code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase : def __init__(self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str]=13 , snake_case__ : Optional[int]=7 , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=99 , snake_case__ : Dict=32 , snake_case__ : List[str]=2 , snake_case__ : List[str]=4 , snake_case__ : Tuple=37 , snake_case__ : List[str]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=5_12 , snake_case__ : Optional[Any]=16 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : str=4 , snake_case__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' snake_case : Any = parent snake_case : str = 13 snake_case : str = 7 snake_case : Optional[Any] = True snake_case : Tuple = True snake_case : Optional[Any] = True snake_case : Optional[Any] = True snake_case : List[Any] = 99 snake_case : Any = 32 snake_case : int = 2 snake_case : Optional[int] = 4 snake_case : str = 37 snake_case : Tuple = "gelu" snake_case : Optional[int] = 0.1 snake_case : Tuple = 0.1 snake_case : Union[str, Any] = 5_12 snake_case : Optional[Any] = 16 snake_case : Optional[Any] = 2 snake_case : Optional[Any] = 0.02 snake_case : Any = 3 snake_case : Optional[Any] = 4 snake_case : Union[str, Any] = None def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Dict = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Any = None if self.use_token_type_ids: snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : List[str] = None snake_case : int = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Dict = TFRoFormerModel(config=snake_case__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case : List[str] = [input_ids, input_mask] snake_case : Optional[int] = model(snake_case__ ) snake_case : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = True snake_case : Tuple = TFRoFormerForCausalLM(config=snake_case__ ) snake_case : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[str] = model(snake_case__ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = TFRoFormerForMaskedLM(config=snake_case__ ) snake_case : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' snake_case : str = self.num_labels snake_case : Dict = TFRoFormerForSequenceClassification(config=snake_case__ ) snake_case : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : str = self.num_choices snake_case : List[Any] = TFRoFormerForMultipleChoice(config=snake_case__ ) snake_case : Tuple = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : int = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : List[str] = self.num_labels snake_case : str = TFRoFormerForTokenClassification(config=snake_case__ ) snake_case : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : int , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : Any = TFRoFormerForQuestionAnswering(config=snake_case__ ) snake_case : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : int = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : int = config_and_inputs snake_case : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A__ : List[Any] = False A__ : Tuple = False def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Dict = TFRoFormerModelTester(self ) snake_case : int = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(snake_case__ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Tuple = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case : Optional[int] = model(snake_case__ )[0] # TODO Replace vocab size snake_case : Optional[Any] = 5_00_00 snake_case : Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. snake_case : Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 ) @require_tf class UpperCAmelCase ( unittest.TestCase ): A__ : Dict = 1e-4 def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : List[Any] = tf.constant([[4, 10]] ) snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) snake_case : List[str] = emba(input_ids.shape ) snake_case : Optional[int] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) snake_case : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) snake_case : int = emba.weight[:3, :5] tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) @require_tf class UpperCAmelCase ( unittest.TestCase ): A__ : str = 1e-4 def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 snake_case : Union[str, Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 snake_case : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) snake_case : Optional[Any] = embed_positions([2, 16, 7_68] )[None, None, :, :] snake_case , snake_case : Tuple = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case__ , snake_case__ , snake_case__ ) snake_case : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) snake_case : Optional[Any] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance )
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCamelCase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , ): if attention_mask is None: snake_case : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase : def __init__(self : int , snake_case__ : Any , snake_case__ : Optional[int]=13 , snake_case__ : Any=7 , snake_case__ : Dict=True , snake_case__ : Dict=False , snake_case__ : Tuple=99 , snake_case__ : List[str]=16 , snake_case__ : str=2 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=32 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=1 , snake_case__ : Dict=0 , snake_case__ : List[str]=0.02 , ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : Dict = batch_size snake_case : Any = seq_length snake_case : List[Any] = is_training snake_case : Optional[int] = use_labels snake_case : str = vocab_size snake_case : Tuple = hidden_size snake_case : Any = num_hidden_layers snake_case : str = num_attention_heads snake_case : int = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : List[str] = eos_token_id snake_case : List[Any] = pad_token_id snake_case : Union[str, Any] = bos_token_id snake_case : List[str] = initializer_range def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case : int = shift_tokens_right(snake_case__ , 1 , 2 ) snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case__ , ) snake_case : int = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' snake_case , snake_case : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = 20 snake_case : int = model_class_name(snake_case__ ) snake_case : Dict = model.encode(inputs_dict["input_ids"] ) snake_case , snake_case : List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) snake_case : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) snake_case : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case : List[str] = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case : int = model.decode( decoder_input_ids[:, -1:] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case__ , ) snake_case : Union[str, Any] = model.decode(snake_case__ , snake_case__ ) snake_case : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = 20 snake_case : List[Any] = model_class_name(snake_case__ ) snake_case : Optional[Any] = model.encode(inputs_dict["input_ids"] ) snake_case , snake_case : Tuple = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case : List[str] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case : Optional[int] = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) snake_case : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case__ , decoder_position_ids=snake_case__ , ) snake_case : Any = model.decode(snake_case__ , snake_case__ , decoder_attention_mask=snake_case__ ) snake_case : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class UpperCAmelCase ( unittest.TestCase ): A__ : List[str] = 99 def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) snake_case : Union[str, Any] = input_ids.shape[0] snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case , snake_case , snake_case : Optional[Any] = self._get_config_and_data() snake_case : int = FlaxBlenderbotForConditionalGeneration(snake_case__ ) snake_case : Tuple = lm_model(input_ids=snake_case__ ) snake_case : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) snake_case : Any = FlaxBlenderbotForConditionalGeneration(snake_case__ ) snake_case : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) snake_case : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) snake_case : List[str] = lm_model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) snake_case : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) snake_case : int = shift_tokens_right(snake_case__ , 1 , 2 ) snake_case : Tuple = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() snake_case : Tuple = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase ( A_ ,unittest.TestCase ,A_ ): A__ : Optional[Any] = True A__ : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ : List[str] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = FlaxBlenderbotModelTester(self ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Tuple = model_class(snake_case__ ) @jax.jit def encode_jitted(snake_case__ : Tuple , snake_case__ : Optional[Any]=None , **snake_case__ : int ): return model.encode(input_ids=snake_case__ , attention_mask=snake_case__ ) with self.subTest("JIT Enabled" ): snake_case : Union[str, Any] = encode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case : str = encode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : List[Any] = model_class(snake_case__ ) snake_case : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) snake_case : Union[str, Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ : Any , snake_case__ : Dict , snake_case__ : Dict ): return model.decode( decoder_input_ids=snake_case__ , decoder_attention_mask=snake_case__ , encoder_outputs=snake_case__ , ) with self.subTest("JIT Enabled" ): snake_case : Optional[int] = decode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case : List[Any] = decode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case : int = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id snake_case : Optional[Any] = model(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case : Dict = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} snake_case : int = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} snake_case : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=snake_case__ ) snake_case : Union[str, Any] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) snake_case : Tuple = ["Sam"] snake_case : Dict = tokenizer(snake_case__ , return_tensors="jax" ) snake_case : Optional[Any] = model.generate(**snake_case__ , **snake_case__ ) snake_case : Any = "Sam is a great name. It means \"sun\" in Gaelic." snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ , **snake_case__ ) assert generated_txt[0].strip() == tgt_text
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = ProphetNetTokenizer A__ : List[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' super().setUp() snake_case : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : int = "UNwant\u00E9d,running" snake_case : Dict = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = self.tokenizer_class(self.vocab_file ) snake_case : int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : Optional[Any] = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : Any = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Any = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : List[Any] = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : Any = BasicTokenizer(do_lower_case=snake_case__ , strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : Tuple = BasicTokenizer(do_lower_case=snake_case__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Tuple = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] snake_case : List[str] = {} for i, token in enumerate(snake_case__ ): snake_case : Optional[int] = i snake_case : Tuple = WordpieceTokenizer(vocab=snake_case__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) snake_case : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] snake_case : Union[str, Any] = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] snake_case : Optional[Any] = tokenizer(snake_case__ , padding=snake_case__ , return_tensors="pt" ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Any = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : Tuple = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) snake_case : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) snake_case : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) snake_case : int = tokenizer.build_inputs_with_special_tokens(snake_case__ ) snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( A_ ): A__ : Optional[int] = (DDPMParallelScheduler,) def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case__ ) return config def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config() snake_case : Tuple = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Dict = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config() snake_case : Optional[int] = scheduler_class(**snake_case__ ) snake_case : Any = len(snake_case__ ) snake_case : Tuple = self.dummy_model() snake_case : List[Any] = self.dummy_sample_deter snake_case : Dict = self.dummy_sample_deter + 0.1 snake_case : List[Any] = self.dummy_sample_deter - 0.1 snake_case : Union[str, Any] = samplea.shape[0] snake_case : List[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case : Any = torch.arange(snake_case__ )[0:3, None].repeat(1 , snake_case__ ) snake_case : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case : Optional[Any] = scheduler.batch_step_no_noise(snake_case__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) snake_case : Optional[int] = torch.sum(torch.abs(snake_case__ ) ) snake_case : Tuple = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = self.scheduler_classes[0] snake_case : Optional[int] = self.get_scheduler_config() snake_case : Optional[int] = scheduler_class(**snake_case__ ) snake_case : Union[str, Any] = len(snake_case__ ) snake_case : Any = self.dummy_model() snake_case : Dict = self.dummy_sample_deter snake_case : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual snake_case : List[str] = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 snake_case : int = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample snake_case : str = pred_prev_sample snake_case : List[Any] = torch.sum(torch.abs(snake_case__ ) ) snake_case : Any = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : Tuple = self.scheduler_classes[0] snake_case : str = self.get_scheduler_config(prediction_type="v_prediction" ) snake_case : int = scheduler_class(**snake_case__ ) snake_case : List[Any] = len(snake_case__ ) snake_case : Union[str, Any] = self.dummy_model() snake_case : Dict = self.dummy_sample_deter snake_case : Dict = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual snake_case : Tuple = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 snake_case : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample snake_case : Union[str, Any] = pred_prev_sample snake_case : Any = torch.sum(torch.abs(snake_case__ ) ) snake_case : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : int = self.scheduler_classes[0] snake_case : Dict = self.get_scheduler_config() snake_case : List[Any] = scheduler_class(**snake_case__ ) snake_case : Union[str, Any] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case__ ) snake_case : int = scheduler.timesteps for i, timestep in enumerate(snake_case__ ): if i == len(snake_case__ ) - 1: snake_case : Any = -1 else: snake_case : Any = timesteps[i + 1] snake_case : Optional[int] = scheduler.previous_timestep(snake_case__ ) snake_case : Dict = prev_t.item() self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Any: '''simple docstring''' snake_case : int = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config() snake_case : Optional[int] = scheduler_class(**snake_case__ ) snake_case : Optional[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(snake_case__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = self.scheduler_classes[0] snake_case : Optional[Any] = self.get_scheduler_config() snake_case : Optional[int] = scheduler_class(**snake_case__ ) snake_case : Union[str, Any] = [1_00, 87, 50, 1, 0] snake_case : int = len(snake_case__ ) with self.assertRaises(snake_case__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = self.scheduler_classes[0] snake_case : Union[str, Any] = self.get_scheduler_config() snake_case : List[Any] = scheduler_class(**snake_case__ ) snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case__ )
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class UpperCAmelCase ( A_ ): A__ : Optional[int] = "gpt_neox_japanese" def __init__(self : Optional[Any] , snake_case__ : str=3_20_00 , snake_case__ : str=25_60 , snake_case__ : List[str]=32 , snake_case__ : Any=32 , snake_case__ : List[Any]=4 , snake_case__ : Any="gelu" , snake_case__ : List[str]=1.00 , snake_case__ : Tuple=1_00_00 , snake_case__ : Any=20_48 , snake_case__ : List[Any]=0.02 , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : List[str]=True , snake_case__ : List[str]=3_19_96 , snake_case__ : Optional[Any]=3_19_99 , snake_case__ : Optional[Any]=0.1 , snake_case__ : str=0.0 , **snake_case__ : Any , ) -> Dict: '''simple docstring''' super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) snake_case : Union[str, Any] = vocab_size snake_case : int = max_position_embeddings snake_case : List[Any] = hidden_size snake_case : Any = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[Any] = intermediate_multiple_size snake_case : List[str] = hidden_act snake_case : Optional[Any] = rotary_pct snake_case : Optional[int] = rotary_emb_base snake_case : Tuple = initializer_range snake_case : Optional[int] = layer_norm_eps snake_case : List[str] = use_cache snake_case : int = attention_dropout snake_case : Dict = hidden_dropout
