelCase = {} __lowerCAmelCase = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } __lowerCAmelCase = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowerCAmelCase = '''.'''.join(key[1:]) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowerCAmelCase = new_key.replace(lowerCamelCase, lowerCamelCase) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowerCAmelCase = new_key.replace(lowerCamelCase, lowerCamelCase) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowerCAmelCase = re.sub(r'''layers_(\d+)''', r'''layer.\1''', lowerCamelCase) __lowerCAmelCase = new_key.replace('''encoder''', '''encoder.encoder''') elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowerCAmelCase = re.sub(r'''layers_(\d+)''', r'''layer.\1''', lowerCamelCase) __lowerCAmelCase = flax_dict[key] __lowerCAmelCase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowerCAmelCase = torch.from_numpy(converted_dict[key].T) else: __lowerCAmelCase = torch.from_numpy(converted_dict[key]) return converted_torch_dict def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=False): __lowerCAmelCase = get_flax_param(lowerCamelCase) if not use_large: __lowerCAmelCase = PixaStructVisionConfig() __lowerCAmelCase = PixaStructTextConfig() else: __lowerCAmelCase = PixaStructVisionConfig( hidden_size=1_5_3_6, d_ff=3_9_6_8, num_attention_heads=2_4, num_hidden_layers=1_8) __lowerCAmelCase = PixaStructTextConfig(hidden_size=1_5_3_6, d_ff=3_9_6_8, num_heads=2_4, num_layers=1_8) __lowerCAmelCase = PixaStructConfig( vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=lowerCamelCase) __lowerCAmelCase = PixaStructForConditionalGeneration(lowerCamelCase) __lowerCAmelCase = rename_and_convert_flax_params(lowerCamelCase) model.load_state_dict(lowerCamelCase) __lowerCAmelCase = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''') __lowerCAmelCase = PixaStructImageProcessor() __lowerCAmelCase = PixaStructProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) if use_large: __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = True # mkdir if needed os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) model.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) print('''Model saved in {}'''.format(lowerCamelCase)) if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") _UpperCAmelCase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
355
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __magic_name__( ): __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" def __init__(self , *__lowercase , **__lowercase ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
356
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) self.assertTrue(isinstance(dc.token_ids , __lowercase ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case (self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowercase ): DisjunctiveConstraint(__lowercase ) # fails here def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case (self ): __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__lowercase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'convbert' def __init__(self , __lowercase=3_05_22 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=7_68 , __lowercase=2 , __lowercase=9 , __lowercase=1 , __lowercase=None , **__lowercase , ): super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = embedding_size __lowerCAmelCase = head_ratio __lowerCAmelCase = conv_kernel_size __lowerCAmelCase = num_groups __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
357
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''math domain error''') return quad(lowerCamelCase, 0, lowerCamelCase, args=(lowerCamelCase))[0] def __magic_name__( lowerCamelCase, lowerCamelCase): return math.pow(lowerCamelCase, z - 1) * math.exp(-x) if __name__ == "__main__": from doctest import testmod testmod()
358
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : str = True __UpperCamelCase : Any = DebertaTokenizerFast def _snake_case (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCAmelCase = {'''unk_token''': '''[UNK]'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def _snake_case (self , **__lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCAmelCase = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer('''Hello''' , '''World''' ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __lowercase ) @slow def _snake_case (self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowercase , add_prefix_space=__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case (self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCAmelCase = tokenizer(__lowercase , padding=__lowercase ) __lowerCAmelCase = [tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) for seq in encoding['''input_ids''']] # fmt: off __lowerCAmelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __lowercase ) for expected, decoded in zip(__lowercase , __lowercase ): self.assertEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' _UpperCAmelCase : List[Any] = tuple[float, float, float] _UpperCAmelCase : List[Any] = tuple[float, float, float] def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = end_pointa[0] - end_pointa[0] __lowerCAmelCase = end_pointa[1] - end_pointa[1] __lowerCAmelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowerCAmelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowerCAmelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __magic_name__( lowerCamelCase, lowerCamelCase): return tuple(round(lowerCamelCase, lowerCamelCase) for x in vector) == (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 1_0): __lowerCAmelCase = create_vector(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = create_vector(lowerCamelCase, lowerCamelCase) return is_zero_vector(get_ad_vectors_cross(lowerCamelCase, lowerCamelCase), lowerCamelCase)
