code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( _lowerCAmelCase ): A__ : Optional[int] = ["pixel_values"] def __init__(self : Tuple , snake_case__ : str = True , snake_case__ : Union[str, Any] = None , snake_case__ : int = PILImageResampling.BILINEAR , snake_case__ : List[str] = True , snake_case__ : List[Any] = None , snake_case__ : int = True , snake_case__ : List[Any] = 1 / 2_55 , snake_case__ : Optional[Any] = True , snake_case__ : int = None , snake_case__ : Optional[Any] = None , **snake_case__ : Tuple , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_56} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="crop_size" ) snake_case : Union[str, Any] = do_resize snake_case : List[str] = size snake_case : List[str] = resample snake_case : Optional[int] = do_center_crop snake_case : int = crop_size snake_case : List[Any] = do_rescale snake_case : str = rescale_factor snake_case : Dict = do_normalize snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Optional[int] = PILImageResampling.BICUBIC , snake_case__ : Dict = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' snake_case : int = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] = None , **snake_case__ : Any ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : str , snake_case__ : Dict = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : int = None , snake_case__ : Any = None , snake_case__ : str = None , snake_case__ : List[Any] = None , snake_case__ : str = None , snake_case__ : List[Any] = None , snake_case__ : int = None , snake_case__ : List[str] = None , snake_case__ : Optional[Any] = None , snake_case__ : Any = None , snake_case__ : Optional[Any] = None , snake_case__ : Dict = ChannelDimension.FIRST , **snake_case__ : int , ) -> Any: '''simple docstring''' snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = size if size is not None else self.size snake_case : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = resample if resample is not None else self.resample snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="crop_size" ) snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : str = image_std if image_std is not None else self.image_std snake_case : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : int = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : Optional[int] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: snake_case : Any = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] , snake_case__ : Optional[int] = None ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): snake_case : int = target_sizes.numpy() snake_case : Optional[int] = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): snake_case : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: snake_case : str = logits.argmax(dim=1 ) snake_case : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
__lowerCamelCase = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase ( __lowerCamelCase : str ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def UpperCamelCase ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": print(solution())
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase : def __init__(self : List[str] , snake_case__ : int , snake_case__ : Optional[int]=13 , snake_case__ : List[str]=7 , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : str=99 , snake_case__ : int=32 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]=37 , snake_case__ : List[str]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=5_12 , snake_case__ : Union[str, Any]=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Any=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=4 , snake_case__ : str=None , ) -> List[Any]: '''simple docstring''' snake_case : Any = parent snake_case : Optional[Any] = 13 snake_case : List[str] = 7 snake_case : Dict = True snake_case : List[Any] = True snake_case : Optional[Any] = True snake_case : Any = True snake_case : str = 99 snake_case : Dict = 3_84 snake_case : Tuple = 2 snake_case : List[str] = 4 snake_case : List[Any] = 37 snake_case : Optional[Any] = 'gelu' snake_case : Tuple = 0.1 snake_case : Tuple = 0.1 snake_case : List[Any] = 5_12 snake_case : str = 16 snake_case : Union[str, Any] = 2 snake_case : int = 0.02 snake_case : Any = 3 snake_case : Optional[Any] = 4 snake_case : Optional[Any] = 1_28 snake_case : Optional[int] = 2 snake_case : Union[str, Any] = 9 snake_case : List[Any] = 1 snake_case : Any = None def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[int] = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None if self.use_token_type_ids: snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Tuple = None snake_case : List[Any] = None snake_case : Tuple = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' snake_case : Union[str, Any] = TFConvBertModel(config=snake_case__ ) snake_case : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case : int = [input_ids, input_mask] snake_case : Any = model(snake_case__ ) snake_case : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = TFConvBertForMaskedLM(config=snake_case__ ) snake_case : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : List[Any] = self.num_labels snake_case : str = TFConvBertForSequenceClassification(config=snake_case__ ) snake_case : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Any , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Any ) -> Tuple: '''simple docstring''' snake_case : str = self.num_choices snake_case : Tuple = TFConvBertForMultipleChoice(config=snake_case__ ) snake_case : List[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[int] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : str = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : List[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] ) -> int: '''simple docstring''' snake_case : Optional[Any] = self.num_labels snake_case : Any = TFConvBertForTokenClassification(config=snake_case__ ) snake_case : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : str = TFConvBertForQuestionAnswering(config=snake_case__ ) snake_case : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case : str = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( snake_case ) : Union[str, Any] = config_and_inputs snake_case : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( _a ,_a ,unittest.TestCase ): A__ : List[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A__ : Tuple = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A__ : int = False A__ : List[Any] = False A__ : List[Any] = False def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = TFConvBertModelTester(self ) snake_case : List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[Any] = True snake_case : Union[str, Any] = True if hasattr(snake_case__ , "use_cache" ): snake_case : str = True snake_case : Optional[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case : str = getattr(self.model_tester , "key_length" , snake_case__ ) for model_class in self.all_model_classes: snake_case : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Tuple = model_class(snake_case__ ) snake_case : Optional[Any] = len(model(snake_case__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ , saved_model=snake_case__ ) snake_case : Union[str, Any] = os.path.join(snake_case__ , "saved_model" , "1" ) snake_case : Optional[Any] = tf.keras.models.load_model(snake_case__ ) snake_case : Dict = model(snake_case__ ) if self.is_encoder_decoder: snake_case : Tuple = outputs['encoder_hidden_states'] snake_case : Tuple = outputs['encoder_attentions'] else: snake_case : List[str] = outputs['hidden_states'] snake_case : Dict = outputs['attentions'] self.assertEqual(len(snake_case__ ) , snake_case__ ) snake_case : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : int = True snake_case : Optional[int] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) snake_case : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) def check_decoder_attentions_output(snake_case__ : List[str] ): snake_case : List[str] = len(snake_case__ ) self.assertEqual(out_len % 2 , 0 ) snake_case : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case__ : List[Any] ): snake_case : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case : int = True snake_case : Tuple = False snake_case : str = model_class(snake_case__ ) snake_case : str = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : int = len(snake_case__ ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) if self.is_encoder_decoder: snake_case : str = model_class(snake_case__ ) snake_case : str = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_decoder_attentions_output(snake_case__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case : Union[str, Any] = True snake_case : List[Any] = model_class(snake_case__ ) snake_case : Any = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) # Check attention is always last and order is fine snake_case : Tuple = True snake_case : List[Any] = True snake_case : Optional[int] = model_class(snake_case__ ) snake_case : List[str] = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case__ ) ) self.assertEqual(model.config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case : Tuple = model(snake_case__ )[0] snake_case : List[str] = [1, 6, 7_68] self.assertEqual(output.shape , snake_case__ ) snake_case : List[str] = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import os import pytest from attr import dataclass __lowerCamelCase = """us-east-1""" # defaults region @dataclass class UpperCAmelCase : A__ : Union[str, Any] = 42 A__ : Optional[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" A__ : Dict = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_00, "save_steps": 55_00, } A__ : Optional[Any] = {**hyperparameters, "max_steps": 10_00} @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' return f"""{self.framework}-transfromers-test""" @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' return f"""./tests/sagemaker/scripts/{self.framework}""" @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( _lowerCAmelCase ): A__ : Optional[int] = ["pixel_values"] def __init__(self : List[str] , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' super().