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple=13 , snake_case__ : List[Any]=10 , snake_case__ : str=3 , snake_case__ : List[str]=2 , snake_case__ : Optional[int]=2 , snake_case__ : Any=True , snake_case__ : str=True , snake_case__ : int=32 , snake_case__ : Dict=5 , snake_case__ : List[str]=4 , snake_case__ : Any=37 , snake_case__ : Dict="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : int=10 , snake_case__ : int=0.02 , snake_case__ : Optional[int]="divided_space_time" , snake_case__ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' snake_case : int = parent snake_case : Union[str, Any] = batch_size snake_case : List[str] = image_size snake_case : Union[str, Any] = num_channels snake_case : Optional[Any] = patch_size snake_case : Optional[Any] = num_frames snake_case : Tuple = is_training snake_case : Optional[Any] = use_labels snake_case : Optional[int] = hidden_size snake_case : int = num_hidden_layers snake_case : int = num_attention_heads snake_case : Any = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Union[str, Any] = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = attention_type snake_case : Optional[int] = initializer_range snake_case : Optional[Any] = scope snake_case : Dict = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token snake_case : Union[str, Any] = (image_size // patch_size) ** 2 snake_case : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : Tuple = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) snake_case : Union[str, Any] = self.num_labels return config def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = TimesformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = TimesformerForVideoClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[Any] = model(snake_case__ ) # verify the logits shape snake_case : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Optional[int] = config_and_inputs snake_case : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () A__ : Any = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) A__ : List[str] = False A__ : Optional[Any] = False A__ : Optional[int] = False A__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : Any = TimesformerModelTester(self ) snake_case : Any = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[int]=False ) -> Any: '''simple docstring''' snake_case : Optional[int] = copy.deepcopy(snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(snake_case__ ) snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = TimesformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' if not self.has_attentions: pass else: snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Union[str, Any] = True for model_class in self.all_model_classes: snake_case : Tuple = self.model_tester.seq_length snake_case : Union[str, Any] = self.model_tester.num_frames snake_case : List[str] = True snake_case : List[Any] = False snake_case : Any = True snake_case : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : List[str] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Dict = True snake_case : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) snake_case : str = len(snake_case__ ) # Check attention is always last and order is fine snake_case : int = True snake_case : List[str] = True snake_case : str = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + 1 , len(snake_case__ ) ) snake_case : Dict = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[int] ): snake_case : List[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : Optional[int] = outputs.hidden_states snake_case : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case__ ) , snake_case__ ) snake_case : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( ): snake_case : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) snake_case : int = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( snake_case__ ) snake_case : List[Any] = self.default_image_processor snake_case : List[Any] = prepare_video() snake_case : Union[str, Any] = image_processor(video[:8] , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case : Any = model(**snake_case__ ) # verify the logits snake_case : Tuple = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) snake_case : Optional[Any] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """Hello, World!""" __lowerCamelCase = """en_XX""" def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : bool ): snake_case : str = Path("data_bin" ) snake_case : str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowerCamelCase ).parent ) , checkpoint_file=Path(__lowerCamelCase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__lowerCamelCase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__lowerCamelCase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__lowerCamelCase ) snake_case : Tuple = xmod.model.encoder.sentence_encoder snake_case : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: snake_case : Dict = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __lowerCamelCase ) snake_case : Optional[Any] = XmodForSequenceClassification(__lowerCamelCase ) if classification_head else XmodForMaskedLM(__lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings snake_case : List[str] = xmod_sent_encoder.embed_tokens.weight snake_case : int = xmod_sent_encoder.embed_positions.weight snake_case : Tuple = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. snake_case : int = xmod_sent_encoder.layernorm_embedding.weight snake_case : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case : Union[str, Any] = model.roberta.encoder.layer[i] snake_case : Optional[int] = xmod_sent_encoder.layers[i] # self attention snake_case : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) snake_case : Any = xmod_layer.self_attn.q_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.q_proj.bias snake_case : int = xmod_layer.self_attn.k_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.k_proj.bias snake_case : Optional[int] = xmod_layer.self_attn.v_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output snake_case : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) snake_case : Tuple = xmod_layer.self_attn.out_proj.weight snake_case : Dict = xmod_layer.self_attn.out_proj.bias snake_case : Any = xmod_layer.self_attn_layer_norm.weight snake_case : str = xmod_layer.self_attn_layer_norm.bias # intermediate snake_case : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) snake_case : List[Any] = xmod_layer.fca.weight snake_case : List[str] = xmod_layer.fca.bias # output snake_case : str = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) snake_case : Dict = xmod_layer.fca.weight snake_case : List[Any] = xmod_layer.fca.bias snake_case : Optional[int] = xmod_layer.final_layer_norm.weight snake_case : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: snake_case : int = xmod_layer.adapter_layer_norm.weight snake_case : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): snake_case : str = bert_output.adapter_modules[lang_code] snake_case : Union[str, Any] = xmod_layer.adapter_modules[lang_code] snake_case : str = from_adapter.fca.weight snake_case : Optional[Any] = from_adapter.fca.bias snake_case : Optional[int] = from_adapter.fca.weight snake_case : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: snake_case : int = xmod_sent_encoder.layer_norm.weight snake_case : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: snake_case : Any = xmod.model.classification_heads["mnli"].dense.weight snake_case : Optional[Any] = xmod.model.classification_heads["mnli"].dense.bias snake_case : Optional[Any] = xmod.model.classification_heads["mnli"].out_proj.weight snake_case : Dict = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case : str = xmod.model.encoder.lm_head.dense.weight snake_case : Any = xmod.model.encoder.lm_head.dense.bias snake_case : Tuple = xmod.model.encoder.lm_head.layer_norm.weight snake_case : str = xmod.model.encoder.lm_head.layer_norm.bias snake_case : List[str] = xmod.model.encoder.lm_head.weight snake_case : Optional[int] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case : Tuple = xmod.encode(__lowerCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowerCamelCase ) snake_case : Optional[int] = model(__lowerCamelCase )[0] if classification_head: snake_case : Tuple = xmod.model.classification_heads["mnli"](xmod.extract_features(__lowerCamelCase ) ) else: snake_case : Optional[Any] = xmod.model(__lowerCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) snake_case : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 snake_case : int = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__lowerCamelCase ).mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __lowerCamelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import numpy as np def UpperCamelCase ( __lowerCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( __lowerCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(snake_case__ ): snake_case : Tuple = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' with self.assertRaises(snake_case__ ): snake_case : Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case : Tuple = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case : Dict = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' import PIL.Image snake_case : List[str] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=snake_case__ ) as mock_cast_to_python_objects: snake_case : str = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) snake_case , snake_case : Optional[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , snake_case__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): snake_case : Union[str, Any] = pa.BufferReader(__lowerCamelCase ) if isinstance(__lowerCamelCase , pa.Buffer ) else pa.memory_map(__lowerCamelCase ) snake_case : str = pa.ipc.open_stream(__lowerCamelCase ) snake_case : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): snake_case : Union[str, Any] = pa.BufferOutputStream() snake_case : List[Any] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Any = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase ( ): snake_case : str = pa.BufferOutputStream() snake_case : List[Any] = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__lowerCamelCase , features=__lowerCamelCase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case , snake_case : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case : List[Any] = pa.BufferReader(output.getvalue() ) snake_case : Optional[int] = pa.ipc.open_stream(__lowerCamelCase ) snake_case : pa.Table = f.read_all() snake_case : Union[str, Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCamelCase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def UpperCamelCase ( __lowerCamelCase : Tuple ): snake_case : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case , snake_case : Optional[int] = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Optional[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) snake_case , snake_case : Dict = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Dict = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case , snake_case : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): snake_case : int = pa.BufferOutputStream() snake_case : List[Any] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case , snake_case : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): snake_case : Dict = pa.BufferOutputStream() snake_case : List[str] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case , snake_case : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): snake_case : Optional[int] = pa.BufferOutputStream() snake_case : List[str] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case , snake_case : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : List[Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase ( ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Union[str, Any] = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test.arrow" ) with ArrowWriter(path=__lowerCamelCase , schema=pa.schema(__lowerCamelCase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case , snake_case : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(__lowerCamelCase , 1 ) def UpperCamelCase ( __lowerCamelCase : int ): if pa.types.is_list(__lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if isinstance(lst[0] , __lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCamelCase ) else: snake_case : List[str] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): snake_case : Any = pa.array(TypedSequence(__lowerCamelCase , optimized_int_type=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): # in range snake_case : Tuple = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case : Union[str, Any] = copy.deepcopy(__lowerCamelCase ) snake_case : Union[str, Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCamelCase , __lowerCamelCase ) snake_case : Any = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): snake_case : List[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : int = "mock://dataset-train.arrow" with ArrowWriter(path=__lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCamelCase ) def UpperCamelCase ( ): snake_case : Optional[int] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case , snake_case : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case : Optional[Any] = pa.BufferReader(output.getvalue() ) snake_case : pa.Table = pq.read_table(__lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): import PIL.Image snake_case : Dict = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCamelCase , format="png" ) snake_case : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCamelCase , features=Features({"image": Image()} ) , embed_local_files=__lowerCamelCase ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case : str = pa.BufferReader(output.getvalue() ) snake_case : pa.Table = pq.read_table(__lowerCamelCase ) snake_case : Tuple = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase ( ): snake_case : List[Any] = pa.schema([pa.field("col_1" , pa.string() , nullable=__lowerCamelCase )] ) snake_case : List[str] = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCamelCase ) as writer: writer._build_writer(inferred_schema=__lowerCamelCase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
10
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[str]] , __lowerCamelCase : int , ): snake_case : int = len(__lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCamelCase , __lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : list[list[str]] = [] depth_first_search([] , [] , [] , __lowerCamelCase , __lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(__lowerCamelCase ) print("" ) print(len(__lowerCamelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
10
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : Dict , **snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : str , *snake_case__ : str , **snake_case__ : int ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : Any ) -> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[int] = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : Any , **snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : Tuple , **snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : int ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : str , *snake_case__ : Optional[Any] , **snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : List[str] ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : int = ["sentencepiece"] def __init__(self : Optional[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : Optional[Any] , **snake_case__ : int ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : Tuple , *snake_case__ : Any , **snake_case__ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : str , *snake_case__ : int , **snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[str] , **snake_case__ : Any ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[Any] , **snake_case__ : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : Tuple , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : int , *snake_case__ : Any , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : Dict , **snake_case__ : List[str] ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : str , *snake_case__ : int , **snake_case__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : str , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Optional[int] , *snake_case__ : str , **snake_case__ : str ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[Any] = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : int , **snake_case__ : Any ) -> str: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : Tuple , **snake_case__ : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : int = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Any , **snake_case__ : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ) -> str: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : int , *snake_case__ : str , **snake_case__ : str ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] )
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
10
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): return len(set(__lowerCamelCase ) ) == len(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
10
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
1
from __future__ import annotations from typing import TypedDict class UpperCAmelCase ( A_ ): A__ : str A__ : int def UpperCamelCase ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__lowerCamelCase ) )] def UpperCamelCase ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) snake_case : Tuple = all_rotations(__lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCamelCase ), } return response def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: snake_case : Union[str, Any] = int(__lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) snake_case : Optional[Any] = [""] * len(__lowerCamelCase ) for _ in range(len(__lowerCamelCase ) ): for i in range(len(__lowerCamelCase ) ): snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __lowerCamelCase = """Provide a string that I will generate its BWT transform: """ __lowerCamelCase = input(entry_msg).strip() __lowerCamelCase = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) __lowerCamelCase = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
10
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Union[str, Any] = StableDiffusionXLImgaImgPipeline A__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} A__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} A__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS A__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) snake_case : Dict = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) snake_case : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=32 , ) snake_case : Tuple = CLIPTextModel(snake_case__ ) snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) snake_case : int = CLIPTextModelWithProjection(snake_case__ ) snake_case : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) snake_case : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] , snake_case__ : List[str]=0 ) -> Dict: '''simple docstring''' snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) snake_case : Union[str, Any] = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): snake_case : List[Any] = torch.manual_seed(snake_case__ ) else: snake_case : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : int = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Tuple = StableDiffusionXLImgaImgPipeline(**snake_case__ ) snake_case : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Dict = self.get_dummy_inputs(snake_case__ ) snake_case : List[str] = sd_pipe(**snake_case__ ).images snake_case : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.get_dummy_components() snake_case : List[Any] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) snake_case : int = sd_pipe.to(snake_case__ ) snake_case : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds snake_case : List[str] = self.get_dummy_inputs(snake_case__ ) snake_case : Optional[int] = 3 * ["this is a negative prompt"] snake_case : int = negative_prompt snake_case : str = 3 * [inputs["prompt"]] snake_case : Any = sd_pipe(**snake_case__ ) snake_case : List[str] = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case : int = self.get_dummy_inputs(snake_case__ ) snake_case : List[str] = 3 * ["this is a negative prompt"] snake_case : Any = 3 * [inputs.pop("prompt" )] ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Dict = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) snake_case : List[str] = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) snake_case : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : str , snake_case__ : Optional[int]="cpu" , snake_case__ : Tuple=torch.floataa , snake_case__ : Tuple=0 ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Optional[int] = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) snake_case : Dict = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) snake_case : Tuple = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : int = self.get_inputs(snake_case__ ) snake_case : Optional[int] = pipe(**snake_case__ ).images snake_case : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) snake_case : Any = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
10
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase ( A_ ): A__ : str = field(default="language-modeling" ,metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"text": Value("string" )} ) A__ : ClassVar[Features] = Features({} ) A__ : str = "text" @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
10
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
1
import doctest from collections import deque import numpy as np class UpperCAmelCase : def __init__(self : int ) -> None: '''simple docstring''' snake_case : Tuple = [2, 1, 2, -1] snake_case : Tuple = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> list[float]: '''simple docstring''' snake_case : List[str] = len(self.first_signal ) snake_case : List[Any] = len(self.second_signal ) snake_case : Tuple = max(snake_case__ , snake_case__ ) # create a zero matrix of max_length x max_length snake_case : Union[str, Any] = [[0] * max_length for i in range(snake_case__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(snake_case__ ): snake_case : Optional[Any] = deque(self.second_signal ) rotated_signal.rotate(snake_case__ ) for j, item in enumerate(snake_case__ ): matrix[i][j] += item # multiply the matrix with the first signal snake_case : Dict = np.matmul(np.transpose(snake_case__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(snake_case__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
10
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
1
from math import ceil, sqrt def UpperCamelCase ( __lowerCamelCase : int = 1000000 ): snake_case : Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
10