359
'''simple docstring''' import argparse import datetime def __magic_name__( lowerCamelCase): __lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } __lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowerCamelCase) < 1_1: raise ValueError('''Must be 10 characters long''') # Get month __lowerCAmelCase = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''') __lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get day __lowerCAmelCase = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''') # Get second separator __lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''') # Get year __lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''') # Get datetime obj for validation __lowerCAmelCase = datetime.date(int(lowerCamelCase), int(lowerCamelCase), int(lowerCamelCase)) # Start math if m <= 2: __lowerCAmelCase = y - 1 __lowerCAmelCase = m + 1_2 # maths var __lowerCAmelCase = int(str(lowerCamelCase)[:2]) __lowerCAmelCase = int(str(lowerCamelCase)[2:]) __lowerCAmelCase = int(2.6 * m - 5.39) __lowerCAmelCase = int(c / 4) __lowerCAmelCase = int(k / 4) __lowerCAmelCase = int(d + k) __lowerCAmelCase = int(t + u + v + x) __lowerCAmelCase = int(z - (2 * c)) __lowerCAmelCase = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''') # Response __lowerCAmelCase = F"""Your date {date_input}, is a {days[str(lowerCamelCase)]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : List[str] = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCAmelCase : Dict = parser.parse_args() zeller(args.date_input)
9
0
'''simple docstring''' def __magic_name__( lowerCamelCase): if not isinstance(lowerCamelCase, lowerCamelCase): __lowerCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase) if number < 0: return False __lowerCAmelCase = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
0
'''simple docstring''' import pprint import requests _UpperCAmelCase : str = """https://zenquotes.io/api""" def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/today''').json() def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/random''').json() if __name__ == "__main__": _UpperCAmelCase : Any = random_quotes() pprint.pprint(response)
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = TransfoXLTokenizer __UpperCamelCase : Tuple = False __UpperCamelCase : Optional[Any] = False def _snake_case (self ): super().setUp() __lowerCAmelCase = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case (self , **__lowercase ): __lowerCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''<unk> UNwanted , running''' __lowerCAmelCase = '''<unk> unwanted, running''' return input_text, output_text def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowercase ) __lowerCAmelCase = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [0, 4, 8, 7] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _snake_case (self ): __lowerCAmelCase = TransfoXLTokenizer(lower_case=__lowercase ) __lowerCAmelCase = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __lowerCAmelCase = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) , __lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
362
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowercase ) def _snake_case (self , **__lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase , return_tensors='''np''' ) __lowerCAmelCase = tokenizer(__lowercase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = len(__lowercase ) __lowerCAmelCase = max([len(__lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = '''google/owlvit-base-patch32''' __lowerCAmelCase = OwlViTProcessor.from_pretrained(__lowercase ) __lowerCAmelCase = ['''cat''', '''nasa badge'''] __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs['''input_ids'''] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=__lowercase , query_images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
9
0