__init__(**_lowercase ) snake_case : Union[str, Any] = do_rescale snake_case : Union[str, Any] = rescale_factor snake_case : str = do_pad snake_case : str = pad_size def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> Tuple: '''simple docstring''' return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> List[Any]: '''simple docstring''' snake_case , snake_case : List[Any] = get_image_size(_lowercase ) snake_case : List[str] = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(_lowercase , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=_lowercase ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : str , ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = do_pad if do_pad is not None else self.do_pad snake_case : Optional[Any] = pad_size if pad_size is not None else self.pad_size snake_case : Optional[int] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(_lowercase ) for image in images] if do_rescale: snake_case : Optional[int] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(_lowercase , size=_lowercase ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] snake_case : List[Any] = {"pixel_values": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : List[str]=1024 , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Union[str, Any] ): snake_case : Optional[Any] = AutoTokenizer.from_pretrained(a__ ) snake_case : int = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path="train" , **a__ ) snake_case : Tuple = tok.pad_token_id def get_lens(__lowerCamelCase : Any ): snake_case : Optional[Any] = tqdm( DataLoader(a__ , batch_size=512 , num_workers=8 , shuffle=a__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) snake_case : List[Any] = [] for batch in dl: snake_case : Tuple = batch["input_ids"].ne(a__ ).sum(1 ).tolist() snake_case : List[Any] = batch["labels"].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__ , a__ ): max_lens.append(max(a__ , a__ ) ) else: max_lens.extend(a__ ) return max_lens snake_case : List[Any] = get_lens(a__ ) snake_case : Tuple = SeqaSeqDataset(a__ , a__ , a__ , a__ , type_path="val" , **a__ ) snake_case : Dict = get_lens(a__ ) pickle_save(a__ , train_ds.len_file ) pickle_save(a__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowerCamelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCamelCase = logging.WARNING def UpperCamelCase ( ): snake_case : Any = os.getenv("DATASETS_VERBOSITY" , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase ( ): return __name__.split("." )[0] def UpperCamelCase ( ): return logging.getLogger(_get_library_name() ) def UpperCamelCase ( ): # Apply our default configuration to the library root logger. snake_case : str = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase ( ): snake_case : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] = None ): if name is None: snake_case : List[Any] = _get_library_name() return logging.getLogger(__a ) def UpperCamelCase ( ): return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase ( __lowerCamelCase : Optional[int] ): _get_library_root_logger().setLevel(__a ) def UpperCamelCase ( ): return set_verbosity(__a ) def UpperCamelCase ( ): return set_verbosity(__a ) def UpperCamelCase ( ): return set_verbosity(__a ) def UpperCamelCase ( ): return set_verbosity(__a ) def UpperCamelCase ( ): snake_case : Optional[int] = False def UpperCamelCase ( ): snake_case : Dict = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class UpperCAmelCase : def __init__(self : int , *snake_case__ : str , **snake_case__ : Dict ) -> Optional[int]: # pylint: disable=unused-argument '''simple docstring''' snake_case : Optional[int] = args[0] if args else None def __iter__(self : List[str] ) -> Any: '''simple docstring''' return iter(self._iterator ) def __getattr__(self : int , snake_case__ : int ) -> Tuple: '''simple docstring''' def empty_fn(*snake_case__ : int , **snake_case__ : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__(self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self def __exit__(self : Optional[int] , snake_case__ : int , snake_case__ : Any , snake_case__ : int ) -> Dict: '''simple docstring''' return __lowerCamelCase = True class UpperCAmelCase : def __call__(self : Optional[Any] , *snake_case__ : Optional[Any] , snake_case__ : Tuple=False , **snake_case__ : Optional[Any] ) -> Dict: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def _SCREAMING_SNAKE_CASE (self : Any , *snake_case__ : Optional[int] , **snake_case__ : str ) -> int: '''simple docstring''' snake_case : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCamelCase = _tqdm_cls() def UpperCamelCase ( ): global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase ( ): global _tqdm_active snake_case : str = True def UpperCamelCase ( ): global _tqdm_active snake_case : str = False
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
def UpperCamelCase ( __lowerCamelCase : int ): if n == 1 or not isinstance(A__ , A__ ): return 0 elif n == 2: return 1 else: snake_case : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Optional[Any] = 0 snake_case : Optional[Any] = 2 while digits < n: index += 1 snake_case : Optional[Any] = len(str(fibonacci(A__ ) ) ) return index def UpperCamelCase ( __lowerCamelCase : int = 1000 ): return fibonacci_digits_index(A__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : str , snake_case__ : List[str]=13 , snake_case__ : Union[str, Any]=7 , snake_case__ : str=True , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=99 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=32 , snake_case__ : Any=5 , snake_case__ : Dict=4 , snake_case__ : List[str]=37 , snake_case__ : str="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=5_12 , snake_case__ : Tuple=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : Any=3 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=None , ) -> List[str]: '''simple docstring''' snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : Union[str, Any] = seq_length snake_case : str = is_training snake_case : Dict = use_input_mask snake_case : Tuple = use_token_type_ids snake_case : str = use_labels snake_case : int = vocab_size snake_case : List[str] = hidden_size snake_case : Dict = embedding_size snake_case : Dict = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : int = intermediate_size snake_case : Union[str, Any] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : Tuple = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : List[str] = num_labels snake_case : Dict = num_choices snake_case : List[str] = scope def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = None snake_case : Tuple = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Tuple ) -> List[str]: '''simple docstring''' snake_case : Tuple = MegatronBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) snake_case : Dict = model(snake_case_ , token_type_ids=snake_case_ ) snake_case : Tuple = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : int = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = MegatronBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = MegatronBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : str = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Optional[int] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = self.num_labels snake_case : Optional[int] = MegatronBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.num_labels snake_case : Dict = MegatronBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : str = self.num_choices snake_case : Union[str, Any] = MegatronBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() ( snake_case ) : str = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __lowercase ,__lowercase ,unittest.TestCase ): A__ : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ : Tuple = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ : Optional[Any] = True # test_resize_embeddings = False A__ : List[Any] = False def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict=False ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = MegatronBertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case_ ) def UpperCamelCase ( __lowerCamelCase : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) __lowerCamelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : List[str] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: snake_case : Tuple = os.path.join(os.environ["MYDIR"] , snake_case_ ) snake_case : Any = MegatronBertModel.from_pretrained(snake_case_ ) model.to(snake_case_ ) model.half() snake_case : Union[str, Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): snake_case : List[str] = model(snake_case_ )[0] snake_case : Optional[int] = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , snake_case_ ) snake_case : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): snake_case : Optional[int] = output[0, ii, jj] snake_case : Any = expected[3 * ii + jj] snake_case : Union[str, Any] = '''ii={} jj={} a={} b={}'''.format(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertTrue(math.isclose(snake_case_ , snake_case_ , rel_tol=snake_case_ , abs_tol=snake_case_ ) , msg=snake_case_ )
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } __lowerCamelCase = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } __lowerCamelCase = { """facebook/m2m100_418M""": 10_24, } # fmt: off __lowerCamelCase = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class UpperCAmelCase ( A_ ): A__ : Optional[int] = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Any = ["input_ids", "attention_mask"] A__ : List[int] = [] A__ : List[int] = [] def __init__(self : List[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Any="<s>" , snake_case__ : Optional[int]="</s>" , snake_case__ : List[str]="</s>" , snake_case__ : str="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="m2m100" , snake_case__ : Optional[Dict[str, Any]] = None , snake_case__ : List[Any]=8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case : List[str] = language_codes snake_case : Optional[int] = FAIRSEQ_LANGUAGE_CODES[language_codes] snake_case : List[str] = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} snake_case : List[str] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case__ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case__ , tgt_lang=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , language_codes=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case__ , **snake_case__ , ) snake_case : Optional[Any] = vocab_file snake_case : List[Any] = load_json(snake_case__ ) snake_case : Tuple = {v: k for k, v in self.encoder.items()} snake_case : List[str] = spm_file snake_case : int = load_spm(snake_case__ , self.sp_model_kwargs ) snake_case : List[Any] = len(self.encoder ) snake_case : Dict = { self.get_lang_token(snake_case__ ): self.encoder_size + i for i, lang_code in enumerate(snake_case__ ) } snake_case : Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case__ )} snake_case : List[str] = {v: k for k, v in self.lang_token_to_id.items()} snake_case : List[str] = src_lang if src_lang is not None else "en" snake_case : Optional[int] = tgt_lang snake_case : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) snake_case : List[Any] = num_madeup_words @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int ) -> Dict: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case__ , self.encoder[self.unk_token] ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : int ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case__ , self.unk_token ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = [] snake_case : Optional[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token snake_case : str = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) snake_case : Dict = [1] * len(self.prefix_tokens ) snake_case : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : int = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Any ) -> Dict: '''simple docstring''' snake_case : List[str] = self.