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase ( A_ ): A__ : Union[List[PIL.Image.Image], np.ndarray] A__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase ( A_ ): A__ : np.ndarray A__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : str ): snake_case : Optional[Any] = tmp_path / "cache" snake_case : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case : str = ParquetDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_parquet_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): snake_case : List[Any] = tmp_path / "cache" snake_case : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case : Tuple = features.copy() if features else default_expected_features snake_case : List[str] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case : List[str] = ParquetDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_parquet_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Optional[Any] = tmp_path / "cache" snake_case : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case : int = ParquetDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read() _check_parquet_dataset(__lowerCamelCase , __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): if issubclass(__lowerCamelCase , __lowerCamelCase ): snake_case : Optional[int] = parquet_path elif issubclass(__lowerCamelCase , __lowerCamelCase ): snake_case : Any = [parquet_path] snake_case : Union[str, Any] = tmp_path / "cache" snake_case : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case : int = ParquetDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_parquet_dataset(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=("train",) ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) for split in splits: snake_case : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): snake_case : List[str] = tmp_path / "cache" snake_case : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case : List[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_parquet_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str ): snake_case : str = tmp_path / "cache" snake_case : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case : Dict = features.copy() if features else default_expected_features snake_case : str = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case : List[Any] = ParquetDatasetReader({"train": parquet_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_parquet_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ): if split: snake_case : str = {split: parquet_path} else: snake_case : Optional[Any] = "train" snake_case : Tuple = {"train": parquet_path, "test": parquet_path} snake_case : Optional[Any] = tmp_path / "cache" snake_case : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case : int = ParquetDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_parquet_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): snake_case : List[Any] = ParquetDatasetWriter(__lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 snake_case : Optional[int] = pq.ParquetFile(tmp_path / "foo.parquet" ) snake_case : Tuple = pf.read() assert dataset.data.table == output_table def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): snake_case : int = str(shared_datadir / "test_image_rgb.jpg" ) snake_case : Optional[int] = {"image": [image_path]} snake_case : Tuple = Features({"image": Image()} ) snake_case : Optional[Any] = Dataset.from_dict(__lowerCamelCase , features=__lowerCamelCase ) snake_case : Optional[int] = ParquetDatasetWriter(__lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 snake_case : Optional[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features snake_case : str = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): assert get_writer_batch_size(__lowerCamelCase ) == expected
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """spiece.model"""} __lowerCamelCase = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class UpperCAmelCase ( A_ ): def __init__(self : Optional[Any] , snake_case__ : str , snake_case__ : List[str]=False , snake_case__ : Dict=True , snake_case__ : Tuple=False , snake_case__ : Optional[Any]="<s>" , snake_case__ : Optional[int]="</s>" , snake_case__ : int="<unk>" , snake_case__ : int="<sep>" , snake_case__ : Tuple="<pad>" , snake_case__ : Tuple="<cls>" , snake_case__ : str="<mask>" , snake_case__ : int=["<eop>", "<eod>"] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Optional[Any] , ) -> None: '''simple docstring''' snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Dict = 3 snake_case : List[str] = do_lower_case snake_case : int = remove_space snake_case : Optional[int] = keep_accents snake_case : Tuple = vocab_file snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) snake_case : Optional[Any] = jieba snake_case : Any = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__(self : Tuple , snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : int ) -> Optional[int]: '''simple docstring''' if self.remove_space: snake_case : Optional[Any] = " ".join(inputs.strip().split() ) else: snake_case : List[str] = inputs snake_case : Any = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case : Optional[Any] = unicodedata.normalize("NFKD" , snake_case__ ) snake_case : List[Any] = "".join([c for c in outputs if not unicodedata.combining(snake_case__ )] ) if self.do_lower_case: snake_case : str = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.preprocess_text(snake_case__ ) snake_case : int = self.sp_model.encode(snake_case__ , out_type=snake_case__ ) snake_case : Dict = [] for piece in pieces: if len(snake_case__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case : int = cur_pieces[1:] else: snake_case : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case__ ) else: new_pieces.append(snake_case__ ) return new_pieces def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> List[Any]: '''simple docstring''' return self.sp_model.IdToPiece(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[str] ) -> str: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Dict = [self.sep_token_id] snake_case : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1, 1] return ([0] * len(snake_case__ )) + [1, 1] def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Any = [self.sep_token_id] snake_case : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , *snake_case__ : Dict , **snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : int = super()._decode(*snake_case__ , **snake_case__ ) snake_case : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( A_ ,A_ ,A_ ): A__ : Any = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__(self : Any , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] = None , snake_case__ : int = 5_02_57 , snake_case__ : int = 10_24 , snake_case__ : int = 7_68 , snake_case__ : int = 12 , snake_case__ : int = 12 , snake_case__ : Optional[int] = None , snake_case__ : str = "gelu_new" , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : float = 1e-5 , snake_case__ : float = 0.02 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : bool = False , snake_case__ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) snake_case : int = prefix_inner_dim snake_case : Any = prefix_hidden_dim snake_case : str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case : Optional[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case : Dict = GPTaConfig( vocab_size=snake_case__ , n_positions=snake_case__ , n_embd=snake_case__ , n_layer=snake_case__ , n_head=snake_case__ , n_inner=snake_case__ , activation_function=snake_case__ , resid_pdrop=snake_case__ , embd_pdrop=snake_case__ , attn_pdrop=snake_case__ , layer_norm_epsilon=snake_case__ , initializer_range=snake_case__ , scale_attn_weights=snake_case__ , use_cache=snake_case__ , scale_attn_by_inverse_layer_idx=snake_case__ , reorder_and_upcast_attn=snake_case__ , ) snake_case : Union[str, Any] = GPTaLMHeadModel(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : torch.Tensor , snake_case__ : torch.Tensor , snake_case__ : Optional[torch.Tensor] = None , snake_case__ : Optional[torch.Tensor] = None , ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = self.transformer.transformer.wte(snake_case__ ) snake_case : Dict = self.encode_prefix(snake_case__ ) snake_case : str = self.decode_prefix(snake_case__ ) snake_case : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case : List[Any] = self.transformer(inputs_embeds=snake_case__ , labels=snake_case__ , attention_mask=snake_case__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int , snake_case__ : torch.device ) -> torch.Tensor: '''simple docstring''' return torch.zeros(snake_case__ , self.prefix_length , dtype=torch.intaa , device=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[str]: '''simple docstring''' return self.encode_prefix(snake_case__ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[Any] ) -> str: '''simple docstring''' snake_case : Tuple = torch.split(snake_case__ , 1 , dim=0 ) snake_case : Any = [] snake_case : Tuple = [] for feature in features: snake_case : Tuple = self.decode_prefix(feature.to(snake_case__ ) ) # back to the clip feature # Only support beam search for now snake_case , snake_case : Union[str, Any] = self.generate_beam( input_embeds=snake_case__ , device=snake_case__ , eos_token_id=snake_case__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case : Optional[int] = torch.stack(snake_case__ ) snake_case : Union[str, Any] = torch.stack(snake_case__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple=None , snake_case__ : Dict=None , snake_case__ : Union[str, Any]=None , snake_case__ : int = 5 , snake_case__ : int = 67 , snake_case__ : float = 1.0 , snake_case__ : Optional[int] = None , ) -> Any: '''simple docstring''' snake_case : int = eos_token_id snake_case : int = None snake_case : Optional[Any] = None snake_case : Union[str, Any] = torch.ones(snake_case__ , device=snake_case__ , dtype=torch.int ) snake_case : List[str] = torch.zeros(snake_case__ , device=snake_case__ , dtype=torch.bool ) if input_embeds is not None: snake_case : Union[str, Any] = input_embeds else: snake_case : List[str] = self.transformer.transformer.wte(snake_case__ ) for i in range(snake_case__ ): snake_case : Dict = self.transformer(inputs_embeds=snake_case__ ) snake_case : List[Any] = outputs.logits snake_case : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case : Optional[int] = logits.softmax(-1 ).log() if scores is None: snake_case , snake_case : str = logits.topk(snake_case__ , -1 ) snake_case : int = generated.expand(snake_case__ , *generated.shape[1:] ) snake_case , snake_case : Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case : Union[str, Any] = next_tokens else: snake_case : Dict = tokens.expand(snake_case__ , *tokens.shape[1:] ) snake_case : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case : int = -float(np.inf ) snake_case : int = 0 snake_case : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case : str = scores_sum / seq_lengths[:, None] snake_case , snake_case : List[str] = scores_sum_average.view(-1 ).topk(snake_case__ , -1 ) snake_case : List[str] = next_tokens // scores_sum.shape[1] snake_case : List[str] = seq_lengths[next_tokens_source] snake_case : int = next_tokens % scores_sum.shape[1] snake_case : Tuple = next_tokens.unsqueeze(1 ) snake_case : Union[str, Any] = tokens[next_tokens_source] snake_case : int = torch.cat((tokens, next_tokens) , dim=1 ) snake_case : int = generated[next_tokens_source] snake_case : Optional[Any] = scores_sum_average * seq_lengths snake_case : Optional[Any] = is_stopped[next_tokens_source] snake_case : Any = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case : Any = torch.cat((generated, next_token_embed) , dim=1 ) snake_case : str = is_stopped + next_tokens.eq(snake_case__ ).squeeze() if is_stopped.all(): break snake_case : List[str] = scores / seq_lengths snake_case : str = scores.argsort(descending=snake_case__ ) # tokens tensors are already padded to max_seq_length snake_case : Dict = [tokens[i] for i in order] snake_case : int = torch.stack(snake_case__ , dim=0 ) snake_case : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
10
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
def UpperCamelCase ( __lowerCamelCase : int = 50 ): snake_case : Tuple = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["input_features", "attention_mask"] def __init__(self : int , snake_case__ : Optional[Any]=80 , snake_case__ : str=1_60_00 , snake_case__ : Optional[int]=80 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , **snake_case__ : Optional[int] , ) -> int: '''simple docstring''' super().__init__(feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , **snake_case__ ) snake_case : Tuple = num_mel_bins snake_case : Tuple = do_ceptral_normalize snake_case : Any = normalize_means snake_case : int = normalize_vars snake_case : Any = True def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : np.ndarray , ) -> np.ndarray: '''simple docstring''' snake_case : Union[str, Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case : Any = torch.from_numpy(snake_case__ ).unsqueeze(0 ) snake_case : Tuple = ta_kaldi.fbank(snake_case__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[bool] = True , snake_case__ : Optional[bool] = True , snake_case__ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: snake_case : str = x[:input_length].mean(axis=0 ) snake_case : int = np.subtract(snake_case__ , snake_case__ ) if normalize_vars: snake_case : str = x[:input_length].std(axis=0 ) snake_case : Dict = np.divide(snake_case__ , snake_case__ ) if input_length < x.shape[0]: snake_case : Union[str, Any] = padding_value # make sure array is in float32 snake_case : List[str] = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[np.ndarray] , snake_case__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' snake_case : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(snake_case__ , snake_case__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(snake_case__ , snake_case__ ) ] def __call__(self : List[Any] , snake_case__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Optional[int] = None , snake_case__ : bool = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , **snake_case__ : List[Any] , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) snake_case : Optional[int] = isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) snake_case : Union[str, Any] = is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case : Tuple = [np.asarray(snake_case__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): snake_case : List[str] = np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case : Union[str, Any] = [raw_speech] # extract fbank features snake_case : List[str] = [self._extract_fbank_features(snake_case__ ) for waveform in raw_speech] # convert into correct format for padding snake_case : Tuple = BatchFeature({"input_features": features} ) snake_case : int = self.pad( snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) # make sure list is in array format snake_case : List[str] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case__ ): snake_case : List[str] = [np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_features] snake_case : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: snake_case : Optional[int] = [np.asarray(snake_case__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case : Dict = ( np.array(snake_case__ , dtype=np.intaa ) if self._get_padding_strategies(snake_case__ , max_length=snake_case__ ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case : List[str] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case__ ) if return_tensors is not None: snake_case : Dict = padded_inputs.convert_to_tensors(snake_case__ ) return padded_inputs
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): # Base Case if index == len(__lowerCamelCase ): return True # Recursive Step for i in range(__lowerCamelCase ): if valid_coloring(graph[index] , __lowerCamelCase , __lowerCamelCase ): # Color current vertex snake_case : Optional[Any] = i # Validate coloring if util_color(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index + 1 ): return True # Backtrack snake_case : Any = -1 return False def UpperCamelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int ): snake_case : Any = [-1] * len(__lowerCamelCase ) if util_color(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , 0 ): return colored_vertices return []
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase = """hf-internal-testing/tiny-random-bert""" __lowerCamelCase = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __lowerCamelCase = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = cached_file(snake_case__ , snake_case__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(snake_case__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(snake_case__ , snake_case__ ) ) ) with open(os.path.join(snake_case__ , "refs" , "main" ) ) as f: snake_case : Tuple = f.read() self.assertEqual(snake_case__ , os.path.join(snake_case__ , "snapshots" , snake_case__ , snake_case__ ) ) self.assertTrue(os.path.isfile(snake_case__ ) ) # File is cached at the same place the second time. snake_case : Union[str, Any] = cached_file(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Using a specific revision to test the full commit hash. snake_case : Dict = cached_file(snake_case__ , snake_case__ , revision="9b8c223" ) self.assertEqual(snake_case__ , os.path.join(snake_case__ , "snapshots" , snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex(snake_case__ , "is not a valid model identifier" ): snake_case : Tuple = cached_file("tiny-random-bert" , snake_case__ ) with self.assertRaisesRegex(snake_case__ , "is not a valid git identifier" ): snake_case : List[Any] = cached_file(snake_case__ , snake_case__ , revision="aaaa" ) with self.assertRaisesRegex(snake_case__ , "does not appear to have a file named" ): snake_case : int = cached_file(snake_case__ , "conf" ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex(snake_case__ , "does not appear to have a file named" ): snake_case : str = cached_file(snake_case__ , "conf" ) with open(os.path.join(snake_case__ , "refs" , "main" ) ) as f: snake_case : str = f.read() self.assertTrue(os.path.isfile(os.path.join(snake_case__ , ".no_exist" , snake_case__ , "conf" ) ) ) snake_case : Any = cached_file(snake_case__ , "conf" , _raise_exceptions_for_missing_entries=snake_case__ ) self.assertIsNone(snake_case__ ) snake_case : int = cached_file(snake_case__ , "conf" , local_files_only=snake_case__ , _raise_exceptions_for_missing_entries=snake_case__ ) self.assertIsNone(snake_case__ ) snake_case : Optional[Any] = mock.Mock() snake_case : Tuple = 5_00 snake_case : List[str] = {} snake_case : Dict = HTTPError snake_case : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = cached_file(snake_case__ , "conf" , _raise_exceptions_for_connection_errors=snake_case__ ) self.assertIsNone(snake_case__ ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , snake_case__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , snake_case__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(snake_case__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , snake_case__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(snake_case__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , snake_case__ , revision="ahaha" ) snake_case : Dict = get_file_from_repo("bert-base-cased" , snake_case__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : Any = json.loads(open(snake_case__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Dict = Path(snake_case__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(snake_case__ , "a.txt" ) , str(snake_case__ ) ) self.assertIsNone(get_file_from_repo(snake_case__ , "b.txt" ) )