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) __lowerCAmelCase = nn.functional.normalize(lowerCamelCase) return torch.mm(lowerCamelCase, normalized_text_embeds.t()) class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = CLIPConfig __UpperCamelCase : Optional[Any] = ['CLIPEncoderLayer'] def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = CLIPVisionModel(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=__lowercase ) __lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=__lowercase ) @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ).cpu().float().numpy() __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ).cpu().float().numpy() __lowerCAmelCase = [] __lowerCAmelCase = image_embeds.shape[0] for i in range(__lowercase ): __lowerCAmelCase = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __lowerCAmelCase = special_cos_dist[i][concept_idx] __lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __lowerCAmelCase = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __lowerCAmelCase = cos_dist[i][concept_idx] __lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() __lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__lowercase ) result.append(__lowercase ) __lowerCAmelCase = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.vision_model(__lowercase )[1] # pooled_output __lowerCAmelCase = self.visual_projection(__lowercase ) __lowerCAmelCase = cosine_distance(__lowercase , self.special_care_embeds ) __lowerCAmelCase = cosine_distance(__lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __lowerCAmelCase = 0.0 __lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) __lowerCAmelCase = special_care * 0.0_1 __lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
363
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = XCLIPTextConfig() # derive patch size from model name __lowerCAmelCase = model_name.find('''patch''') __lowerCAmelCase = int(model_name[start_idx + len('''patch''') : start_idx + len('''patch''') + 2]) __lowerCAmelCase = XCLIPVisionConfig(patch_size=lowerCamelCase, num_frames=lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 __lowerCAmelCase = 1_2 __lowerCAmelCase = 1_0_2_4 __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = 1_6 __lowerCAmelCase = 2_4 __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = 3_3_6 __lowerCAmelCase = XCLIPConfig.from_text_vision_configs(lowerCamelCase, lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 return config def __magic_name__( lowerCamelCase): # text encoder if name == "token_embedding.weight": __lowerCAmelCase = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''') if name == "positional_embedding": __lowerCAmelCase = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''') if "ln_1" in name: __lowerCAmelCase = name.replace('''ln_1''', '''layer_norm1''') if "ln_2" in name: __lowerCAmelCase = name.replace('''ln_2''', '''layer_norm2''') if "c_fc" in name: __lowerCAmelCase = name.replace('''c_fc''', '''fc1''') if "c_proj" in name: __lowerCAmelCase = name.replace('''c_proj''', '''fc2''') if name.startswith('''transformer.resblocks'''): __lowerCAmelCase = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''') if "attn.out_proj" in name and "message" not in name: __lowerCAmelCase = name.replace('''attn.out_proj''', '''self_attn.out_proj''') if "ln_final" in name: __lowerCAmelCase = name.replace('''ln_final''', '''text_model.final_layer_norm''') # visual encoder if name == "visual.class_embedding": __lowerCAmelCase = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''') if name == "visual.positional_embedding": __lowerCAmelCase = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''') if name.startswith('''visual.transformer.resblocks'''): __lowerCAmelCase = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''') if "visual.conv1" in name: __lowerCAmelCase = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''') if "visual.ln_pre" in name: __lowerCAmelCase = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''') if "visual.ln_post" in name: __lowerCAmelCase = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''') if "visual.proj" in name: __lowerCAmelCase = name.replace('''visual.proj''', '''visual_projection.weight''') if "text_projection" in name: __lowerCAmelCase = name.replace('''text_projection''', '''text_projection.weight''') # things on top if "prompts_visual_proj" in name: __lowerCAmelCase = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''') if "prompts_visual_ln" in name: __lowerCAmelCase = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''') # mit if name == "mit.positional_embedding": __lowerCAmelCase = name.replace('''positional''', '''position''') if name.startswith('''mit.resblocks'''): __lowerCAmelCase = name.replace('''mit.resblocks''', '''mit.encoder.layers''') # prompts generator if name.startswith('''prompts_generator.norm'''): __lowerCAmelCase = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''') return name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowerCamelCase) if "attn.in_proj" in key: __lowerCAmelCase = key.split('''.''') if key.startswith('''visual'''): __lowerCAmelCase = key_split[3] __lowerCAmelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[ :dim ] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[ -dim: ] else: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] elif key.startswith('''mit'''): __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.vision_config.mit_hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowerCamelCase) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __lowerCAmelCase = val.T __lowerCAmelCase = val return orig_state_dict def __magic_name__( lowerCamelCase): if num_frames == 8: __lowerCAmelCase = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: __lowerCAmelCase = '''eating_spaghetti.npy''' elif num_frames == 3_2: __lowerCAmelCase = '''eating_spaghetti_32_frames.npy''' __lowerCAmelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename=lowerCamelCase, repo_type='''dataset''', ) __lowerCAmelCase = np.load(lowerCamelCase) return list(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False): __lowerCAmelCase = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __lowerCAmelCase = model_to_url[model_name] __lowerCAmelCase = 8 if "16-frames" in model_name: __lowerCAmelCase = 1_6 elif "shot" in model_name: __lowerCAmelCase = 3_2 __lowerCAmelCase = get_xclip_config(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) model.eval() if "drive" in checkpoint_url: __lowerCAmelCase = '''pytorch_model.bin''' gdown.cached_download(lowerCamelCase, lowerCamelCase, quiet=lowerCamelCase) __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] else: __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase)['''model'''] __lowerCAmelCase = convert_state_dict(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __lowerCAmelCase = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 __lowerCAmelCase = VideoMAEImageProcessor(size=lowerCamelCase) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = XCLIPProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) __lowerCAmelCase = prepare_video(lowerCamelCase) __lowerCAmelCase = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=lowerCamelCase, return_tensors='''pt''', padding=lowerCamelCase) print('''Shape of pixel values:''', inputs.pixel_values.shape) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) # Verify outputs __lowerCAmelCase = outputs.logits_per_video __lowerCAmelCase = logits_per_video.softmax(dim=1) print('''Probs:''', lowerCamelCase) # kinetics-400 if model_name == "xclip-base-patch32": __lowerCAmelCase = torch.tensor([[0.00_19, 0.99_51, 0.00_30]]) elif model_name == "xclip-base-patch32-16-frames": __lowerCAmelCase = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]]) elif model_name == "xclip-base-patch16": __lowerCAmelCase = torch.tensor([[0.00_83, 0.96_81, 0.02_36]]) elif model_name == "xclip-base-patch16-16-frames": __lowerCAmelCase = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]]) elif model_name == "xclip-large-patch14": __lowerCAmelCase = torch.tensor([[0.00_62, 0.98_64, 0.00_75]]) elif model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]]) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __lowerCAmelCase = torch.tensor([[0.05_55, 0.89_14, 0.05_31]]) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __lowerCAmelCase = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]]) elif model_name == "xclip-large-patch14-kinetics-600": __lowerCAmelCase = torch.tensor([[0.00_36, 0.99_20, 0.00_45]]) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __lowerCAmelCase = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]]) elif model_name == "xclip-base-patch16-hmdb-4-shot": __lowerCAmelCase = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]]) elif model_name == "xclip-base-patch16-hmdb-8-shot": __lowerCAmelCase = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]]) elif model_name == "xclip-base-patch16-hmdb-16-shot": __lowerCAmelCase = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]]) elif model_name == "xclip-base-patch16-ucf-2-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-4-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-8-shot": __lowerCAmelCase = torch.tensor([[0.00_27, 0.99_04, 0.00_70]]) elif model_name == "xclip-base-patch16-ucf-16-shot": __lowerCAmelCase = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]]) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __lowerCAmelCase = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]]) else: raise ValueError(F"""Model name {model_name} not supported""") assert torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''') model.push_to_hub(lowerCamelCase, organization='''nielsr''') processor.push_to_hub(lowerCamelCase, organization='''nielsr''') slow_tokenizer.push_to_hub(lowerCamelCase, organization='''nielsr''') if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = OmegaConf.load(lowerCamelCase) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase))) return config def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None): if conf_path is None: __lowerCAmelCase = '''./model_checkpoints/vqgan_only.yaml''' __lowerCAmelCase = load_config(lowerCamelCase, display=lowerCamelCase) __lowerCAmelCase = VQModel(**config.model.params) if ckpt_path is None: __lowerCAmelCase = '''./model_checkpoints/vqgan_only.pt''' __lowerCAmelCase = torch.load(lowerCamelCase, map_location=lowerCamelCase) if ".ckpt" in ckpt_path: __lowerCAmelCase = sd['''state_dict'''] model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) model.to(lowerCamelCase) del sd return model def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.encode(lowerCamelCase) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""") __lowerCAmelCase = model.decode(lowerCamelCase) return xrec def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase , __lowerCAmelCase = string.rsplit('''.''', 1) if reload: __lowerCAmelCase = importlib.import_module(lowerCamelCase) importlib.reload(lowerCamelCase) return getattr(importlib.import_module(lowerCamelCase, package=lowerCamelCase), cls) def __magic_name__( lowerCamelCase): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''') return get_obj_from_str(config['''target'''])(**config.get('''params''', {})) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=True, lowerCamelCase=True): __lowerCAmelCase = instantiate_from_config(lowerCamelCase) if sd is not None: model.load_state_dict(lowerCamelCase) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): # load the specified checkpoint if ckpt: __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''') __lowerCAmelCase = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""") else: __lowerCAmelCase = {'''state_dict''': None} __lowerCAmelCase = None __lowerCAmelCase = load_model_from_config(config.model, pl_sd['''state_dict'''], gpu=lowerCamelCase, eval_mode=lowerCamelCase)['''model'''] return model, global_step
365
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : str = logging.get_logger(__name__) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): return [ int(1_0_0_0 * (box[0] / width)), int(1_0_0_0 * (box[1] / height)), int(1_0_0_0 * (box[2] / width)), int(1_0_0_0 * (box[3] / height)), ] def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = None): __lowerCAmelCase = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowerCAmelCase = to_pil_image(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(lowerCamelCase, lang=lowerCamelCase, output_type='''dict''', config=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(lowerCamelCase) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase, lowerCamelCase, lowerCamelCase)) assert len(lowerCamelCase) == len(lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def _snake_case (self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase = [flip_channel_order(__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
9
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class a__ : """simple docstring""" @staticmethod def _snake_case (*__lowercase , **__lowercase ): pass def __magic_name__( lowerCamelCase): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _UpperCAmelCase : Tuple = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case (self , __lowercase , __lowercase , __lowercase ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) __lowerCAmelCase = '''What is the placebo?''' __lowerCAmelCase = [ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''answer''': ANY(__lowercase ), '''start''': ANY(__lowercase ), '''end''': ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''How many cats are there?''' __lowerCAmelCase = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes __lowerCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowerCAmelCase = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case (self ): __lowerCAmelCase = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowercase ) __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowercase , revision='''3dc6de3''' , max_seq_len=50 , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowerCAmelCase = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __lowerCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , '''''' ) ) ) # This model should also work if `image` is set to None __lowerCAmelCase = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def _snake_case (self ): __lowerCAmelCase = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __lowerCAmelCase = INVOICE_URL __lowerCAmelCase = '''What is the invoice number?''' __lowerCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def _snake_case (self ): pass
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __magic_name__( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''', type=lowerCamelCase, default='''microsoft/unixcoder-base-nine''') parser.add_argument('''--num_epochs''', type=lowerCamelCase, default=5) parser.add_argument('''--batch_size''', type=lowerCamelCase, default=6) parser.add_argument('''--gradient_accumulation_steps''', type=lowerCamelCase, default=1) parser.add_argument('''--freeze''', type=lowerCamelCase, default=lowerCamelCase) parser.add_argument('''--learning_rate''', type=lowerCamelCase, default=5E-4) parser.add_argument('''--seed''', type=lowerCamelCase, default=0) parser.add_argument('''--lr_scheduler_type''', type=lowerCamelCase, default='''cosine''') parser.add_argument('''--num_warmup_steps''', type=lowerCamelCase, default=1_0) parser.add_argument('''--weight_decay''', type=lowerCamelCase, default=0.01) parser.add_argument('''--output_dir''', type=lowerCamelCase, default='''./results''') return