__dict__.copy() snake_case : Optional[int] = None return state def __setstate__(self : Tuple , snake_case__ : Dict ) -> None: '''simple docstring''' snake_case : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : Dict = Path(snake_case__ ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) snake_case : Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) snake_case : Union[str, Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , snake_case__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case__ ) elif not os.path.isfile(self.spm_file ): with open(snake_case__ , "wb" ) as fi: snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (str(snake_case__ ), str(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] , snake_case__ : str = "en" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro" , **snake_case__ : Dict , ) -> BatchEncoding: '''simple docstring''' snake_case : List[str] = src_lang snake_case : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) snake_case : Union[str, Any] = src_lang snake_case : Optional[Any] = self(snake_case__ , add_special_tokens=snake_case__ , **snake_case__ ) snake_case : Optional[int] = self.get_lang_id(snake_case__ ) snake_case : Union[str, Any] = tgt_lang_id return inputs def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str ) -> None: '''simple docstring''' snake_case : List[str] = self.get_lang_token(snake_case__ ) snake_case : Tuple = self.lang_token_to_id[lang_token] snake_case : Union[str, Any] = [self.cur_lang_id] snake_case : int = [self.eos_token_id] def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : Any = self.get_lang_token(snake_case__ ) snake_case : Any = self.lang_token_to_id[lang_token] snake_case : List[str] = [self.cur_lang_id] snake_case : Optional[int] = [self.eos_token_id] def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> int: '''simple docstring''' snake_case : Any = self.get_lang_token(snake_case__ ) return self.lang_token_to_id[lang_token] def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Dict[str, Any] ): snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def UpperCamelCase ( __lowerCamelCase : str ): with open(__lowerCamelCase , "r" ) as f: return json.load(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): with open(__lowerCamelCase , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
__lowerCamelCase = "Input must be a string of 8 numbers plus letter" __lowerCamelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def UpperCamelCase ( __lowerCamelCase : str ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : Tuple = f"""Expected string as input, found {type(__lowerCamelCase ).__name__}""" raise TypeError(__lowerCamelCase ) snake_case : Dict = spanish_id.replace("-" , "" ).upper() if len(__lowerCamelCase ) != 9: raise ValueError(__lowerCamelCase ) try: snake_case : List[str] = int(spanish_id_clean[0:8] ) snake_case : Union[str, Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCamelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
import torch from diffusers import StableDiffusionPipeline __lowerCamelCase = """path-to-your-trained-model""" __lowerCamelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __lowerCamelCase = """A photo of sks dog in a bucket""" __lowerCamelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple="pt" ): snake_case : Tuple = {'''add_prefix_space''': True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(" " ) else {} snake_case : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase_ , padding="max_length" if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=None , ): snake_case : List[Any] = input_ids.ne(lowerCamelCase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( lowerCamelCase__ ): def __init__(self : Tuple , snake_case__ : str , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Any="train" , snake_case__ : List[Any]=None , snake_case__ : Dict=None , snake_case__ : str=None , snake_case__ : str="" , ) -> List[str]: '''simple docstring''' super().__init__() snake_case : str = Path(__lowerCamelCase ).joinpath(type_path + ".source" ) snake_case : int = Path(__lowerCamelCase ).joinpath(type_path + ".target" ) snake_case : Tuple = self.get_char_lens(self.src_file ) snake_case : Dict = max_source_length snake_case : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" snake_case : Tuple = tokenizer snake_case : List[Any] = prefix if n_obs is not None: snake_case : Optional[Any] = self.src_lens[:n_obs] snake_case : Any = src_lang snake_case : Optional[Any] = tgt_lang def __len__(self : int ) -> str: '''simple docstring''' return len(self.src_lens ) def __getitem__(self : List[str] , snake_case__ : Union[str, Any] ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case : List[Any] = index + 1 # linecache starts at 1 snake_case : Any = self.prefix + linecache.getline(str(self.src_file ) , __lowerCamelCase ).rstrip("\n" ) snake_case : Any = linecache.getline(str(self.tgt_file ) , __lowerCamelCase ).rstrip("\n" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCamelCase ) else self.tokenizer ) snake_case : Dict = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCamelCase ) else self.tokenizer snake_case : Union[str, Any] = encode_line(__lowerCamelCase , __lowerCamelCase , self.max_source_length , "right" ) snake_case : Any = encode_line(__lowerCamelCase , __lowerCamelCase , self.max_target_length , "right" ) snake_case : List[str] = source_inputs['''input_ids'''].squeeze() snake_case : str = target_inputs['''input_ids'''].squeeze() snake_case : Tuple = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : int ) -> List[str]: '''simple docstring''' return [len(__lowerCamelCase ) for x in Path(__lowerCamelCase ).open().readlines()] def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case : Union[str, Any] = torch.stack([x["input_ids"] for x in batch] ) snake_case : Union[str, Any] = torch.stack([x["attention_mask"] for x in batch] ) snake_case : List[Any] = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCamelCase ) else self.tokenizer.pad_token_id ) snake_case : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCamelCase ) else self.tokenizer.pad_token_id ) snake_case : Dict = trim_batch(__lowerCamelCase , __lowerCamelCase ) snake_case : Union[str, Any] = trim_batch(__lowerCamelCase , __lowerCamelCase , attention_mask=__lowerCamelCase ) snake_case : Union[str, Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __lowerCamelCase = getLogger(__name__) def UpperCamelCase ( __lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(lowerCamelCase_ ) ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : int = get_git_info() save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , "git_log.json" ) ) def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=4 , **__lowerCamelCase : List[str] ): with open(lowerCamelCase_ , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase ( __lowerCamelCase : Tuple ): with open(lowerCamelCase_ ) as f: return json.load(lowerCamelCase_ ) def UpperCamelCase ( ): snake_case : str = git.Repo(search_parent_directories=lowerCamelCase_ ) snake_case : List[Any] = { '''repo_id''': str(lowerCamelCase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( __lowerCamelCase : Callable , __lowerCamelCase : Iterable ): return list(map(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): with open(lowerCamelCase_ , "wb" ) as f: return pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase ( __lowerCamelCase : int ): def remove_articles(__lowerCamelCase : List[str] ): return re.sub(r"\b(a|an|the)\b" , " " , lowerCamelCase_ ) def white_space_fix(__lowerCamelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase : List[str] ): snake_case : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): snake_case : Optional[Any] = normalize_answer(lowerCamelCase_ ).split() snake_case : str = normalize_answer(lowerCamelCase_ ).split() snake_case : str = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ ) snake_case : Dict = sum(common.values() ) if num_same == 0: return 0 snake_case : Optional[int] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_ ) snake_case : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) snake_case : List[str] = 0 for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ): em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: em /= len(lowerCamelCase_ ) return {"em": em} def UpperCamelCase ( __lowerCamelCase : int ): return model_prefix.startswith("rag" ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : str ): snake_case : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ): logger.info("config doesn\'t have a `{}` attribute".format(lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) continue snake_case : Dict = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p] setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) delattr(lowerCamelCase_ , lowerCamelCase_ ) return hparams, config
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( A_ ): A__ : List[Any] = ["""image_processor""", """tokenizer"""] A__ : str = """BlipImageProcessor""" A__ : List[str] = """AutoTokenizer""" def __init__(self : str , snake_case__ : Any , snake_case__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = False super().__init__(_A , _A ) snake_case : int = self.image_processor def __call__(self : Dict , snake_case__ : ImageInput = None , snake_case__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case__ : bool = True , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Union[bool, str, TruncationStrategy] = None , snake_case__ : Optional[int] = None , snake_case__ : int = 0 , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : int , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: snake_case : Optional[Any] = self.tokenizer snake_case : Optional[int] = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding # add pixel_values snake_case : Dict = self.image_processor(_A , return_tensors=_A ) if text is not None: snake_case : List[str] = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) else: snake_case : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def _SCREAMING_SNAKE_CASE (self : Optional[Any] , *snake_case__ : Any , **snake_case__ : Tuple ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _SCREAMING_SNAKE_CASE (self : Tuple , *snake_case__ : int , **snake_case__ : str ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : str = self.tokenizer.model_input_names snake_case : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