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ): snake_case : Optional[Any] = [randint(-1000 , 1000 ) for i in range(10 )] snake_case : Any = randint(-5000 , 5000 ) return (arr, r) __lowerCamelCase = make_dataset() def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): for triplet in permutations(__lowerCamelCase , 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): arr.sort() snake_case : Dict = len(__lowerCamelCase ) for i in range(n - 1 ): snake_case , snake_case : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ): snake_case : Any = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" snake_case : Any = "\ntriplet_sum1(*dataset)\n" snake_case : Optional[int] = "\ntriplet_sum2(*dataset)\n" snake_case : Optional[Any] = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=10000 ) snake_case : Tuple = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=10000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() __lowerCamelCase = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : List[str] = XLNetTokenizer A__ : Optional[Any] = XLNetTokenizerFast A__ : Any = True A__ : Dict = True def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : Any = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = "<s>" snake_case : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case__ ) , 10_06 ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) snake_case : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_85, 46, 10, 1_70, 3_82] ) snake_case : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) snake_case : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : List[str] = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : int = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) snake_case : Dict = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) snake_case : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case__ ) snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = {"input_ids": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
10
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): snake_case : Tuple = hf_hub_url(repo_id=__lowerCamelCase , path=__lowerCamelCase , revision=__lowerCamelCase ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__lowerCamelCase )}"""
10
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase ( A_ ): A__ : Optional[int] = "canine" def __init__(self : str , snake_case__ : int=7_68 , snake_case__ : Union[str, Any]=12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Dict="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[Any]=1_63_84 , snake_case__ : Optional[Any]=16 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Tuple=1e-12 , snake_case__ : Tuple=0 , snake_case__ : Tuple=0XE_0_0_0 , snake_case__ : List[str]=0XE_0_0_1 , snake_case__ : Union[str, Any]=4 , snake_case__ : Tuple=4 , snake_case__ : Optional[int]=8 , snake_case__ : List[Any]=1_63_84 , snake_case__ : Dict=1_28 , **snake_case__ : str , ) -> str: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) snake_case : int = max_position_embeddings snake_case : List[str] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : List[str] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Dict = initializer_range snake_case : Any = type_vocab_size snake_case : Any = layer_norm_eps # Character config: snake_case : int = downsampling_rate snake_case : str = upsampling_kernel_size snake_case : str = num_hash_functions snake_case : Tuple = num_hash_buckets snake_case : str = local_transformer_stride
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
def UpperCamelCase ( __lowerCamelCase : int = 10**12 ): snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Any = 1 snake_case : str = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'{solution() = }')
10
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
1
from math import sqrt def UpperCamelCase ( __lowerCamelCase : int = 1000000 ): snake_case : int = 0 snake_case : int = 0 snake_case : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'{solution() = }')
10
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def UpperCamelCase ( __lowerCamelCase : Optional[int] ): snake_case : Union[str, Any] = {} state_dict.pop("pixel_mean" , __lowerCamelCase ) state_dict.pop("pixel_std" , __lowerCamelCase ) snake_case : Union[str, Any] = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case : List[str] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): snake_case : Dict = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(2 ) ) if layer_nb == 0: snake_case : Tuple = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case : Optional[Any] = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case : str = key.replace("layers.2" , "proj_out" ) snake_case : Dict = value snake_case : List[str] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str="ybelkada/segment-anything" ): snake_case : List[str] = hf_hub_download(__lowerCamelCase , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: snake_case : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: snake_case : Optional[int] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case : str = SamConfig( vision_config=__lowerCamelCase , ) elif "sam_vit_h" in model_name: snake_case : int = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case : Dict = SamConfig( vision_config=__lowerCamelCase , ) snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) snake_case : Union[str, Any] = replace_keys(__lowerCamelCase ) snake_case : Optional[int] = SamImageProcessor() snake_case : List[Any] = SamProcessor(image_processor=__lowerCamelCase ) snake_case : List[Any] = SamModel(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) snake_case : Any = hf_model.to("cuda" ) snake_case : Optional[int] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" snake_case : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("RGB" ) snake_case : Tuple = [[[400, 650]]] snake_case : List[Any] = [[1]] snake_case : Optional[int] = processor(images=np.array(__lowerCamelCase ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Dict = hf_model(**__lowerCamelCase ) snake_case : Tuple = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case : List[Any] = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Union[str, Any] = hf_model(**__lowerCamelCase ) snake_case : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case : Tuple = ((75, 275, 1725, 850),) snake_case : str = processor(images=np.array(__lowerCamelCase ) , input_boxes=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Dict = hf_model(**__lowerCamelCase ) snake_case : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case : Optional[Any] = [[[400, 650], [800, 650]]] snake_case : Tuple = [[1, 1]] snake_case : Optional[int] = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Optional[int] = hf_model(**__lowerCamelCase ) snake_case : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCamelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
10
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase ( A_ ): @staticmethod @abstractmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> str: '''simple docstring''' raise NotImplementedError() @abstractmethod def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' raise NotImplementedError()
10
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
1
import itertools import math def UpperCamelCase ( __lowerCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( ): snake_case : List[str] = 2 while True: if is_prime(__lowerCamelCase ): yield num num += 1 def UpperCamelCase ( __lowerCamelCase : int = 10001 ): return next(itertools.islice(prime_generator() , nth - 1 , __lowerCamelCase ) ) if __name__ == "__main__": print(F'{solution() = }')
10
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : float | Decimal , __lowerCamelCase : float = 10**-10 ): snake_case : int = a while True: snake_case : Any = Decimal(__lowerCamelCase ) - ( Decimal(eval(__lowerCamelCase ) ) / Decimal(eval(str(diff(__lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCamelCase ) ) < precision: # noqa: S307 return float(__lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase = """<<<<<<< This should probably be modified because it mentions: """ __lowerCamelCase = """======= >>>>>>> """ __lowerCamelCase = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def UpperCamelCase ( __lowerCamelCase : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase ( A_ ): @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> Union[str, Any]: '''simple docstring''' snake_case : int = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=snake_case__ , required=snake_case__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=snake_case__ , required=snake_case__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=snake_case__ ) def __init__(self : str , snake_case__ : str , snake_case__ : str , *snake_case__ : Any ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = get_logger("datasets-cli/converting" ) snake_case : int = tfds_path snake_case : Optional[Any] = datasets_directory def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' if os.path.isdir(self._tfds_path ): snake_case : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): snake_case : str = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) snake_case : int = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) snake_case : Optional[int] = [] snake_case : Any = [] snake_case : Optional[int] = {} if os.path.isdir(self._tfds_path ): snake_case : Tuple = os.listdir(snake_case__ ) else: snake_case : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) snake_case : List[str] = os.path.join(snake_case__ , snake_case__ ) snake_case : List[str] = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(snake_case__ , encoding="utf-8" ) as f: snake_case : List[str] = f.readlines() snake_case : List[Any] = [] snake_case : Optional[int] = False snake_case : Tuple = False snake_case : Union[str, Any] = [] for line in lines: snake_case : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case : Union[str, Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here snake_case : Optional[Any] = "" continue elif "from absl import logging" in out_line: snake_case : Optional[int] = "from datasets import logging\n" elif "getLogger" in out_line: snake_case : Optional[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): snake_case : List[str] = True snake_case : Dict = list(filter(lambda snake_case__ : e in out_line , snake_case__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case__ ) + "\n" ) out_lines.append(snake_case__ ) out_lines.append(snake_case__ ) continue else: for pattern, replacement in TO_CONVERT: snake_case : List[Any] = re.sub(snake_case__ , snake_case__ , snake_case__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case : List[Any] = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , snake_case__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) snake_case : Any = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case : List[str] = True out_lines.append(snake_case__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case : Dict = f_name.replace(".py" , "" ) snake_case : str = os.path.join(snake_case__ , snake_case__ ) snake_case : Union[str, Any] = os.path.join(snake_case__ , snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case__ ) if needs_manual_update: with_manual_update.append(snake_case__ ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.writelines(snake_case__ ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: snake_case : List[str] = os.path.basename(snake_case__ ) snake_case : Any = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(snake_case__ , snake_case__ ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
class UpperCAmelCase : def __init__(self : int , snake_case__ : int ) -> str: '''simple docstring''' snake_case : Union[str, Any] = n snake_case : Any = [None] * self.n snake_case : List[Any] = 0 # index of the first element snake_case : Tuple = 0 snake_case : Dict = 0 def __len__(self : Dict ) -> int: '''simple docstring''' return self.size def _SCREAMING_SNAKE_CASE (self : List[str] ) -> bool: '''simple docstring''' return self.size == 0 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case : Union[str, Any] = data snake_case : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) snake_case : int = self.array[self.front] snake_case : Optional[Any] = None snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] __lowerCamelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] __lowerCamelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) __lowerCamelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) __lowerCamelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: snake_case : Dict = k.replace(__lowerCamelCase , __lowerCamelCase ) return k def UpperCamelCase ( __lowerCamelCase : dict , __lowerCamelCase : dict ): snake_case : Optional[Any] = BigBirdPegasusConfig(**__lowerCamelCase ) snake_case : Optional[int] = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) snake_case : Optional[Any] = torch_model.state_dict() snake_case : str = {} # separating decoder weights snake_case : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} snake_case : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): snake_case : Dict = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue snake_case : Union[str, Any] = DECODER_PATTERNS snake_case : List[Any] = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case : Tuple = v.T snake_case : Tuple = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): snake_case : List[str] = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue snake_case : Any = REMAINING_PATTERNS snake_case : Tuple = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case : Union[str, Any] = v.T snake_case : str = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case : str = mapping["model.embed_positions.weight"] snake_case : Optional[int] = mapping.pop("model.embed_positions.weight" ) snake_case , snake_case : Union[str, Any] = torch_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) snake_case : Tuple = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Any = tf.train.list_variables(__lowerCamelCase ) snake_case : Optional[int] = {} snake_case : int = ["global_step"] for name, shape in tqdm(__lowerCamelCase , desc="converting tf checkpoint to dict" ): snake_case : Dict = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case : List[str] = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) snake_case : Tuple = array return tf_weights def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : dict ): snake_case : Tuple = get_tf_weights_as_numpy(__lowerCamelCase ) snake_case : Union[str, Any] = convert_bigbird_pegasus(__lowerCamelCase , __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowerCamelCase = parser.parse_args() __lowerCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( A_ ): A__ : List[str] = ["image_processor"] A__ : Union[str, Any] = "SamImageProcessor" def __init__(self : Optional[int] , snake_case__ : Dict ) -> Optional[int]: '''simple docstring''' super().__init__(snake_case__ ) snake_case : Tuple = self.image_processor snake_case : Optional[int] = -10 snake_case : Any = self.image_processor.size["longest_edge"] def __call__(self : int , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : int , ) -> BatchEncoding: '''simple docstring''' snake_case : str = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # pop arguments that are not used in the foward but used nevertheless snake_case : List[str] = encoding_image_processor["original_sizes"] if hasattr(snake_case__ , "numpy" ): # Checks if Torch or TF tensor snake_case : Dict = original_sizes.numpy() snake_case , snake_case , snake_case : List[str] = self._check_and_preprocess_points( input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , ) snake_case : Tuple = self._normalize_and_convert( snake_case__ , snake_case__ , input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , return_tensors=snake_case__ , ) return encoding_image_processor def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : List[Any]="pt" , ) -> Any: '''simple docstring''' if input_points is not None: if len(snake_case__ ) != len(snake_case__ ): snake_case : Dict = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] ) for point in input_points ] else: snake_case : Union[str, Any] = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ ) for point, original_size in zip(snake_case__ , snake_case__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: snake_case , snake_case : str = self._pad_points_and_labels(snake_case__ , snake_case__ ) snake_case : Union[str, Any] = np.array(snake_case__ ) if input_labels is not None: snake_case : Tuple = np.array(snake_case__ ) if input_boxes is not None: if len(snake_case__ ) != len(snake_case__ ): snake_case : Optional[int] = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] , is_bounding_box=snake_case__ ) for box in input_boxes ] else: snake_case : Union[str, Any] = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ , is_bounding_box=snake_case__ ) for box, original_size in zip(snake_case__ , snake_case__ ) ] snake_case : Tuple = np.array(snake_case__ ) if input_boxes is not None: if return_tensors == "pt": snake_case : Any = torch.from_numpy(snake_case__ ) # boxes batch size of 1 by default snake_case : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": snake_case : List[Any] = tf.convert_to_tensor(snake_case__ ) # boxes batch size of 1 by default snake_case : List[str] = tf.expand_dims(snake_case__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": snake_case : List[Any] = torch.from_numpy(snake_case__ ) # point batch size of 1 by default snake_case : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": snake_case : Tuple = tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default snake_case : List[Any] = tf.expand_dims(snake_case__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": snake_case : Optional[int] = torch.from_numpy(snake_case__ ) # point batch size of 1 by default snake_case : Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": snake_case : int = tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default snake_case : int = tf.expand_dims(snake_case__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = max([point.shape[0] for point in input_points] ) snake_case : Optional[int] = [] for i, point in enumerate(snake_case__ ): if point.shape[0] != expected_nb_points: snake_case : List[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) snake_case : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case__ ) snake_case : Any = processed_input_points return input_points, input_labels def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int , snake_case__ : np.ndarray , snake_case__ : Dict , snake_case__ : List[str]=False ) -> np.ndarray: '''simple docstring''' snake_case , snake_case : Optional[int] = original_size snake_case , snake_case : Any = self.image_processor._get_preprocess_shape(snake_case__ , longest_edge=snake_case__ ) snake_case : Tuple = deepcopy(snake_case__ ).astype(snake_case__ ) if is_bounding_box: snake_case : Any = coords.reshape(-1 , 2 , 2 ) snake_case : List[Any] = coords[..., 0] * (new_w / old_w) snake_case : Tuple = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case : Tuple = coords.reshape(-1 , 4 ) return coords def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Any=None , ) -> Any: '''simple docstring''' if input_points is not None: if hasattr(snake_case__ , "numpy" ): # Checks for TF or Torch tensor snake_case : List[str] = input_points.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_points[0] , snake_case__ ): raise ValueError("Input points must be a list of list of floating points." ) snake_case : Dict = [np.array(snake_case__ ) for input_point in input_points] else: snake_case : Union[str, Any] = None if input_labels is not None: if hasattr(snake_case__ , "numpy" ): snake_case : Dict = input_labels.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_labels[0] , snake_case__ ): raise ValueError("Input labels must be a list of list integers." ) snake_case : Optional[Any] = [np.array(snake_case__ ) for label in input_labels] else: snake_case : Optional[int] = None if input_boxes is not None: if hasattr(snake_case__ , "numpy" ): snake_case : Optional[Any] = input_boxes.numpy().tolist() if ( not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_boxes[0] , snake_case__ ) or not isinstance(input_boxes[0][0] , snake_case__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) snake_case : Any = [np.array(snake_case__ ).astype(np.floataa ) for box in input_boxes] else: snake_case : Tuple = None return input_points, input_labels, input_boxes @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] , *snake_case__ : str , **snake_case__ : str ) -> int: '''simple docstring''' return self.image_processor.post_process_masks(*snake_case__ , **snake_case__ )
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