parser.parse_args() _UpperCAmelCase : List[Any] = load("""accuracy""") def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = eval_pred __lowerCAmelCase = np.argmax(lowerCamelCase, axis=1) return metric.compute(predictions=lowerCamelCase, references=lowerCamelCase) class a__ ( __A ): def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = trainer def _snake_case (self , __lowercase , __lowercase , __lowercase , **__lowercase ): if control.should_evaluate: __lowerCAmelCase = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def __magic_name__( ): __lowerCAmelCase = get_args() set_seed(args.seed) __lowerCAmelCase = load_dataset('''codeparrot/codecomplex''', split='''train''') __lowerCAmelCase = dataset.train_test_split(test_size=0.2) __lowerCAmelCase = train_test['''test'''].train_test_split(test_size=0.5) __lowerCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], }) print('''Loading tokenizer and model''') __lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt) __lowerCAmelCase = tokenizer.eos_token __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7) __lowerCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowerCAmelCase = False __lowerCAmelCase = ClassLabel(num_classes=7, names=list(set(train_test_validation['''train''']['''complexity''']))) def tokenize(lowerCamelCase): __lowerCAmelCase = tokenizer(example['''src'''], truncation=lowerCamelCase, max_length=1_0_2_4) __lowerCAmelCase = labels.straint(example['''complexity''']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowerCAmelCase = train_test_validation.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=train_test_validation['''train'''].column_names, ) __lowerCAmelCase = DataCollatorWithPadding(tokenizer=lowerCamelCase) __lowerCAmelCase = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy='''epoch''', save_strategy='''epoch''', logging_strategy='''epoch''', per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model='''accuracy''', run_name='''complexity-java''', report_to='''wandb''', ) __lowerCAmelCase = Trainer( model=lowerCamelCase, args=lowerCamelCase, train_dataset=tokenized_datasets['''train'''], eval_dataset=tokenized_datasets['''valid'''], tokenizer=lowerCamelCase, data_collator=lowerCamelCase, compute_metrics=lowerCamelCase, ) print('''Training...''') trainer.add_callback(CustomCallback(lowerCamelCase)) trainer.train() if __name__ == "__main__": main()
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'decision_transformer' __UpperCamelCase : List[Any] = ['past_key_values'] __UpperCamelCase : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , __lowercase=17 , __lowercase=4 , __lowercase=1_28 , __lowercase=40_96 , __lowercase=True , __lowercase=1 , __lowercase=10_24 , __lowercase=3 , __lowercase=1 , __lowercase=None , __lowercase="relu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=5_02_56 , __lowercase=5_02_56 , __lowercase=False , __lowercase=False , **__lowercase , ): __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
368
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Any = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from math import sqrt def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCamelCase))) + 1): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'status' must been from type bool" return status def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1)) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase)): for j in range(i + 1, len(lowerCamelCase)): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1): if is_prime(lowerCamelCase): ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCamelCase) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase): while quotient != 1: if is_prime(lowerCamelCase) and (quotient % factor == 0): ans.append(lowerCamelCase) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type list" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = max(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = min(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase), "'ans' must been from type int" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCamelCase), "compare bust been from type bool" return number % 2 == 0 def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCamelCase), "compare bust been from type bool" return number % 2 != 0 def __magic_name__( lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and (number > 2) and is_even(lowerCamelCase) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i]) ans.append(prime_numbers[j]) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (len(lowerCamelCase) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0]) and is_prime(ans[1]) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCamelCase) __lowerCAmelCase = prime_factorization(lowerCamelCase) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(max(lowerCamelCase, lowerCamelCase)): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCamelCase) for _ in