import re def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): if len(re.findall("[ATCG]" , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase = """\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n""" def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=8 ): snake_case : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( __a ): def __init__(self : Union[str, Any] , snake_case__ : UNetaDConditionModel , snake_case__ : DDPMScheduler , snake_case__ : VQModel , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) snake_case : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' if latents is None: snake_case : List[str] = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) snake_case : Optional[int] = latents.to(a__ ) snake_case : List[Any] = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[Any]=0 ) -> Optional[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) snake_case : List[Any] = torch.device(f"""cuda:{gpu_id}""" ) snake_case : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : List[Any]=0 ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) snake_case : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case , snake_case : Any = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. snake_case : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__(self : int , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : torch.FloatTensor , snake_case__ : int = 5_12 , snake_case__ : int = 5_12 , snake_case__ : int = 1_00 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self._execution_device snake_case : Union[str, Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): snake_case : str = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): snake_case : int = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): snake_case : Tuple = torch.cat(a__ , dim=0 ) snake_case : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case : int = image_embeds.repeat_interleave(a__ , dim=0 ) snake_case : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) snake_case : Optional[int] = hint.repeat_interleave(a__ , dim=0 ) snake_case : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) snake_case : int = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) self.scheduler.set_timesteps(a__ , device=a__ ) snake_case : int = self.scheduler.timesteps snake_case : Tuple = self.movq.config.latent_channels snake_case , snake_case : Optional[Any] = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) # create initial latent snake_case : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance snake_case : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : List[str] = {"image_embeds": image_embeds, "hint": hint} snake_case : Union[str, Any] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: snake_case , snake_case : Any = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case : Optional[int] = noise_pred.chunk(2 ) snake_case , snake_case : Optional[Any] = variance_pred.chunk(2 ) snake_case : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing snake_case : Dict = self.movq.decode(a__ , force_not_quantize=a__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: snake_case : Optional[Any] = image * 0.5 + 0.5 snake_case : str = image.clamp(0 , 1 ) snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase ( lowerCamelCase__ ): A__ : List[str] = "cvt" def __init__(self : Optional[int] , snake_case__ : int=3 , snake_case__ : Any=[7, 3, 3] , snake_case__ : Dict=[4, 2, 2] , snake_case__ : Optional[int]=[2, 1, 1] , snake_case__ : Union[str, Any]=[64, 1_92, 3_84] , snake_case__ : Optional[Any]=[1, 3, 6] , snake_case__ : Union[str, Any]=[1, 2, 10] , snake_case__ : Any=[4.0, 4.0, 4.0] , snake_case__ : Any=[0.0, 0.0, 0.0] , snake_case__ : Optional[Any]=[0.0, 0.0, 0.0] , snake_case__ : str=[0.0, 0.0, 0.1] , snake_case__ : List[str]=[True, True, True] , snake_case__ : Any=[False, False, True] , snake_case__ : Optional[Any]=["dw_bn", "dw_bn", "dw_bn"] , snake_case__ : Tuple=[3, 3, 3] , snake_case__ : Tuple=[1, 1, 1] , snake_case__ : Optional[Any]=[2, 2, 2] , snake_case__ : int=[1, 1, 1] , snake_case__ : Optional[Any]=[1, 1, 1] , snake_case__ : Dict=0.02 , snake_case__ : Tuple=1e-12 , **snake_case__ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(**__A ) snake_case : Tuple = num_channels snake_case : Tuple = patch_sizes snake_case : Dict = patch_stride snake_case : Optional[int] = patch_padding snake_case : Optional[int] = embed_dim snake_case : List[Any] = num_heads snake_case : Any = depth snake_case : Dict = mlp_ratio snake_case : Optional[Any] = attention_drop_rate snake_case : str = drop_rate snake_case : Dict = drop_path_rate snake_case : List[Any] = qkv_bias snake_case : int = cls_token snake_case : Union[str, Any] = qkv_projection_method snake_case : int = kernel_qkv snake_case : List[Any] = padding_kv snake_case : int = stride_kv snake_case : List[Any] = padding_q snake_case : List[str] = stride_q snake_case : Dict = initializer_range snake_case : Dict = layer_norm_eps
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__(self : Dict , snake_case__ : List[str] , snake_case__ : str=13 , snake_case__ : Tuple=7 , snake_case__ : Optional[int]=True , snake_case__ : List[str]=True , snake_case__ : Optional[int]=True , snake_case__ : str=True , snake_case__ : int=99 , snake_case__ : Optional[int]=16 , snake_case__ : List[str]=36 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=6 , snake_case__ : int=6 , snake_case__ : List[str]=37 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=5_12 , snake_case__ : Union[str, Any]=16 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : List[str]=4 , snake_case__ : Dict=None , ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : List[str] = batch_size snake_case : Any = seq_length snake_case : Optional[int] = is_training snake_case : Any = use_input_mask snake_case : List[Any] = use_token_type_ids snake_case : Optional[Any] = use_labels snake_case : Optional[Any] = vocab_size snake_case : Union[str, Any] = embedding_size snake_case : Tuple = hidden_size snake_case : Tuple = num_hidden_layers snake_case : List[Any] = num_hidden_groups snake_case : Dict = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : List[str] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : Dict = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : str = num_labels snake_case : str = num_choices snake_case : List[str] = scope def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Tuple = None if self.use_input_mask: snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Any = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : int = None snake_case : List[Any] = None snake_case : Optional[int] = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = AlbertModel(config=__a ) model.to(__a ) model.eval() snake_case : Any = model(__a , attention_mask=__a , token_type_ids=__a ) snake_case : List[str] = model(__a , token_type_ids=__a ) snake_case : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = AlbertForPreTraining(config=__a ) model.to(__a ) model.eval() snake_case : int = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : str = AlbertForMaskedLM(config=__a ) model.to(__a ) model.eval() snake_case : Tuple = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Any: '''simple docstring''' snake_case : str = AlbertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() snake_case : str = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.num_labels snake_case : Optional[Any] = AlbertForSequenceClassification(__a ) model.to(__a ) model.eval() snake_case : Union[str, Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' snake_case : List[Any] = self.num_labels snake_case : List[Any] = AlbertForTokenClassification(config=__a ) model.to(__a ) model.eval() snake_case : Dict = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Any ) -> Any: '''simple docstring''' snake_case : Dict = self.num_choices snake_case : Dict = AlbertForMultipleChoice(config=__a ) model.to(__a ) model.eval() snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : int = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : List[str] = config_and_inputs snake_case : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Optional[int] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[str]=False ) -> Tuple: '''simple docstring''' snake_case : Any = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): snake_case : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) snake_case : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : List[Any] = AlbertModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : List[Any] = type self.model_tester.create_and_check_model(*__a ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> int: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = AlbertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : str = AlbertModel.from_pretrained("albert-base-v2" ) snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case : str = model(__a , attention_mask=__a )[0] snake_case : List[str] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __a ) snake_case : Any = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase : def __init__(self : Union[str, Any] , snake_case__ : List[str] ) -> None: '''simple docstring''' snake_case : Union[str, Any] = value snake_case : Optional[int] = None snake_case : Union[str, Any] = None class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : Union[str, Any] ) -> None: '''simple docstring''' snake_case : List[Any] = tree def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Any ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__(self : Dict ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( a__ ,a__ ): A__ : List[str] = "maskformer-swin" A__ : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self : str , snake_case__ : Tuple=2_24 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[int]=3 , snake_case__ : List[str]=96 , snake_case__ : List[Any]=[2, 2, 6, 2] , snake_case__ : List[str]=[3, 6, 12, 24] , snake_case__ : Union[str, Any]=7 , snake_case__ : List[Any]=4.0 , snake_case__ : Tuple=True , snake_case__ : Dict=0.0 , snake_case__ : str=0.0 , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Tuple=False , snake_case__ : Tuple=0.02 , snake_case__ : List[str]=1e-5 , snake_case__ : Dict=None , snake_case__ : Any=None , **snake_case__ : Any , ) -> int: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Any = image_size snake_case : Dict = patch_size snake_case : Optional[Any] = num_channels snake_case : List[Any] = embed_dim snake_case : Dict = depths snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = num_heads snake_case : Dict = window_size snake_case : Any = mlp_ratio snake_case : List[str] = qkv_bias snake_case : Optional[Any] = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : Optional[int] = drop_path_rate snake_case : Optional[int] = hidden_act snake_case : int = use_absolute_embeddings snake_case : List[str] = layer_norm_eps snake_case : List[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) snake_case : Union[str, Any] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] snake_case : Any = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCamelCase = random.Random() def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=None ): if rng is None: snake_case : Tuple = global_rng snake_case : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any]=7 , snake_case__ : Any=4_00 , snake_case__ : Union[str, Any]=20_00 , snake_case__ : int=10 , snake_case__ : Optional[int]=1_60 , snake_case__ : Optional[int]=8 , snake_case__ : Any=0.0 , snake_case__ : List[Any]=40_00 , snake_case__ : Optional[Any]=False , snake_case__ : Optional[Any]=True , ) -> Tuple: '''simple docstring''' snake_case : List[Any] = parent snake_case : Union[str, Any] = batch_size snake_case : int = min_seq_length snake_case : str = max_seq_length snake_case : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : int = padding_value snake_case : Dict = sampling_rate snake_case : Optional[int] = return_attention_mask snake_case : Union[str, Any] = do_normalize snake_case : Optional[Any] = feature_size snake_case : Optional[int] = chunk_length snake_case : Optional[Any] = hop_length def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : List[Any]=False , snake_case__ : Any=False ) -> Dict: '''simple docstring''' def _flatten(snake_case__ : Any ): return list(itertools.chain(*snake_case__ ) ) if equal_length: snake_case : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : Optional[Any] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ,unittest.TestCase ): A__ : int = WhisperFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' snake_case : int = WhisperFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : int = feat_extract_first.save_pretrained(snake_case__ )[0] check_json_file_has_correct_format(snake_case__ ) snake_case : Tuple = self.feature_extraction_class.from_pretrained(snake_case__ ) snake_case : Any = feat_extract_first.to_dict() snake_case : str = feat_extract_second.to_dict() snake_case : Optional[int] = feat_extract_first.mel_filters snake_case : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : str = os.path.join(snake_case__ , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case__ ) snake_case : Dict = self.feature_extraction_class.from_json_file(snake_case__ ) snake_case : Optional[Any] = feat_extract_first.to_dict() snake_case : Union[str, Any] = feat_extract_second.to_dict() snake_case : str = feat_extract_first.mel_filters snake_case : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : str = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test feature size snake_case : Optional[int] = feature_extractor(snake_case__ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case : Dict = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features snake_case : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test batched snake_case : str = feature_extractor(snake_case__ , return_tensors="np" ).input_features snake_case : List[Any] = feature_extractor(snake_case__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : str = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case : Tuple = np.asarray(snake_case__ ) snake_case : Union[str, Any] = feature_extractor(snake_case__ , return_tensors="np" ).input_features snake_case : Optional[int] = feature_extractor(snake_case__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test truncation required snake_case : Dict = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] snake_case : Tuple = [np.asarray(snake_case__ ) for speech_input in speech_inputs] snake_case : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case : Optional[Any] = [np.asarray(snake_case__ ) for speech_input in speech_inputs_truncated] snake_case : Tuple = feature_extractor(snake_case__ , return_tensors="np" ).input_features snake_case : List[str] = feature_extractor(snake_case__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Union[str, Any]: '''simple docstring''' import torch snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = np.random.rand(1_00 , 32 ).astype(np.floataa ) snake_case : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Optional[int] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case : Any = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case : Tuple = ds.sort("id" ).select(range(snake_case__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : Any = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on snake_case : Union[str, Any] = self._load_datasamples(1 ) snake_case : List[Any] = WhisperFeatureExtractor() snake_case : Union[str, Any] = feature_extractor(snake_case__ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case__ , atol=1e-4 ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : List[Any] = self._load_datasamples(1 )[0] snake_case : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue snake_case : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case__ )[0] self.assertTrue(np.all(np.mean(snake_case__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case__ ) - 1 ) < 1e-3 ) )
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase ( __lowerCamelCase : List[str] ): if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def UpperCamelCase ( __lowerCamelCase : int ): for char in word: snake_case : Dict = ord(__lowerCamelCase ) if not _is_chinese_char(__lowerCamelCase ): return 0 return 1 def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : str = set() for token in tokens: snake_case : List[str] = len(__lowerCamelCase ) > 1 and is_chinese(__lowerCamelCase ) if chinese_word: word_set.add(__lowerCamelCase ) snake_case : int = list(__lowerCamelCase ) return word_list def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): if not chinese_word_set: return bert_tokens snake_case : Optional[Any] = max([len(__lowerCamelCase ) for w in chinese_word_set] ) snake_case : Dict = bert_tokens snake_case : Optional[int] = 0, len(__lowerCamelCase ) while start < end: snake_case : Tuple = True if is_chinese(bert_word[start] ): snake_case : Optional[int] = min(end - start , __lowerCamelCase ) for i in range(__lowerCamelCase , 1 , -1 ): snake_case : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case : Any = '''##''' + bert_word[j] snake_case : Any = start + i snake_case : Tuple = False break if single_word: start += 1 return bert_word def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): snake_case : Union[str, Any] = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): snake_case : Tuple = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws snake_case : Tuple = [get_chinese_word(__lowerCamelCase ) for r in res] ltp_res.extend(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) snake_case : List[str] = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): snake_case : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCamelCase , truncation=__lowerCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) snake_case : Optional[int] = [] for input_ids, chinese_word in zip(__lowerCamelCase , __lowerCamelCase ): snake_case : List[Any] = [] for id in input_ids: snake_case : str = bert_tokenizer._convert_id_to_token(__lowerCamelCase ) input_tokens.append(__lowerCamelCase ) snake_case : Dict = add_sub_symbol(__lowerCamelCase , __lowerCamelCase ) snake_case : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCamelCase ): if token[:2] == "##": snake_case : str = token[2:] # save chinese tokens' pos if len(__lowerCamelCase ) == 1 and _is_chinese_char(ord(__lowerCamelCase ) ): ref_id.append(__lowerCamelCase ) ref_ids.append(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) return ref_ids def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case : Optional[Any] = f.readlines() snake_case : Any = [line.strip() for line in data if len(__lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case : Optional[int] = LTP(args.ltp ) # faster in GPU device snake_case : Any = BertTokenizer.from_pretrained(args.bert ) snake_case : Optional[Any] = prepare_ref(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case : Optional[Any] = [json.dumps(__lowerCamelCase ) + '''\n''' for ref in ref_ids] f.writelines(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) __lowerCamelCase = parser.parse_args() main(args)
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCamelCase = ['small', 'medium', 'large'] __lowerCamelCase = 'lm_head.decoder.weight' __lowerCamelCase = 'lm_head.weight' def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): snake_case : Optional[int] = torch.load(snake_case_ ) snake_case : Union[str, Any] = d.pop(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) torch.save(snake_case_ , os.path.join(snake_case_ , snake_case_ ) ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __lowerCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCamelCase = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') __lowerCamelCase = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __lowerCamelCase = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase ( __lowerCamelCase : Any ): snake_case : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Optional[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case : Union[str, Any] = s_dict.pop(__SCREAMING_SNAKE_CASE ) elif "subsample" in key: snake_case : List[Any] = s_dict.pop(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : int = emb.weight.shape snake_case : List[Any] = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) snake_case : Dict = emb.weight.data return lin_layer def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): snake_case : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) snake_case : int = mam_aaa["args"] snake_case : Tuple = mam_aaa["model"] snake_case : Dict = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) rename_keys(__SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = state_dict["decoder.embed_tokens.weight"].shape[0] snake_case : List[Any] = args.share_decoder_input_output_embed snake_case : Optional[int] = [int(__SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split("," )] snake_case : Optional[int] = SpeechaTextConfig( vocab_size=__SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(__SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=__SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=__SCREAMING_SNAKE_CASE , ) snake_case : int = SpeechaTextForConditionalGeneration(__SCREAMING_SNAKE_CASE ) snake_case : Dict = model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0 and not set(__SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: snake_case : Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case : Any = lm_head_weights model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowerCamelCase = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCAmelCase ( lowerCamelCase_ ): A__ : int = '''blenderbot-small''' A__ : str = ['''past_key_values'''] A__ : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Any , snake_case__ : Union[str, Any]=5_02_65 , snake_case__ : Optional[int]=5_12 , snake_case__ : Optional[Any]=8 , snake_case__ : Tuple=20_48 , snake_case__ : Union[str, Any]=16 , snake_case__ : Union[str, Any]=8 , snake_case__ : int=20_48 , snake_case__ : Optional[int]=16 , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Optional[Any]=True , snake_case__ : Dict=True , snake_case__ : int="gelu" , snake_case__ : Optional[int]=5_12 , snake_case__ : str=0.1 , snake_case__ : int=0.0 , snake_case__ : str=0.0 , snake_case__ : Any=0.02 , snake_case__ : int=1 , snake_case__ : List[Any]=False , snake_case__ : List[str]=0 , snake_case__ : List[Any]=1 , snake_case__ : List[Any]=2 , snake_case__ : Dict=2 , **snake_case__ : Optional[int] , ) -> Any: '''simple docstring''' snake_case : Any = vocab_size snake_case : List[Any] = max_position_embeddings snake_case : Optional[Any] = d_model snake_case : str = encoder_ffn_dim snake_case : Optional[int] = encoder_layers snake_case : Dict = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_attention_heads snake_case : Optional[Any] = dropout snake_case : Optional[int] = attention_dropout snake_case : List[Any] = activation_dropout snake_case : List[str] = activation_function snake_case : Optional[Any] = init_std snake_case : Optional[Any] = encoder_layerdrop snake_case : Tuple = decoder_layerdrop snake_case : Optional[Any] = use_cache snake_case : Any = encoder_layers snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class UpperCAmelCase ( lowerCamelCase_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case : Tuple = {0: "batch"} snake_case : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case : Tuple = {0: "batch", 1: "decoder_sequence"} snake_case : Optional[int] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case , snake_case : List[str] = self.num_layers for i in range(__snake_case ): snake_case : List[str] = {0: "batch", 2: "past_sequence + sequence"} snake_case : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} else: snake_case : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : List[Any] = super().outputs else: snake_case : Tuple = super(__snake_case , self ).outputs if self.use_past: snake_case , snake_case : Optional[Any] = self.num_layers for i in range(__snake_case ): snake_case : str = {0: "batch", 2: "past_sequence + sequence"} snake_case : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs snake_case : Union[str, Any] = seq_length if not self.use_past else 1 snake_case : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) snake_case : Union[str, Any] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case : List[str] = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case , snake_case : int = common_inputs["input_ids"].shape snake_case : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : List[Any] = decoder_seq_length + 3 snake_case : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__snake_case , __snake_case )] , dim=1 ) snake_case : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case : List[str] = self.num_layers snake_case : int = min(__snake_case , __snake_case ) snake_case : str = max(__snake_case , __snake_case ) - min_num_layers snake_case : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. snake_case : int = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case , snake_case : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case : Any = seqlen + 2 snake_case , snake_case : List[Any] = self.num_layers snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : List[Any] = common_inputs["attention_mask"].dtype snake_case : List[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) snake_case : List[Any] = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : List[str] = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : Any = tokenizer.num_special_tokens_to_add(__snake_case ) snake_case : Union[str, Any] = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence snake_case : Any = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : Dict = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": snake_case : Dict = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: snake_case : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : str = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: snake_case : Optional[int] = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): A__ : Any = "data2vec-audio" def __init__(self : str , snake_case__ : List[Any]=32 , snake_case__ : Any=7_68 , snake_case__ : Optional[Any]=12 , snake_case__ : Any=12 , snake_case__ : Any=30_72 , snake_case__ : Tuple="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Optional[int]=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=0.02 , snake_case__ : Dict=1e-5 , snake_case__ : Dict="gelu" , snake_case__ : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : List[Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Dict=False , snake_case__ : str=16 , snake_case__ : List[str]=19 , snake_case__ : Union[str, Any]=5 , snake_case__ : List[Any]=0.05 , snake_case__ : Tuple=10 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=0.0 , snake_case__ : List[str]=10 , snake_case__ : int=0 , snake_case__ : Optional[int]="sum" , snake_case__ : List[str]=False , snake_case__ : List[str]=False , snake_case__ : Dict=2_56 , snake_case__ : Dict=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__ : int=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Dict=5_12 , snake_case__ : Optional[Any]=0 , snake_case__ : Optional[int]=1 , snake_case__ : List[Any]=2 , snake_case__ : int=False , snake_case__ : List[str]=3 , snake_case__ : Union[str, Any]=2 , snake_case__ : Any=3 , snake_case__ : int=None , **snake_case__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) snake_case : Dict = hidden_size snake_case : Any = feat_extract_activation snake_case : int = list(A_ ) snake_case : Optional[Any] = list(A_ ) snake_case : Optional[int] = list(A_ ) snake_case : Tuple = conv_bias snake_case : Optional[Any] = num_conv_pos_embeddings snake_case : Optional[int] = num_conv_pos_embedding_groups snake_case : str = conv_pos_kernel_size snake_case : int = len(self.conv_dim ) snake_case : List[str] = num_hidden_layers snake_case : str = intermediate_size snake_case : List[str] = hidden_act snake_case : Any = num_attention_heads snake_case : int = hidden_dropout snake_case : List[Any] = attention_dropout snake_case : int = activation_dropout snake_case : Any = feat_proj_dropout snake_case : Optional[Any] = final_dropout snake_case : Optional[Any] = layerdrop snake_case : str = layer_norm_eps snake_case : List[str] = initializer_range snake_case : Optional[int] = vocab_size snake_case : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : Dict = mask_time_prob snake_case : Optional[Any] = mask_time_length snake_case : Union[str, Any] = mask_time_min_masks snake_case : List[Any] = mask_feature_prob snake_case : List[Any] = mask_feature_length snake_case : int = mask_feature_min_masks # ctc loss snake_case : Dict = ctc_loss_reduction snake_case : List[Any] = ctc_zero_infinity # adapter snake_case : Optional[Any] = add_adapter snake_case : Union[str, Any] = adapter_kernel_size snake_case : List[Any] = adapter_stride snake_case : List[Any] = num_adapter_layers snake_case : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case : str = list(A_ ) snake_case : str = list(A_ ) snake_case : int = list(A_ ) snake_case : Tuple = xvector_output_dim @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[Any]: '''simple docstring''' return math.prod(self.conv_stride )
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCamelCase = ["""gpt2"""] __lowerCamelCase = """gpt2""" if is_tf_available(): class UpperCAmelCase ( tf.Module ): def __init__(self : Union[str, Any] , snake_case__ : str ) -> Tuple: '''simple docstring''' super().__init__() snake_case : int = tokenizer snake_case : Any = AutoConfig.from_pretrained(snake_case__ ) snake_case : Optional[int] = TFGPTaLMHeadModel.from_config(snake_case__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] ) -> int: '''simple docstring''' snake_case : str = self.tokenizer(snake_case__ ) snake_case : Any = tokenized["input_ids"].to_tensor() snake_case : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case : Dict = self.model(input_ids=snake_case__ , attention_mask=snake_case__ )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' super().setUp() snake_case : List[Any] = [GPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case : List[Any] = [TFGPTaTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case : Dict = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] snake_case : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: snake_case : Tuple = tokenizer([test_inputs] , return_tensors="tf" ) snake_case : List[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case : int = python_outputs[key].numpy() snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case__ , tf.intaa ) == tf_outputs_values ) ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Union[str, Any] = tf.function(snake_case__ ) for test_inputs in self.test_sentences: snake_case : Dict = tf.constant(snake_case__ ) snake_case : int = compiled_tokenizer(snake_case__ ) snake_case : List[str] = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : List[str] = ModelToSave(tokenizer=snake_case__ ) snake_case : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = model.serving(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case : List[str] = Path(snake_case__ ) / "saved.model" tf.saved_model.save(snake_case__ , snake_case__ , signatures={"serving_default": model.serving} ) snake_case : int = tf.saved_model.load(snake_case__ ) snake_case : int = loaded_model.signatures["serving_default"](snake_case__ )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case : Any = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[str] = tf_tokenizer(snake_case__ ) # Build model with some sample inputs snake_case : Any = tf_tokenizer.get_config() snake_case : int = TFGPTaTokenizer.from_config(snake_case__ ) snake_case : Union[str, Any] = model_from_config(snake_case__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case : str = 12_31_23 for max_length in [3, 5, 10_24]: snake_case : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case : List[Any] = tf_tokenizer(snake_case__ , max_length=snake_case__ ) snake_case : List[str] = out["input_ids"].numpy().shape[1] assert out_length == max_length
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