def UpperCamelCase ( __lowerCamelCase : int = 10**9 ): snake_case : str = 1 snake_case : Union[str, Any] = 2 snake_case : Dict = 0 snake_case : Union[str, Any] = 0 snake_case : int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value snake_case : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
10
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : Dict = "deberta-v2" def __init__(self : Dict , snake_case__ : List[str]=12_81_00 , snake_case__ : Optional[int]=15_36 , snake_case__ : Union[str, Any]=24 , snake_case__ : Union[str, Any]=24 , snake_case__ : str=61_44 , snake_case__ : Optional[Any]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Dict=5_12 , snake_case__ : Dict=0 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[int]=1e-7 , snake_case__ : Tuple=False , snake_case__ : List[str]=-1 , snake_case__ : Dict=0 , snake_case__ : int=True , snake_case__ : Optional[int]=None , snake_case__ : Optional[Any]=0 , snake_case__ : int="gelu" , **snake_case__ : Optional[int] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Optional[Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Any = hidden_act snake_case : int = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : List[str] = initializer_range snake_case : List[str] = relative_attention snake_case : str = max_relative_positions snake_case : Union[str, Any] = pad_token_id snake_case : int = position_biased_input # Backwards compatibility if type(snake_case__ ) == str: snake_case : str = [x.strip() for x in pos_att_type.lower().split("|" )] snake_case : int = pos_att_type snake_case : Tuple = vocab_size snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = kwargs.get("pooler_hidden_size" , snake_case__ ) snake_case : Optional[Any] = pooler_dropout snake_case : Optional[Any] = pooler_hidden_act class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : int = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' return 12 def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 40 , snake_case__ : int = 40 , snake_case__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Any = super().generate_dummy_inputs(preprocessor=snake_case__ , framework=snake_case__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowerCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowerCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def UpperCamelCase ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase ( ): from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) ) benchmark()
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str = "cpu" , __lowerCamelCase : Union[str, None] = None ): snake_case : Union[str, Any] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) snake_case : int = v.half() if save_path is None: # overwrite src_path snake_case : int = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
__lowerCamelCase = """Input must be a string of 8 numbers plus letter""" __lowerCamelCase = """TRWAGMYFPDXBNJZSQVHLCKE""" def UpperCamelCase ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : List[str] = f"""Expected string as input, found {type(__lowerCamelCase ).__name__}""" raise TypeError(__lowerCamelCase ) snake_case : Optional[int] = spanish_id.replace("-" , "" ).upper() if len(__lowerCamelCase ) != 9: raise ValueError(__lowerCamelCase ) try: snake_case : Tuple = int(spanish_id_clean[0:8] ) snake_case : Optional[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from __future__ import annotations __lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] , ): snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid snake_case : Union[str, Any] = 1 snake_case : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid snake_case : Union[str, Any] = init[0] snake_case : Dict = init[1] snake_case : Optional[int] = 0 snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell snake_case : Union[str, Any] = [[f, g, x, y]] snake_case : Dict = False # flag that is set when search is complete snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case : List[str] = cell.pop() snake_case : Union[str, Any] = next_cell[2] snake_case : int = next_cell[3] snake_case : Union[str, Any] = next_cell[1] if x == goal[0] and y == goal[1]: snake_case : List[Any] = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions snake_case : int = x + DIRECTIONS[i][0] snake_case : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case : str = g + cost snake_case : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case : Union[str, Any] = 1 snake_case : str = i snake_case : Dict = [] snake_case : Optional[Any] = goal[0] snake_case : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case : List[Any] = x - DIRECTIONS[action[x][y]][0] snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] snake_case : Optional[int] = xa snake_case : List[Any] = ya invpath.append([x, y] ) snake_case : int = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] __lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] __lowerCamelCase = 1 # the cost map which pushes the path closer to the goal __lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCamelCase = 99 __lowerCamelCase, __lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
1
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase ( __lowerCamelCase : Callable[[int | float], int | float] , __lowerCamelCase : int | float , __lowerCamelCase : int | float , __lowerCamelCase : int = 100 , ): snake_case : Optional[Any] = x_start snake_case : List[Any] = fnc(__lowerCamelCase ) snake_case : int = 0.0 for _ in range(__lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length snake_case : Tuple = (x_end - x_start) / steps + xa snake_case : Optional[Any] = fnc(__lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case : List[str] = xa snake_case : int = fxa return length if __name__ == "__main__": def UpperCamelCase ( __lowerCamelCase : Dict ): return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __lowerCamelCase = 10 while i <= 10_00_00: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
10
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase ( __lowerCamelCase : List[str] ): return 1 / (1 + np.exp(-z )) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : str ): snake_case : List[str] = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=70000 ): snake_case : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): snake_case : int = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = sigmoid_function(__lowerCamelCase ) snake_case : Tuple = np.dot(x.T , h - y ) / y.size snake_case : Union[str, Any] = theta - alpha * gradient # updating the weights snake_case : Optional[int] = np.dot(__lowerCamelCase , __lowerCamelCase ) snake_case : List[Any] = sigmoid_function(__lowerCamelCase ) snake_case : Optional[int] = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCamelCase = datasets.load_iris() __lowerCamelCase = iris.data[:, :2] __lowerCamelCase = (iris.target != 0) * 1 __lowerCamelCase = 0.1 __lowerCamelCase = logistic_reg(alpha, x, y, max_iterations=7_00_00) print("""theta: """, theta) # printing the theta i.e our weights vector def UpperCamelCase ( __lowerCamelCase : int ): return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((__lowerCamelCase), (__lowerCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__lowerCamelCase), (__lowerCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__lowerCamelCase), (__lowerCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCamelCase = np.c_[xxa.ravel(), xxa.ravel()] __lowerCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Tuple = GPTSanJapaneseTokenizer A__ : str = False A__ : Optional[int] = {"do_clean_text": False, "add_prefix_space": False} def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' super().setUp() # fmt: off snake_case : str = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on snake_case : Tuple = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 snake_case : List[Any] = {"unk_token": "<unk>"} snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : int , **snake_case__ : Tuple ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = "こんにちは、世界。 \nこんばんは、㔺界。😀" snake_case : Dict = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.get_input_output_texts(snake_case__ ) snake_case : Dict = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) snake_case : Optional[int] = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.get_tokenizer() # Testing tokenization snake_case : Tuple = "こんにちは、世界。 こんばんは、㔺界。" snake_case : int = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] snake_case : Dict = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids without special tokens snake_case : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids with special tokens snake_case : Any = tokens + [tokenizer.unk_token] snake_case : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case : Dict = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.get_tokenizer() # Testing tokenization snake_case : List[Any] = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" snake_case : str = "こんにちは、、、、世界。こんばんは、、、、世界。" snake_case : int = tokenizer.encode(snake_case__ ) snake_case : Tuple = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization snake_case : List[Any] = "こんにちは、世界。" snake_case : List[str] = "こんばんは、㔺界。😀" snake_case : Tuple = "こんにちは、世界。こんばんは、世界。😀" snake_case : int = tokenizer.encode(prefix_text + input_text ) snake_case : Optional[Any] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) snake_case : Optional[Any] = tokenizer.encode(snake_case__ , prefix_text=snake_case__ ) snake_case : List[Any] = tokenizer.decode(snake_case__ ) snake_case : Union[str, Any] = tokenizer.decode(snake_case__ ) snake_case : Tuple = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[int] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization snake_case : Any = "こんにちは、世界。" snake_case : Dict = "こんばんは、㔺界。😀" snake_case : int = len(tokenizer.encode(snake_case__ ) ) - 2 snake_case : List[str] = len(tokenizer.encode(snake_case__ ) ) - 2 snake_case : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) snake_case : Tuple = [1] * (len_prefix + len_text + 1) + [0] snake_case : Optional[int] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case : Union[str, Any] = tokenizer(prefix_text + input_text ).token_type_ids snake_case : Tuple = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids snake_case : Union[str, Any] = tokenizer(snake_case__ , prefix_text=snake_case__ ).token_type_ids self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) snake_case : List[str] = tokenizer.encode("あンいワ" ) snake_case : Tuple = tokenizer.encode("" , prefix_text="あンいワ" ) snake_case : int = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) snake_case : List[str] = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] snake_case : Union[str, Any] = tokenizer(snake_case__ , padding=snake_case__ ) snake_case : Any = tokenizer.batch_encode_plus(snake_case__ , padding=snake_case__ ) # fmt: off snake_case : List[str] = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] snake_case : Tuple = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case : List[str] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case__ ) self.assertListEqual(x_token.token_type_ids , snake_case__ ) self.assertListEqual(x_token.attention_mask , snake_case__ ) self.assertListEqual(x_token_a.input_ids , snake_case__ ) self.assertListEqual(x_token_a.token_type_ids , snake_case__ ) self.assertListEqual(x_token_a.attention_mask , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' pass
10
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase ( A_ ): A__ : List[Any] = "unispeech" def __init__(self : Optional[Any] , snake_case__ : Optional[int]=32 , snake_case__ : List[Any]=7_68 , snake_case__ : Any=12 , snake_case__ : List[str]=12 , snake_case__ : int=30_72 , snake_case__ : List[Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[Any]=1e-5 , snake_case__ : Union[str, Any]="group" , snake_case__ : Optional[int]="gelu" , snake_case__ : Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : Dict=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : List[Any]=False , snake_case__ : Optional[int]=1_28 , snake_case__ : Optional[int]=16 , snake_case__ : Dict=False , snake_case__ : List[str]=True , snake_case__ : List[Any]=0.05 , snake_case__ : Optional[Any]=10 , snake_case__ : str=2 , snake_case__ : int=0.0 , snake_case__ : Union[str, Any]=10 , snake_case__ : Dict=0 , snake_case__ : Dict=3_20 , snake_case__ : List[str]=2 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=1_00 , snake_case__ : int=2_56 , snake_case__ : List[Any]=2_56 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int="mean" , snake_case__ : Dict=False , snake_case__ : Optional[Any]=False , snake_case__ : Optional[Any]=2_56 , snake_case__ : Optional[Any]=80 , snake_case__ : Dict=0 , snake_case__ : str=1 , snake_case__ : Any=2 , snake_case__ : List[str]=0.5 , **snake_case__ : Any , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) snake_case : Any = hidden_size snake_case : str = feat_extract_norm snake_case : List[str] = feat_extract_activation snake_case : List[Any] = list(snake_case__ ) snake_case : int = list(snake_case__ ) snake_case : Dict = list(snake_case__ ) snake_case : Any = conv_bias snake_case : Optional[int] = num_conv_pos_embeddings snake_case : str = num_conv_pos_embedding_groups snake_case : Optional[Any] = len(self.conv_dim ) snake_case : str = num_hidden_layers snake_case : List[str] = intermediate_size snake_case : List[Any] = hidden_act snake_case : Optional[int] = num_attention_heads snake_case : List[str] = hidden_dropout snake_case : Dict = attention_dropout snake_case : Any = activation_dropout snake_case : Optional[Any] = feat_proj_dropout snake_case : List[Any] = final_dropout snake_case : Optional[Any] = layerdrop snake_case : Optional[int] = layer_norm_eps snake_case : List[Any] = initializer_range snake_case : Tuple = num_ctc_classes snake_case : Tuple = vocab_size snake_case : Optional[Any] = do_stable_layer_norm snake_case : Optional[Any] = use_weighted_layer_sum snake_case : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : Optional[int] = apply_spec_augment snake_case : str = mask_time_prob snake_case : Any = mask_time_length snake_case : Dict = mask_time_min_masks snake_case : int = mask_feature_prob snake_case : Optional[int] = mask_feature_length snake_case : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case : int = num_codevectors_per_group snake_case : List[Any] = num_codevector_groups snake_case : Tuple = contrastive_logits_temperature snake_case : Tuple = feat_quantizer_dropout snake_case : int = num_negatives snake_case : str = codevector_dim snake_case : Optional[int] = proj_codevector_dim snake_case : str = diversity_loss_weight # ctc loss snake_case : List[Any] = ctc_loss_reduction snake_case : List[Any] = ctc_zero_infinity # pretraining loss snake_case : Optional[int] = replace_prob @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
10
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
1
from typing import Any def UpperCamelCase ( __lowerCamelCase : list ): if not input_list: return [] snake_case : int = [input_list.count(__lowerCamelCase ) for value in input_list] snake_case : List[Any] = max(__lowerCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__lowerCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
10
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( __lowerCamelCase : Any ): snake_case : Dict = tmp_path / "file.csv" snake_case : List[str] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : Union[str, Any] = tmp_path / "malformed_file.csv" snake_case : Union[str, Any] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): snake_case : Optional[Any] = tmp_path / "csv_with_image.csv" snake_case : List[Any] = textwrap.dedent( f"""\ image {image_file} """ ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : List[Any] ): snake_case : Union[str, Any] = tmp_path / "csv_with_label.csv" snake_case : Any = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : Any = tmp_path / "csv_with_int_list.csv" snake_case : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict ): snake_case : Dict = Csv() snake_case : List[str] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__lowerCamelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(__lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( __lowerCamelCase : Tuple ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : int = f.read().splitlines()[1] snake_case : List[str] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) snake_case : str = csv._generate_tables([[csv_file_with_image]] ) snake_case : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() snake_case : Tuple = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( __lowerCamelCase : List[Any] ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : List[str] = f.read().splitlines()[1:] snake_case : Optional[int] = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) snake_case : Union[str, Any] = csv._generate_tables([[csv_file_with_label]] ) snake_case : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() snake_case : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(__lowerCamelCase ) for label in labels] def UpperCamelCase ( __lowerCamelCase : Any ): snake_case : Optional[Any] = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda __lowerCamelCase : [int(__lowerCamelCase ) for i in x.split()]} ) snake_case : Optional[Any] = csv._generate_tables([[csv_file_with_int_list]] ) snake_case : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) snake_case : int = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
10
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : str ): # Construct model if gpta_config_file == "": snake_case : str = GPTaConfig() else: snake_case : Union[str, Any] = GPTaConfig.from_json_file(__lowerCamelCase ) snake_case : Union[str, Any] = GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model snake_case : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME snake_case : Tuple = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) __lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
10
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
1
import math def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if number < 1: snake_case : Optional[int] = f"""Input value of [number={number}] must be > 0""" raise ValueError(__lowerCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case : Dict = int(math.log(number // 3 , 2 ) ) + 2 snake_case : str = [3, 5] snake_case : Union[str, Any] = 2 snake_case : Any = 3 for block in range(1 , __lowerCamelCase ): for _ in range(__lowerCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __lowerCamelCase = 0 try: __lowerCamelCase = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
10
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) snake_case : Union[str, Any] = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(snake_case__ ) , torch_builtin(snake_case__ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case__ ) , gelu_new(snake_case__ ) ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' snake_case : str = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) snake_case : str = get_activation("gelu" ) snake_case : Union[str, Any] = get_activation("gelu_10" ) snake_case : str = torch_builtin(snake_case__ ) snake_case : Optional[int] = geluaa(snake_case__ ) snake_case : Optional[int] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(snake_case__ ): get_activation("bogus" ) with self.assertRaises(snake_case__ ): get_activation(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : int = get_activation("gelu" ) snake_case : str = 1 snake_case : Tuple = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case__ ): snake_case : Tuple = acta.a
10
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCamelCase ( ): snake_case , snake_case : Union[str, Any] = 9, 14 # noqa: F841 snake_case : Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case : Any = defaultdict(__lowerCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case : Tuple = mst(__lowerCamelCase ) snake_case : Dict = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case : Any = tuple(answer[:2] ) snake_case : Dict = tuple(edge[::-1] ) assert edge in result or reverse in result