range(lowerCamelCase): ans *= n done.append(lowerCamelCase) # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase): ans += 1 # precondition assert isinstance(lowerCamelCase, lowerCamelCase) and is_prime( lowerCamelCase), "'ans' must been a prime number and from type int" return ans def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( is_prime(lowerCamelCase) and is_prime(lowerCamelCase) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 while number < p_number_a: ans.append(lowerCamelCase) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase): number += 1 # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and ans[0] != p_number_a and ans[len(lowerCamelCase) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1): if n % divisor == 0: ans.append(lowerCamelCase) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase) - 1] == n, "Error in function getDivisiors(...)" return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCamelCase) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (divisors[0] == 1) and (divisors[len(lowerCamelCase) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1]) == number def __magic_name__( lowerCamelCase, lowerCamelCase): assert ( isinstance(lowerCamelCase, lowerCamelCase) and isinstance(lowerCamelCase, lowerCamelCase) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCamelCase), abs(lowerCamelCase)) # precondition assert ( isinstance(lowerCamelCase, lowerCamelCase) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1): ans *= factor return ans def __magic_name__( lowerCamelCase): assert isinstance(lowerCamelCase, lowerCamelCase) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
9
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase : List[Any] = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def __magic_name__( ): __lowerCAmelCase = cn.convert_to_negative(lowerCamelCase) # assert negative_img array for at least one True assert negative_img.any() def __magic_name__( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(lowerCamelCase, 1_1_0)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def __magic_name__( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4) # Assert ambiguous array assert resp.all() def __magic_name__( ): __lowerCAmelCase = imread('''digital_image_processing/image_data/lena_small.jpg''', 0) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCamelCase) # assert canny array for at least one True assert canny_array.any() def __magic_name__( ): assert gg.gaussian_filter(lowerCamelCase, 5, sigma=0.9).all() def __magic_name__( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) __lowerCAmelCase = conv.img_convolve(lowerCamelCase, lowerCamelCase).astype(lowerCamelCase) assert res.any() def __magic_name__( ): assert med.median_filter(lowerCamelCase, 3).any() def __magic_name__( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCamelCase) assert grad.any() and theta.any() def __magic_name__( ): __lowerCAmelCase = sp.make_sepia(lowerCamelCase, 2_0) assert sepia.all() def __magic_name__( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg"): __lowerCAmelCase = bs.Burkes(imread(lowerCamelCase, 1), 1_2_0) burkes.process() assert burkes.output_img.any() def __magic_name__( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCamelCase, 1), 4_0_0, 2_0_0) nn.process() assert nn.output.any() def __magic_name__( ): __lowerCAmelCase = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCamelCase, 0) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0]): for j in range(0, image.shape[1]): __lowerCAmelCase = lbp.local_binary_value(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert lbp_image.any()
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class a__ : """simple docstring""" __UpperCamelCase : float __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None def __magic_name__( lowerCamelCase): # Validation def is_valid_tree(lowerCamelCase) -> bool: if node is None: return True if not isinstance(lowerCamelCase, lowerCamelCase): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(lowerCamelCase): raise ValueError( '''Each node should be type of TreeNode and data should be float.''') def is_binary_search_tree_recursive_check( lowerCamelCase, lowerCamelCase, lowerCamelCase) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left, lowerCamelCase, node.data) and is_binary_search_tree_recursive_check( node.right, node.data, lowerCamelCase) ) return is_binary_search_tree_recursive_check(lowerCamelCase, -float('''inf'''), float('''inf''')) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class a__ ( __A ): """simple docstring""" __UpperCamelCase : str = 'roberta' def __init__(self , __lowercase=5_02_65 , __lowercase=7_68 , __lowercase=12 , __lowercase=12 , __lowercase=30_72 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=1e-12 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase="absolute" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( __A ): """simple docstring""" @property def _snake_case (self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
0