import math def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 ): snake_case : str = end or len(__lowerCamelCase ) for i in range(__lowerCamelCase , __lowerCamelCase ): snake_case : Any = i snake_case : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case : str = array[temp_index - 1] temp_index -= 1 snake_case : Optional[int] = temp_index_value return array def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int ): # Max Heap snake_case : Optional[Any] = index snake_case : Union[str, Any] = 2 * index + 1 # Left Node snake_case : int = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case : Optional[Any] = right_index if largest != index: snake_case : str = array[largest], array[index] heapify(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : list ): snake_case : Any = len(__lowerCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in range(n - 1 , 0 , -1 ): snake_case : Union[str, Any] = array[0], array[i] heapify(__lowerCamelCase , 0 , __lowerCamelCase ) return array def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Optional[Any] = low snake_case : Any = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case : List[Any] = array[j], array[i] i += 1 def UpperCamelCase ( __lowerCamelCase : list ): if len(__lowerCamelCase ) == 0: return array snake_case : Optional[Any] = 2 * math.ceil(math.loga(len(__lowerCamelCase ) ) ) snake_case : str = 16 return intro_sort(__lowerCamelCase , 0 , len(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): while end - start > size_threshold: if max_depth == 0: return heap_sort(__lowerCamelCase ) max_depth -= 1 snake_case : Tuple = median_of_a(__lowerCamelCase , __lowerCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) snake_case : List[str] = partition(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) intro_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = p return insertion_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = input("""Enter numbers separated by a comma : """).strip() __lowerCamelCase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=7 , snake_case__ : Optional[int]=3 , snake_case__ : Union[str, Any]=18 , snake_case__ : Tuple=30 , snake_case__ : Optional[Any]=4_00 , snake_case__ : List[Any]=True , snake_case__ : List[Any]=None , snake_case__ : Tuple=True , snake_case__ : Tuple=None , snake_case__ : Tuple=True , snake_case__ : List[Any]=[0.48145466, 0.4578275, 0.40821073] , snake_case__ : Dict=[0.26862954, 0.26130258, 0.27577711] , snake_case__ : Optional[int]=True , ) -> List[str]: '''simple docstring''' snake_case : List[str] = size if size is not None else {"height": 2_24, "width": 2_24} snake_case : str = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case : List[str] = parent snake_case : Tuple = batch_size snake_case : Optional[Any] = num_channels snake_case : List[Any] = image_size snake_case : List[Any] = min_resolution snake_case : Union[str, Any] = max_resolution snake_case : int = do_resize snake_case : Dict = size snake_case : List[Any] = do_center_crop snake_case : str = crop_size snake_case : List[Any] = do_normalize snake_case : int = image_mean snake_case : List[Any] = image_std snake_case : List[str] = do_convert_rgb def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False , snake_case__ : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: snake_case : List[Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: snake_case : int = [] for i in range(self.batch_size ): snake_case : List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension snake_case : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] if torchify: snake_case : Optional[Any] = [torch.from_numpy(snake_case__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' snake_case : List[str] = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case__ ) @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 2_24, "width": 2_24} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Optional[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = ChineseCLIPImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case__ ) snake_case : Tuple = 3 @property def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input snake_case : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): A__ = MODEL_FOR_MASKED_LM_MAPPING A__ = TF_MODEL_FOR_MASKED_LM_MAPPING def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) snake_case : Dict = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 3_80_15, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 2_55_06, "token_str": " accuser"}, ] , ) snake_case : Optional[int] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 3_80_15, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 2_55_06, "token_str": " accuser", }, ] , ) snake_case : List[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) snake_case : Union[str, Any] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) snake_case : int = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 1_64_16, "token_str": "ELS"}, ] , ) snake_case : Any = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 29_41, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 1_36_06, "token_str": " Clara"}, ] , ) snake_case : Tuple = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 3_56_76, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 1_64_16, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Any = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() snake_case : List[str] = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case__ , snake_case__ ) @slow @require_torch def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : Any = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(snake_case__ ) @slow @require_tf def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"sequence": "My name is John", "score": 0.008, "token": 6_10, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 15_73, "token_str": " Chris"}, ] , ) snake_case : Any = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 22_01, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_27_90, "token_str": " Lyon", }, ] , ) snake_case : List[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 34_99, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_36_06, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 29_41, "token_str": " Te"}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) snake_case : str = None snake_case : Optional[int] = None self.run_pipeline_test(snake_case__ , [] ) @require_tf def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) snake_case : Tuple = None snake_case : Tuple = None self.run_pipeline_test(snake_case__ , [] ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) snake_case : int = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : Dict = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] , snake_case__ : Dict ) -> str: '''simple docstring''' snake_case : List[str] = fill_masker.tokenizer snake_case : Union[str, Any] = fill_masker.model snake_case : List[str] = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : Dict = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : List[Any] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( snake_case__ , [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ] , ) with self.assertRaises(snake_case__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case__ ): fill_masker("This is" ) self.run_test_top_k(snake_case__ , snake_case__ ) self.run_test_targets(snake_case__ , snake_case__ ) self.run_test_top_k_targets(snake_case__ , snake_case__ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case__ , snake_case__ ) self.fill_mask_with_multiple_masks(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int ) -> Tuple: '''simple docstring''' snake_case : Dict = tokenizer.get_vocab() snake_case : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case : List[str] = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , targets=snake_case__ ) snake_case : Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : Optional[int] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , snake_case__ ) snake_case : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(snake_case__ ) ) # Call argument snake_case : List[Any] = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : List[str] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , snake_case__ ) snake_case : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(snake_case__ ) ) # Score equivalence snake_case : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) snake_case : int = [top_mask["token_str"] for top_mask in outputs] snake_case : List[str] = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ) == set(snake_case__ ): snake_case : Any = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case__ ) snake_case : Optional[int] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) # Raises with invalid with self.assertRaises(snake_case__ ): snake_case : Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case__ ): snake_case : Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""] ) with self.assertRaises(snake_case__ ): snake_case : int = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="" ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> int: '''simple docstring''' snake_case : Any = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ , top_k=2 ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) snake_case : str = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case__ , [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ] , ) self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] , snake_case__ : int ) -> int: '''simple docstring''' snake_case : int = tokenizer.get_vocab() snake_case : int = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) # top_k=2, ntargets=3 snake_case : str = sorted(vocab.keys() )[:3] snake_case : int = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=snake_case__ ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case : Any = [el["token_str"] for el in sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ).issubset(snake_case__ ): snake_case : List[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=snake_case__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case__ ) , nested_simplify(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' snake_case : str = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : int = tokenizer.get_vocab() # String duplicates + id duplicates snake_case : Optional[int] = sorted(vocab.keys() )[:3] snake_case : str = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case : List[Any] = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=snake_case__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case__ ) , 3 ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case : Dict = FillMaskPipeline(model=snake_case__ , tokenizer=snake_case__ ) snake_case : Dict = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case__ , [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ] , )
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