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import os def UpperCamelCase ( __lowerCamelCase : int ): snake_case : List[str] = len(grid[0] ) snake_case : List[str] = len(__lowerCamelCase ) snake_case : Dict = 0 snake_case : Any = 0 snake_case : Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): snake_case : Any = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case : Any = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case : str = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case : Dict = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: snake_case : Optional[Any] = max_product return largest def UpperCamelCase ( ): snake_case : Any = [] with open(os.path.dirname(__lowerCamelCase ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) snake_case : List[Any] = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Dict=7 , snake_case__ : int=3 , snake_case__ : str=30 , snake_case__ : Dict=4_00 , snake_case__ : Any=True , snake_case__ : Tuple=None , snake_case__ : Dict=True , snake_case__ : Dict=[0.5, 0.5, 0.5] , snake_case__ : Union[str, Any]=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[Any]=1 / 2_55 , snake_case__ : Optional[Any]=True , ) -> str: '''simple docstring''' snake_case : Dict = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case : List[Any] = parent snake_case : Dict = batch_size snake_case : Optional[Any] = num_channels snake_case : Union[str, Any] = min_resolution snake_case : Dict = max_resolution snake_case : Dict = do_resize snake_case : List[str] = size snake_case : Dict = do_normalize snake_case : Any = image_mean snake_case : Tuple = image_std snake_case : int = do_rescale snake_case : List[Any] = rescale_factor snake_case : Any = do_pad def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , snake_case__ : Any=False ) -> Tuple: '''simple docstring''' if not batched: snake_case : Tuple = image_inputs[0] if isinstance(snake_case__ , Image.Image ): snake_case , snake_case : List[Any] = image.size else: snake_case , snake_case : Any = image.shape[1], image.shape[2] if w < h: snake_case : Optional[Any] = int(self.size["shortest_edge"] * h / w ) snake_case : Optional[Any] = self.size["shortest_edge"] elif w > h: snake_case : List[str] = self.size["shortest_edge"] snake_case : Dict = int(self.size["shortest_edge"] * w / h ) else: snake_case : List[Any] = self.size["shortest_edge"] snake_case : List[str] = self.size["shortest_edge"] else: snake_case : List[str] = [] for image in image_inputs: snake_case , snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case : Tuple = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] snake_case : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : str = DetaImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = DetaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case , snake_case : Dict = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) snake_case : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values snake_case , snake_case : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case , snake_case : List[str] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values snake_case , snake_case : str = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case : Tuple = json.loads(f.read() ) snake_case : int = {"image_id": 3_97_69, "annotations": target} # encode them snake_case : Union[str, Any] = DetaImageProcessor() snake_case : Optional[int] = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values snake_case : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) snake_case : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area snake_case : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) snake_case : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id snake_case : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd snake_case : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels snake_case : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size snake_case : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size snake_case : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case : List[Any] = json.loads(f.read() ) snake_case : Any = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case : Any = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case : Tuple = DetaImageProcessor(format="coco_panoptic" ) snake_case : int = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values snake_case : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) snake_case : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area snake_case : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) snake_case : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id snake_case : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd snake_case : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels snake_case : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks snake_case : List[str] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size snake_case : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size snake_case : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCamelCase = ["""gpt2"""] __lowerCamelCase = """gpt2""" if is_tf_available(): class UpperCAmelCase ( tf.Module ): def __init__(self : Union[str, Any] , snake_case__ : str ) -> Tuple: '''simple docstring''' super().__init__() snake_case : int = tokenizer snake_case : Any = AutoConfig.from_pretrained(snake_case__ ) snake_case : Optional[int] = TFGPTaLMHeadModel.from_config(snake_case__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] ) -> int: '''simple docstring''' snake_case : str = self.tokenizer(snake_case__ ) snake_case : Any = tokenized["input_ids"].to_tensor() snake_case : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case : Dict = self.model(input_ids=snake_case__ , attention_mask=snake_case__ )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' super().setUp() snake_case : List[Any] = [GPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case : List[Any] = [TFGPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case : Dict = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] snake_case : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: snake_case : Tuple = tokenizer([test_inputs] , return_tensors="tf" ) snake_case : List[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case : int = python_outputs[key].numpy() snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case__ , tf.intaa ) == tf_outputs_values ) ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Union[str, Any] = tf.function(snake_case__ ) for test_inputs in self.test_sentences: snake_case : Dict = tf.constant(snake_case__ ) snake_case : int = compiled_tokenizer(snake_case__ ) snake_case : List[str] = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : List[str] = ModelToSave(tokenizer=snake_case__ ) snake_case : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = model.serving(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case : List[str] = Path(snake_case__ ) / "saved.model" tf.saved_model.save(snake_case__ , snake_case__ , signatures={"serving_default": model.serving} ) snake_case : int = tf.saved_model.load(snake_case__ ) snake_case : int = loaded_model.signatures["serving_default"](snake_case__ )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Any = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[str] = tf_tokenizer(snake_case__ ) # Build model with some sample inputs snake_case : Any = tf_tokenizer.get_config() snake_case : int = TFGPTaTokenizer.from_config(snake_case__ ) snake_case : Union[str, Any] = model_from_config(snake_case__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case : str = 12_31_23 for max_length in [3, 5, 10_24]: snake_case : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = tf_tokenizer(snake_case__ , max_length=snake_case__ ) snake_case : List[str] = out["input_ids"].numpy().shape[1] assert out_length == max_length
10
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
def UpperCamelCase ( ): snake_case : Tuple = [] snake_case : Tuple = 1 while len(__lowerCamelCase ) < 1E6: constant.append(str(__lowerCamelCase ) ) i += 1 snake_case : List[Any] = "".join(__lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __lowerCamelCase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : List[str] = "maskformer" A__ : Any = {"hidden_size": "mask_feature_size"} A__ : List[str] = ["resnet", "swin"] A__ : Any = ["detr"] def __init__(self : Dict , snake_case__ : int = 2_56 , snake_case__ : int = 2_56 , snake_case__ : float = 0.1 , snake_case__ : bool = False , snake_case__ : Optional[Dict] = None , snake_case__ : Optional[Dict] = None , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 20.0 , snake_case__ : Optional[bool] = None , **snake_case__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case : Dict = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(snake_case__ , snake_case__ ): snake_case : Any = backbone_config.pop("model_type" ) snake_case : Tuple = CONFIG_MAPPING[backbone_model_type] snake_case : int = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported snake_case : List[Any] = ( decoder_config.pop("model_type" ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = CONFIG_MAPPING[decoder_type] snake_case : str = config_class.from_dict(snake_case__ ) snake_case : List[str] = backbone_config snake_case : Tuple = decoder_config # main feature dimension for the model snake_case : str = fpn_feature_size snake_case : Any = mask_feature_size # initializer snake_case : List[Any] = init_std snake_case : List[str] = init_xavier_std # Hungarian matcher && loss snake_case : str = cross_entropy_weight snake_case : Any = dice_weight snake_case : Optional[Any] = mask_weight snake_case : Dict = use_auxiliary_loss snake_case : List[str] = no_object_weight snake_case : Optional[int] = output_auxiliary_logits snake_case : Tuple = self.decoder_config.encoder_attention_heads snake_case : Optional[int] = self.decoder_config.num_hidden_layers super().__init__(**snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Tuple ) -> Tuple: '''simple docstring''' return cls( backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict[str, any]: '''simple docstring''' snake_case : Dict = copy.deepcopy(self.__dict__ ) snake_case : str = self.backbone_config.to_dict() snake_case : Tuple = self.decoder_config.to_dict() snake_case : Optional[Any] = self.__class__.model_type return output
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): snake_case : Any = os.path.abspath(__lowerCamelCase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case : Optional[Any] = tf.train.list_variables(__lowerCamelCase ) snake_case : List[str] = [] snake_case : Optional[Any] = [] snake_case : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case : Tuple = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case : Dict = name[1:] # figure out how many levels deep the name is snake_case : str = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(__lowerCamelCase ) # read data snake_case : Optional[int] = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) names.append("/".join(__lowerCamelCase ) ) arrays.append(__lowerCamelCase ) logger.info(f"""Read a total of {len(__lowerCamelCase ):,} layers""" ) # Sanity check if len(set(__lowerCamelCase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(__lowerCamelCase ) )})""" ) snake_case : List[Any] = list(set(__lowerCamelCase ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(__lowerCamelCase , __lowerCamelCase ): snake_case : Dict = full_name.split("/" ) snake_case : str = model snake_case : Optional[int] = [] for i, m_name in enumerate(__lowerCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): snake_case : Optional[Any] = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) snake_case : Tuple = getattr(__lowerCamelCase , "embeddings" ) snake_case : Union[str, Any] = getattr(__lowerCamelCase , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) snake_case : Optional[int] = getattr(__lowerCamelCase , "encoder" ) snake_case : int = getattr(__lowerCamelCase , "layer" ) snake_case : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) snake_case : Tuple = getattr(__lowerCamelCase , "pooler" ) snake_case : List[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) snake_case : int = getattr(__lowerCamelCase , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) snake_case : str = getattr(__lowerCamelCase , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) snake_case : List[str] = getattr(__lowerCamelCase , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "token_type_embeddings" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("weight" ) snake_case : List[str] = getattr(__lowerCamelCase , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) snake_case : Union[str, Any] = getattr(__lowerCamelCase , "attention" ) snake_case : List[str] = getattr(__lowerCamelCase , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) snake_case : Tuple = getattr(__lowerCamelCase , "attention" ) snake_case : Dict = getattr(__lowerCamelCase , "output" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) snake_case : Optional[int] = getattr(__lowerCamelCase , "attention" ) snake_case : List[str] = getattr(__lowerCamelCase , "output" ) snake_case : List[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) snake_case : List[Any] = getattr(__lowerCamelCase , "output" ) snake_case : List[str] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) snake_case : List[str] = getattr(__lowerCamelCase , "output" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) snake_case : List[str] = getattr(__lowerCamelCase , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) snake_case : List[Any] = getattr(__lowerCamelCase , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) snake_case : List[Any] = getattr(__lowerCamelCase , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) snake_case : Dict = getattr(__lowerCamelCase , "intermediate" ) snake_case : Optional[Any] = getattr(__lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) snake_case : Optional[int] = getattr(__lowerCamelCase , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) snake_case : str = getattr(__lowerCamelCase , "weight" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case : Dict = ".".join(__lowerCamelCase ) if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __lowerCamelCase ) or re.match( r"(\S+)\.attention\.output\.dense\.weight" , __lowerCamelCase ): snake_case : Dict = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case : Optional[Any] = array.transpose() if pointer.shape == array.shape: snake_case : Dict = torch.from_numpy(__lowerCamelCase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) snake_case : Dict = BertConfig.from_json_file(__lowerCamelCase ) snake_case : Any = BertModel(__lowerCamelCase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowerCamelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase : def __init__(self : Optional[int] , snake_case__ : int ) -> None: '''simple docstring''' snake_case : Optional[Any] = value snake_case : Node | None = None snake_case : Node | None = None class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Node ) -> None: '''simple docstring''' snake_case : int = tree def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Node | None ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__(self : Tuple ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """nielsr/canine-s""": 20_48, } # Unicode defines 1,114,112 total “codepoints” __lowerCamelCase = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCamelCase = 0 __lowerCamelCase = 0xe_000 __lowerCamelCase = 0xe_001 __lowerCamelCase = 0xe_002 __lowerCamelCase = 0xe_003 __lowerCamelCase = 0xe_004 # Maps special codepoints to human-readable names. __lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase ( A_ ): A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=chr(snake_case__ ) , snake_case__ : Optional[Any]=chr(snake_case__ ) , snake_case__ : Optional[Any]=chr(snake_case__ ) , snake_case__ : List[str]=chr(snake_case__ ) , snake_case__ : Union[str, Any]=chr(snake_case__ ) , snake_case__ : List[Any]=chr(snake_case__ ) , snake_case__ : List[str]=False , snake_case__ : Union[str, Any]=20_48 , **snake_case__ : Optional[Any] , ) -> Dict: '''simple docstring''' snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token snake_case : Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token snake_case : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , model_max_length=snake_case__ , **snake_case__ , ) # Creates a mapping for looking up the IDs of special symbols. snake_case : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): snake_case : Dict = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. snake_case : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } snake_case : List[Any] = UNICODE_VOCAB_SIZE snake_case : List[Any] = len(self._special_codepoints ) @property def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' return self._unicode_vocab_size def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> List[str]: '''simple docstring''' return list(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> int: '''simple docstring''' try: return ord(snake_case__ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(snake_case__ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' return "".join(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Union[str, Any] = [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] snake_case : List[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) snake_case : int = [1] + ([0] * len(snake_case__ )) + [1] if token_ids_a is not None: result += ([0] * len(snake_case__ )) + [1] return result def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[Any] = [self.sep_token_id] snake_case : int = [self.cls_token_id] snake_case : Union[str, Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Optional[Any]: '''simple docstring''' return ()
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int ): snake_case : int = word.split() def justify(__lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int ) -> str: snake_case : int = max_width - width snake_case : Optional[Any] = len(__lowerCamelCase ) if len(__lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case : List[str] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__lowerCamelCase ): num_spaces_between_words_list[i] += 1 snake_case : Optional[int] = [] for i in range(__lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__lowerCamelCase ) snake_case : Tuple = [] snake_case : list[str] = [] snake_case : str = 0 for word in words: if width + len(__lowerCamelCase ) + len(__lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__lowerCamelCase ) width += len(__lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) # reset new line and new width snake_case , snake_case : Tuple = [word], len(__lowerCamelCase ) snake_case : Optional[Any] = max_width - width - len(__lowerCamelCase ) answer.append(" ".join(__lowerCamelCase ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
10
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
1
from PIL import Image def UpperCamelCase ( __lowerCamelCase : Image ): snake_case , snake_case : Optional[Any] = image.size snake_case : Dict = 0 snake_case : List[Any] = image.load() for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): snake_case : Any = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase ): for i in range(__lowerCamelCase ): snake_case : Optional[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCamelCase = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
10
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase ( __lowerCamelCase : Dict ): return EnvironmentCommand() def UpperCamelCase ( __lowerCamelCase : Optional[int] ): return EnvironmentCommand(args.accelerate_config_file ) class UpperCAmelCase ( A_ ): @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = parser.add_parser("env" ) download_parser.set_defaults(func=snake_case__ ) download_parser.add_argument( "--accelerate-config_file" , default=snake_case__ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=snake_case__ ) def __init__(self : List[Any] , snake_case__ : Any , *snake_case__ : Tuple ) -> None: '''simple docstring''' snake_case : str = accelerate_config_file def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : List[str] = "not installed" if is_safetensors_available(): import safetensors snake_case : Union[str, Any] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors snake_case : Union[str, Any] = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" snake_case : Tuple = "not installed" snake_case : Dict = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case : Union[str, Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(snake_case__ ): snake_case : Dict = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case : Any = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(snake_case__ , snake_case__ ) else f"""\t{accelerate_config}""" ) snake_case : Dict = "not installed" snake_case : List[str] = "NA" if is_torch_available(): import torch snake_case : List[str] = torch.__version__ snake_case : Union[str, Any] = torch.cuda.is_available() snake_case : Optional[int] = "not installed" snake_case : Any = "NA" if is_tf_available(): import tensorflow as tf snake_case : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 snake_case : str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case : Tuple = bool(tf.config.list_physical_devices("GPU" ) ) snake_case : Any = "not installed" snake_case : List[str] = "not installed" snake_case : Union[str, Any] = "not installed" snake_case : List[str] = "NA" if is_flax_available(): import flax import jax import jaxlib snake_case : Union[str, Any] = flax.__version__ snake_case : Tuple = jax.__version__ snake_case : int = jaxlib.__version__ snake_case : Optional[Any] = jax.lib.xla_bridge.get_backend().platform snake_case : int = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f"""{safetensors_version}""", "Accelerate version": f"""{accelerate_version}""", "Accelerate config": f"""{accelerate_config_str}""", "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""", "Jax version": f"""{jax_version}""", "JaxLib version": f"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(snake_case__ ) ) return info @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : int ) -> List[Any]: '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
1
from functools import lru_cache @lru_cache def UpperCamelCase ( __lowerCamelCase : int ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
10
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[str] = StableDiffusionDiffEditPipeline A__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} A__ : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} A__ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ : List[Any] = frozenset([] ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) snake_case : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) snake_case : List[Any] = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_zero=snake_case__ , ) torch.manual_seed(0 ) snake_case : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) snake_case : str = CLIPTextModel(snake_case__ ) snake_case : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Dict = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str , snake_case__ : str=0 ) -> Any: '''simple docstring''' snake_case : Any = floats_tensor((1, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) snake_case : Optional[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): snake_case : Any = torch.manual_seed(snake_case__ ) else: snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Tuple = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Dict , snake_case__ : List[Any]=0 ) -> Dict: '''simple docstring''' snake_case : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ) if str(snake_case__ ).startswith("mps" ): snake_case : Optional[int] = torch.manual_seed(snake_case__ ) else: snake_case : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : Dict = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : int , snake_case__ : Dict=0 ) -> Any: '''simple docstring''' snake_case : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Optional[Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ) if str(snake_case__ ).startswith("mps" ): snake_case : List[Any] = torch.manual_seed(snake_case__ ) else: snake_case : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : str = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components" ): return snake_case : Optional[int] = self.get_dummy_components() snake_case : str = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(snake_case__ , snake_case__ , snake_case__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) snake_case : Dict = self.get_dummy_inputs(snake_case__ ) snake_case : Union[str, Any] = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) snake_case : Tuple = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ , snake_case__ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) snake_case : Optional[Any] = self.get_dummy_inputs(snake_case__ ) snake_case : Dict = pipe_loaded(**snake_case__ )[0] snake_case : Optional[int] = np.abs(output - output_loaded ).max() self.assertLess(snake_case__ , 1e-4 ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : str = "cpu" snake_case : Tuple = self.get_dummy_components() snake_case : str = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[int] = self.get_dummy_mask_inputs(snake_case__ ) snake_case : Tuple = pipe.generate_mask(**snake_case__ ) snake_case : Union[str, Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) snake_case : Tuple = np.array([0] * 9 ) snake_case : List[str] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = "cpu" snake_case : List[Any] = self.get_dummy_components() snake_case : Optional[Any] = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Any = self.get_dummy_inversion_inputs(snake_case__ ) snake_case : Union[str, Any] = pipe.invert(**snake_case__ ).images snake_case : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case : List[str] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) snake_case : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1e-3 ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Tuple = "cpu" snake_case : int = self.get_dummy_components() snake_case : Optional[Any] = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} snake_case : List[Any] = DPMSolverMultistepScheduler(**snake_case__ ) snake_case : Optional[Any] = DPMSolverMultistepInverseScheduler(**snake_case__ ) snake_case : List[Any] = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[Any] = self.get_dummy_inversion_inputs(snake_case__ ) snake_case : List[str] = pipe.invert(**snake_case__ ).images snake_case : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) snake_case : Union[str, Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) snake_case : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1e-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _SCREAMING_SNAKE_CASE (cls : Union[str, Any] ) -> Any: '''simple docstring''' snake_case : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) snake_case : List[str] = raw_image.convert("RGB" ).resize((7_68, 7_68) ) snake_case : Optional[int] = raw_image def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' snake_case : Any = torch.manual_seed(0 ) snake_case : int = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=snake_case__ , torch_dtype=torch.floataa ) snake_case : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) snake_case : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Union[str, Any] = "a bowl of fruit" snake_case : int = "a bowl of pears" snake_case : Optional[int] = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case__ , target_prompt=snake_case__ , generator=snake_case__ , ) snake_case : str = pipe.invert( prompt=snake_case__ , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case__ ).latents snake_case : List[str] = pipe( prompt=snake_case__ , mask_image=snake_case__ , image_latents=snake_case__ , generator=snake_case__ , negative_prompt=snake_case__ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] snake_case : Tuple = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=snake_case__ , torch_dtype=torch.floataa ) snake_case : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case : Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : str = "a bowl of fruit" snake_case : Union[str, Any] = "a bowl of pears" snake_case : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case__ , target_prompt=snake_case__ , generator=snake_case__ , ) snake_case : List[str] = pipe.invert( prompt=snake_case__ , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case__ , num_inference_steps=25 , ).latents snake_case : List[str] = pipe( prompt=snake_case__ , mask_image=snake_case__ , image_latents=snake_case__ , generator=snake_case__ , negative_prompt=snake_case__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] snake_case : Tuple = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
10
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
1
def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] ): # Check if the input is valid if not len(__lowerCamelCase ) == len(__lowerCamelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients snake_case , snake_case , snake_case : str = equationa snake_case , snake_case , snake_case : List[Any] = equationa # Calculate the determinants of the matrices snake_case : Dict = aa * ba - aa * ba snake_case : Optional[int] = ca * ba - ca * ba snake_case : Any = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case : Tuple = determinant_x / determinant snake_case : Optional[int] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
10
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : str , snake_case__ : Union[str, Any] , snake_case__ : str=3 , snake_case__ : Any=32 , snake_case__ : List[Any]=3 , snake_case__ : Optional[Any]=10 , snake_case__ : Optional[Any]=[10, 20, 30, 40] , snake_case__ : Tuple=[1, 1, 2, 1] , snake_case__ : List[str]=True , snake_case__ : int=True , snake_case__ : Union[str, Any]="relu" , snake_case__ : int=3 , snake_case__ : str=None , ) -> str: '''simple docstring''' snake_case : str = parent snake_case : str = batch_size snake_case : Tuple = image_size snake_case : Union[str, Any] = num_channels snake_case : List[Any] = embeddings_size snake_case : Optional[Any] = hidden_sizes snake_case : Optional[int] = depths snake_case : Any = is_training snake_case : Any = use_labels snake_case : Optional[int] = hidden_act snake_case : Union[str, Any] = num_labels snake_case : Tuple = scope snake_case : List[str] = len(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict ) -> int: '''simple docstring''' snake_case : Dict = TFRegNetModel(config=snake_case__ ) snake_case : Dict = model(snake_case__ , training=snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any ) -> Dict: '''simple docstring''' snake_case : str = self.num_labels snake_case : List[str] = TFRegNetForImageClassification(snake_case__ ) snake_case : Tuple = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : int = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : int = config_and_inputs snake_case : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () A__ : str = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : str = False A__ : int = False A__ : int = False A__ : Optional[int] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = TFRegNetModelTester(self ) snake_case : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(snake_case__ ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Any = [*signature.parameters.keys()] snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[int] ): snake_case : List[Any] = model_class(snake_case__ ) snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) , training=snake_case__ ) snake_case : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case , snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case : str = layer_type snake_case : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any]={} ): snake_case : Optional[int] = model(snake_case__ , return_dict=snake_case__ , **snake_case__ ) snake_case : Dict = model(snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(snake_case__ , snake_case__ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: snake_case : Optional[Any] = model_class(snake_case__ ) snake_case : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Dict = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : int = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : str = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) snake_case : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = TFRegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Dict = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case : int = self.default_image_processor snake_case : Optional[int] = prepare_img() snake_case : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass snake_case : List[Any] = model(**snake_case__ , training=snake_case__ ) # verify the logits snake_case : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) snake_case : Any = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , snake_case__ , atol=1e-4 )
10
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
1
def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Union[str, Any] = len(__lowerCamelCase ) for i in range(__lowerCamelCase ): for j in range(i + 1 , __lowerCamelCase ): if numbers[j] < numbers[i]: snake_case , snake_case : Tuple = numbers[j], numbers[i] return numbers if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
10
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Any = 1 snake_case : Any = 3 snake_case : Tuple = (32, 32) snake_case : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case : List[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : Optional[int] = self.dummy_cond_unet_upscale snake_case : Union[str, Any] = DDPMScheduler() snake_case : Any = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Union[str, Any] = self.dummy_vae snake_case : str = self.dummy_text_encoder snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Tuple = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : List[Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Any = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[Any] = "A painting of a squirrel eating a burger" snake_case : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : List[str] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : Optional[int] = output.images snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : Dict = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] snake_case : str = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] snake_case : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case : List[str] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.dummy_cond_unet_upscale snake_case : List[Any] = DDPMScheduler() snake_case : str = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Union[str, Any] = self.dummy_vae snake_case : Union[str, Any] = self.dummy_text_encoder snake_case : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk snake_case : Tuple = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Union[str, Any] = "A painting of a squirrel eating a burger" snake_case : Tuple = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : int = output.images assert image.shape[0] == 2 snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : Dict = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) snake_case : List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' snake_case : Tuple = self.dummy_cond_unet_upscale snake_case : Any = DDPMScheduler() snake_case : List[Any] = DDIMScheduler(prediction_type="v_prediction" ) snake_case : Dict = self.dummy_vae snake_case : Any = self.dummy_text_encoder snake_case : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Tuple = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 snake_case : Any = unet.half() snake_case : str = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case : List[str] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) snake_case : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Optional[Any] = "A painting of a squirrel eating a burger" snake_case : Optional[int] = torch.manual_seed(0 ) snake_case : Optional[int] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ).images snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) snake_case : Tuple = "stabilityai/stable-diffusion-x4-upscaler" snake_case : Tuple = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() snake_case : Dict = "a cat sitting on a park bench" snake_case : List[str] = torch.manual_seed(0 ) snake_case : int = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) snake_case : Tuple = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) snake_case : int = "stabilityai/stable-diffusion-x4-upscaler" snake_case : str = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() snake_case : int = "a cat sitting on a park bench" snake_case : int = torch.manual_seed(0 ) snake_case : str = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) snake_case : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) snake_case : str = "stabilityai/stable-diffusion-x4-upscaler" snake_case : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Union[str, Any] = "a cat sitting on a park bench" snake_case : List[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="np" , ) snake_case : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
10
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __lowerCamelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase ( nn.Module ): def __init__(self : List[str] , snake_case__ : Optional[Any] ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Union[str, Any] = torchvision.models.resnetaaa(pretrained=snake_case__ ) snake_case : int = list(model.children() )[:-2] snake_case : List[str] = nn.Sequential(*snake_case__ ) snake_case : int = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' snake_case : int = self.pool(self.model(snake_case__ ) ) snake_case : List[str] = torch.flatten(snake_case__ , start_dim=2 ) snake_case : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase ( A_ ): def __init__(self : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[Any] ) -> Any: '''simple docstring''' snake_case : List[str] = [json.loads(snake_case__ ) for l in open(snake_case__ )] snake_case : str = os.path.dirname(snake_case__ ) snake_case : Tuple = tokenizer snake_case : int = labels snake_case : Union[str, Any] = len(snake_case__ ) snake_case : str = max_seq_length snake_case : List[Any] = transforms def __len__(self : str ) -> List[Any]: '''simple docstring''' return len(self.data ) def __getitem__(self : Tuple , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : List[str] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=snake_case__ ) ) snake_case , snake_case , snake_case : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] snake_case : List[str] = sentence[: self.max_seq_length] snake_case : List[str] = torch.zeros(self.n_classes ) snake_case : str = 1 snake_case : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) snake_case : str = self.transforms(snake_case__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : str = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : List[str] = [len(row["sentence"] ) for row in batch] snake_case , snake_case : Any = len(__lowerCamelCase ), max(__lowerCamelCase ) snake_case : List[str] = torch.zeros(__lowerCamelCase , __lowerCamelCase , dtype=torch.long ) snake_case : List[Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCamelCase , __lowerCamelCase ) ): snake_case : Optional[Any] = input_row["sentence"] snake_case : Tuple = 1 snake_case : str = torch.stack([row["image"] for row in batch] ) snake_case : Tuple = torch.stack([row["label"] for row in batch] ) snake_case : int = torch.stack([row["image_start_token"] for row in batch] ) snake_case : int = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def UpperCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def UpperCamelCase ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase ( A_ ): A__ : torch.FloatTensor class UpperCAmelCase ( A_ ,A_ ): @register_to_config def __init__(self : str , snake_case__ : int = 6_55_36 , snake_case__ : Optional[int] = None , snake_case__ : int = 2 , snake_case__ : int = 2 , snake_case__ : int = 0 , snake_case__ : str = "fourier" , snake_case__ : bool = True , snake_case__ : bool = False , snake_case__ : float = 0.0 , snake_case__ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , snake_case__ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , snake_case__ : Tuple[str] = "UNetMidBlock1D" , snake_case__ : str = None , snake_case__ : Tuple[int] = (32, 32, 64) , snake_case__ : str = None , snake_case__ : int = 8 , snake_case__ : int = 1 , snake_case__ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Any = sample_size # time if time_embedding_type == "fourier": snake_case : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=snake_case__ , log=snake_case__ , flip_sin_to_cos=snake_case__ ) snake_case : Union[str, Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case : Union[str, Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=snake_case__ , downscale_freq_shift=snake_case__ ) snake_case : Optional[int] = block_out_channels[0] if use_timestep_embedding: snake_case : Union[str, Any] = block_out_channels[0] * 4 snake_case : Dict = TimestepEmbedding( in_channels=snake_case__ , time_embed_dim=snake_case__ , act_fn=snake_case__ , out_dim=block_out_channels[0] , ) snake_case : Tuple = nn.ModuleList([] ) snake_case : Tuple = None snake_case : Union[str, Any] = nn.ModuleList([] ) snake_case : Optional[Any] = None # down snake_case : Optional[int] = in_channels for i, down_block_type in enumerate(snake_case__ ): snake_case : Optional[int] = output_channel snake_case : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case : Optional[int] = i == len(snake_case__ ) - 1 snake_case : Union[str, Any] = get_down_block( snake_case__ , num_layers=snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(snake_case__ ) # mid snake_case : Tuple = get_mid_block( snake_case__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=snake_case__ , add_downsample=snake_case__ , ) # up snake_case : Optional[int] = list(reversed(snake_case__ ) ) snake_case : Optional[Any] = reversed_block_out_channels[0] if out_block_type is None: snake_case : str = out_channels else: snake_case : Any = block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): snake_case : int = output_channel snake_case : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(snake_case__ ) - 1 else final_upsample_channels ) snake_case : int = i == len(snake_case__ ) - 1 snake_case : Dict = get_up_block( snake_case__ , num_layers=snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(snake_case__ ) snake_case : str = output_channel # out snake_case : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case : List[Any] = get_out_block( out_block_type=snake_case__ , num_groups_out=snake_case__ , embed_dim=block_out_channels[0] , out_channels=snake_case__ , act_fn=snake_case__ , fc_dim=block_out_channels[-1] // 4 , ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : Union[torch.Tensor, float, int] , snake_case__ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' snake_case : Optional[int] = timestep if not torch.is_tensor(snake_case__ ): snake_case : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: snake_case : str = timesteps[None].to(sample.device ) snake_case : Any = self.time_proj(snake_case__ ) if self.config.use_timestep_embedding: snake_case : str = self.time_mlp(snake_case__ ) else: snake_case : List[Any] = timestep_embed[..., None] snake_case : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case : int = () for downsample_block in self.down_blocks: snake_case , snake_case : List[str] = downsample_block(hidden_states=snake_case__ , temb=snake_case__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case : Dict = self.mid_block(snake_case__ , snake_case__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case : str = down_block_res_samples[-1:] snake_case : str = down_block_res_samples[:-1] snake_case : Optional[Any] = upsample_block(snake_case__ , res_hidden_states_tuple=snake_case__ , temb=snake_case__ ) # 5. post-process if self.out_block: snake_case : Optional[int] = self.out_block(snake_case__ , snake_case__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case__ )
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : str = "data2vec-vision" def __init__(self : Optional[Any] , snake_case__ : Optional[int]=7_68 , snake_case__ : str=12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Tuple=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : str=0.02 , snake_case__ : str=1e-12 , snake_case__ : List[str]=2_24 , snake_case__ : Dict=16 , snake_case__ : Union[str, Any]=3 , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False , snake_case__ : str=False , snake_case__ : Any=False , snake_case__ : List[str]=0.1 , snake_case__ : Any=0.1 , snake_case__ : str=True , snake_case__ : Union[str, Any]=[3, 5, 7, 11] , snake_case__ : Tuple=[1, 2, 3, 6] , snake_case__ : Optional[int]=True , snake_case__ : List[str]=0.4 , snake_case__ : Any=2_56 , snake_case__ : Optional[int]=1 , snake_case__ : Dict=False , snake_case__ : List[Any]=2_55 , **snake_case__ : str , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : str = hidden_size snake_case : int = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : str = layer_norm_eps snake_case : int = image_size snake_case : Optional[int] = patch_size snake_case : Any = num_channels snake_case : List[str] = use_mask_token snake_case : int = use_absolute_position_embeddings snake_case : Any = use_relative_position_bias snake_case : Union[str, Any] = use_shared_relative_position_bias snake_case : Optional[int] = layer_scale_init_value snake_case : List[str] = drop_path_rate snake_case : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case : Any = out_indices snake_case : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case : int = use_auxiliary_head snake_case : str = auxiliary_loss_weight snake_case : List[Any] = auxiliary_channels snake_case : Union[str, Any] = auxiliary_num_convs snake_case : Union[str, Any] = auxiliary_concat_input snake_case : Optional[int] = semantic_loss_ignore_index class UpperCAmelCase ( A_ ): A__ : List[str] = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> float: '''simple docstring''' return 1e-4
10
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase = 12_80_22 __lowerCamelCase = 12_80_28 @require_sentencepiece class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Tuple = MaMaaaTokenizer A__ : Optional[Any] = False A__ : Optional[int] = False A__ : Union[str, Any] = True def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' super().setUp() snake_case : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] snake_case : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) snake_case : int = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : int , **snake_case__ : int ) -> Tuple: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Tuple = "</s>" snake_case : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = self.get_tokenizer() snake_case : Tuple = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : str = self.get_tokenizer() snake_case : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [2, 3, 4, 5, 6] , ) snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) snake_case : int = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertEqual(snake_case__ , "This is a test" ) @slow def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : Dict = {"input_ids": [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): A__ : int = "facebook/m2m100_418M" A__ : int = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] A__ : Union[str, Any] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off A__ : Optional[Any] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def _SCREAMING_SNAKE_CASE (cls : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) snake_case : Dict = 1 return cls def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 12_80_63 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : int = self.tokenizer.get_vocab() self.assertEqual(len(snake_case__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = "en" snake_case : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) # fmt: off snake_case : List[Any] = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on snake_case : Dict = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) snake_case : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : str = tempfile.mkdtemp() snake_case : Any = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case__ ) snake_case : Union[str, Any] = MaMaaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Any = "en" snake_case : Union[str, Any] = "fr" snake_case : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors="pt" ) snake_case : List[str] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case : Dict = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' snake_case : Dict = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case : Any = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' snake_case : Optional[int] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case : Any = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : int = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS "input_ids": [[12_80_22, 58, 41_83, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 12_80_06, } , )
10
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int ): snake_case : Tuple = list(range(len(__lowerCamelCase ) ) ) snake_case : str = [v / w for v, w in zip(__lowerCamelCase , __lowerCamelCase )] index.sort(key=lambda __lowerCamelCase : ratio[i] , reverse=__lowerCamelCase ) snake_case : float = 0 snake_case : list[float] = [0] * len(__lowerCamelCase ) for i in index: if weight[i] <= capacity: snake_case : str = 1 max_value += value[i] capacity -= weight[i] else: snake_case : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : def __init__(self : List[str] , snake_case__ : Any , snake_case__ : str=2 , snake_case__ : Tuple=3 , snake_case__ : int=4 , snake_case__ : int=2 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=True , snake_case__ : Optional[int]=99 , snake_case__ : List[str]=36 , snake_case__ : Dict=3 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=5_12 , snake_case__ : Any=16 , snake_case__ : str=2 , snake_case__ : str=0.02 , snake_case__ : List[Any]=6 , snake_case__ : str=6 , snake_case__ : Optional[int]=3 , snake_case__ : List[Any]=4 , snake_case__ : Optional[int]=None , snake_case__ : List[str]=10_00 , ) -> Dict: '''simple docstring''' snake_case : Tuple = parent snake_case : List[Any] = batch_size snake_case : Optional[int] = num_channels snake_case : List[Any] = image_size snake_case : str = patch_size snake_case : List[Any] = text_seq_length snake_case : Optional[Any] = is_training snake_case : List[str] = use_input_mask snake_case : Optional[int] = use_token_type_ids snake_case : List[str] = use_labels snake_case : List[Any] = vocab_size snake_case : Dict = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Dict = intermediate_size snake_case : str = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : Dict = initializer_range snake_case : Any = coordinate_size snake_case : Union[str, Any] = shape_size snake_case : Optional[int] = num_labels snake_case : Union[str, Any] = num_choices snake_case : Tuple = scope snake_case : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case : str = text_seq_length snake_case : Dict = (image_size // patch_size) ** 2 + 1 snake_case : str = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case : str = bbox[i, j, 3] snake_case : Tuple = bbox[i, j, 1] snake_case : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case : Tuple = bbox[i, j, 2] snake_case : Tuple = bbox[i, j, 0] snake_case : Tuple = t snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = None if self.use_input_mask: snake_case : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case : Any = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case : Tuple = None snake_case : Optional[Any] = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image snake_case : Optional[int] = model(snake_case__ , pixel_values=snake_case__ ) snake_case : str = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) snake_case : Optional[Any] = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) snake_case : str = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case : Tuple = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case : Optional[int] = model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Any , snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.num_labels snake_case : List[str] = LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : str = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : Dict = self.num_labels snake_case : Union[str, Any] = LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[str] ) -> Any: '''simple docstring''' snake_case : Dict = LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Optional[int] = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : List[str] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Any = config_and_inputs snake_case : Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : str = False A__ : Any = False A__ : List[Any] = False A__ : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A__ : Dict = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict ) -> Any: '''simple docstring''' return True def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = LayoutLMvaModelTester(self ) snake_case : List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int=False ) -> Any: '''simple docstring''' snake_case : Dict = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): snake_case : int = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): snake_case : List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: snake_case : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[Any] = LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : str = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(snake_case__ ) snake_case : List[str] = self.default_image_processor snake_case : Tuple = prepare_img() snake_case : List[Any] = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) snake_case : List[Any] = torch.tensor([[1, 2]] ) snake_case : List[str] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case : Union[str, Any] = model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits snake_case : Dict = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) snake_case : str = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = dataset snake_case : Optional[int] = process snake_case : List[str] = params def __len__(self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Optional[int] , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.dataset[i] snake_case : List[str] = self.process(snake_case__ , **self.params ) return processed class UpperCAmelCase ( A_ ): def __init__(self : str , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any]=None ) -> int: '''simple docstring''' snake_case : Tuple = loader snake_case : Union[str, Any] = infer snake_case : Union[str, Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case : Tuple = None snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping snake_case : List[str] = None snake_case : Any = None def __len__(self : int ) -> Optional[Any]: '''simple docstring''' return len(self.loader ) def __iter__(self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case__ , snake_case__ ): # Convert ModelOutput to tuple first snake_case : Optional[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case__ , snake_case__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case : Optional[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : int = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case : str = self._loader_batch_data.__class__(snake_case__ ) self._loader_batch_index += 1 return result def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case : Union[str, Any] = next(self.iterator ) snake_case : Tuple = self.infer(snake_case__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case__ , torch.Tensor ): snake_case : Optional[Any] = processed else: snake_case : Union[str, Any] = list(processed.keys() )[0] snake_case : Dict = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = len(snake_case__ ) else: snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : List[str] = observed_batch_size # Setting internal index to unwrap the batch snake_case : Tuple = processed snake_case : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( A_ ): def __init__(self : Tuple , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any=None ) -> str: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) def __iter__(self : str ) -> List[str]: '''simple docstring''' snake_case : str = iter(self.loader ) snake_case : Any = None return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.subiterator is None: snake_case : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case : str = self.infer(next(self.iterator ) , **self.params ) snake_case : List[str] = next(self.subiterator ) return processed class UpperCAmelCase ( A_ ): def __iter__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = False snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case : str = self.loader_batch_item() snake_case : Tuple = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator while not is_last: snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case__ , torch.Tensor ): snake_case : Dict = processed else: snake_case : Tuple = list(processed.keys() )[0] snake_case : List[Any] = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : int = len(snake_case__ ) else: snake_case : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : Any = observed_batch_size snake_case : List[Any] = processed snake_case : Dict = 0 while self._loader_batch_index < self.loader_batch_size: snake_case : Union[str, Any] = self.loader_batch_item() snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator else: snake_case : List[str] = processed snake_case : Union[str, Any] = item.pop("is_last" ) accumulator.append(snake_case__ ) return accumulator class UpperCAmelCase ( A_ ): def __init__(self : int , snake_case__ : Dataset , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : int = dataset snake_case : Optional[Any] = key def __len__(self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : List[str] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.dataset[i][self.key] class UpperCAmelCase ( A_ ): def __init__(self : Union[str, Any] , snake_case__ : Dataset , snake_case__ : str , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = dataset snake_case : Tuple = keya snake_case : Union[str, Any] = keya def __len__(self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Union[str, Any] , snake_case__ : Optional[int] ) -> str: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Optional[int] = [] snake_case , snake_case : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case : int = result + left + right return input_list def UpperCamelCase ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return input_list snake_case : Optional[int] = list(__lowerCamelCase ) # iteration for two-way merging snake_case : Optional[Any] = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): snake_case : int = i snake_case : Optional[Any] = i + p - 1 snake_case : Any = (low + high + 1) // 2 snake_case : List[str] = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): snake_case : List[str] = i snake_case : Optional[Any] = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": __lowerCamelCase = [] else: __lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
10
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase ( A_ ): A__ : str = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"image": Image()} ) A__ : ClassVar[Features] = Features({"labels": ClassLabel} ) A__ : str = "image" A__ : str = "labels" def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) snake_case : List[str] = copy.deepcopy(self ) snake_case : Optional[Any] = self.label_schema.copy() snake_case : Any = features[self.label_column] snake_case : List[str] = label_schema return task_template @property def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
import datasets __lowerCamelCase = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __lowerCamelCase = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __lowerCamelCase = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : str ) -> List[Any]: '''simple docstring''' return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )}
10
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
1