from typing import Any def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : dict , ): _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step snake_case : dict = {} snake_case : dict = {} for state in states_space: snake_case : int = observations_space[0] snake_case : Optional[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case : List[str] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): snake_case : Tuple = observations_space[o] snake_case : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case : Union[str, Any] = "" snake_case : Dict = -1 for k_state in states_space: snake_case : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case : Tuple = probability snake_case : int = k_state # Update probabilities and pointers dicts snake_case : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case : Any = arg_max # The final observation snake_case : Optional[int] = observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation snake_case : Optional[Any] = "" snake_case : str = -1 for k_state in states_space: snake_case : Tuple = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case : List[str] = probability snake_case : Union[str, Any] = k_state snake_case : List[str] = arg_max # Process pointers backwards snake_case : Union[str, Any] = last_state snake_case : Tuple = [] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) snake_case : Union[str, Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any ): _validate_list(__lowerCamelCase , "observations_space" ) _validate_list(__lowerCamelCase , "states_space" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : str ): if not isinstance(_object , __lowerCamelCase ): snake_case : Tuple = f"""{var_name} must be a list""" raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : int = f"""{var_name} must be a list of strings""" raise ValueError(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): _validate_dict(__lowerCamelCase , "initial_probabilities" , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , "transition_probabilities" ) _validate_nested_dict(__lowerCamelCase , "emission_probabilities" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : str ): _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : type , __lowerCamelCase : bool = False ): if not isinstance(_object , __lowerCamelCase ): snake_case : List[str] = f"""{var_name} must be a dict""" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): snake_case : Optional[Any] = f"""{var_name} all keys must be strings""" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): snake_case : Union[str, Any] = "nested dictionary " if nested else "" snake_case : Any = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
def UpperCamelCase ( __lowerCamelCase : int = 50 ): snake_case : Tuple = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def UpperCamelCase ( __lowerCamelCase : Optional[int] ): snake_case : Union[str, Any] = {} state_dict.pop("pixel_mean" , __lowerCamelCase ) state_dict.pop("pixel_std" , __lowerCamelCase ) snake_case : Union[str, Any] = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case : List[str] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): snake_case : Dict = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(2 ) ) if layer_nb == 0: snake_case : Tuple = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case : Optional[Any] = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case : str = key.replace("layers.2" , "proj_out" ) snake_case : Dict = value snake_case : List[str] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str="ybelkada/segment-anything" ): snake_case : List[str] = hf_hub_download(__lowerCamelCase , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: snake_case : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: snake_case : Optional[int] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case : str = SamConfig( vision_config=__lowerCamelCase , ) elif "sam_vit_h" in model_name: snake_case : int = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case : Dict = SamConfig( vision_config=__lowerCamelCase , ) snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) snake_case : Union[str, Any] = replace_keys(__lowerCamelCase ) snake_case : Optional[int] = SamImageProcessor() snake_case : List[Any] = SamProcessor(image_processor=__lowerCamelCase ) snake_case : List[Any] = SamModel(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) snake_case : Any = hf_model.to("cuda" ) snake_case : Optional[int] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" snake_case : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("RGB" ) snake_case : Tuple = [[[400, 650]]] snake_case : List[Any] = [[1]] snake_case : Optional[int] = processor(images=np.array(__lowerCamelCase ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Dict = hf_model(**__lowerCamelCase ) snake_case : Tuple = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case : List[Any] = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Union[str, Any] = hf_model(**__lowerCamelCase ) snake_case : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case : Tuple = ((75, 275, 1725, 850),) snake_case : str = processor(images=np.array(__lowerCamelCase ) , input_boxes=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Dict = hf_model(**__lowerCamelCase ) snake_case : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case : Optional[Any] = [[[400, 650], [800, 650]]] snake_case : Tuple = [[1, 1]] snake_case : Optional[int] = processor( images=np.array(__lowerCamelCase ) , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case : Optional[int] = hf_model(**__lowerCamelCase ) snake_case : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCamelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCamelCase = HfArgumentParser(InitializationArguments) __lowerCamelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCamelCase = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __lowerCamelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCamelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = dataset snake_case : Optional[int] = process snake_case : List[str] = params def __len__(self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Optional[int] , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.dataset[i] snake_case : List[str] = self.process(snake_case__ , **self.params ) return processed class UpperCAmelCase ( A_ ): def __init__(self : str , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any]=None ) -> int: '''simple docstring''' snake_case : Tuple = loader snake_case : Union[str, Any] = infer snake_case : Union[str, Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case : Tuple = None snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping snake_case : List[str] = None snake_case : Any = None def __len__(self : int ) -> Optional[Any]: '''simple docstring''' return len(self.loader ) def __iter__(self : Any ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case : Union[str, Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(snake_case__ , snake_case__ ): # Convert ModelOutput to tuple first snake_case : Optional[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(snake_case__ , snake_case__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case : Optional[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case : int = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case : str = self._loader_batch_data.__class__(snake_case__ ) self._loader_batch_index += 1 return result def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case : Union[str, Any] = next(self.iterator ) snake_case : Tuple = self.infer(snake_case__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(snake_case__ , torch.Tensor ): snake_case : Optional[Any] = processed else: snake_case : Union[str, Any] = list(processed.keys() )[0] snake_case : Dict = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = len(snake_case__ ) else: snake_case : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : List[str] = observed_batch_size # Setting internal index to unwrap the batch snake_case : Tuple = processed snake_case : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCAmelCase ( A_ ): def __init__(self : Tuple , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Any=None ) -> str: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) def __iter__(self : str ) -> List[str]: '''simple docstring''' snake_case : str = iter(self.loader ) snake_case : Any = None return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.subiterator is None: snake_case : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case : List[str] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case : str = self.infer(next(self.iterator ) , **self.params ) snake_case : List[str] = next(self.subiterator ) return processed class UpperCAmelCase ( A_ ): def __iter__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = iter(self.loader ) return self def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = False snake_case : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case : str = self.loader_batch_item() snake_case : Tuple = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator while not is_last: snake_case : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(snake_case__ , torch.Tensor ): snake_case : Dict = processed else: snake_case : Tuple = list(processed.keys() )[0] snake_case : List[Any] = processed[key] if isinstance(snake_case__ , snake_case__ ): snake_case : int = len(snake_case__ ) else: snake_case : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case : Any = observed_batch_size snake_case : List[Any] = processed snake_case : Dict = 0 while self._loader_batch_index < self.loader_batch_size: snake_case : Union[str, Any] = self.loader_batch_item() snake_case : Dict = item.pop("is_last" ) accumulator.append(snake_case__ ) if is_last: return accumulator else: snake_case : List[str] = processed snake_case : Union[str, Any] = item.pop("is_last" ) accumulator.append(snake_case__ ) return accumulator class UpperCAmelCase ( A_ ): def __init__(self : int , snake_case__ : Dataset , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : int = dataset snake_case : Optional[Any] = key def __len__(self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : List[str] , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.dataset[i][self.key] class UpperCAmelCase ( A_ ): def __init__(self : Union[str, Any] , snake_case__ : Dataset , snake_case__ : str , snake_case__ : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = dataset snake_case : Tuple = keya snake_case : Union[str, Any] = keya def __len__(self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.dataset ) def __getitem__(self : Union[str, Any] , snake_case__ : Optional[int] ) -> str: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowerCamelCase = None __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __lowerCamelCase = { """google/pegasus-xsum""": 5_12, } class UpperCAmelCase ( A_ ): A__ : Optional[int] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = PegasusTokenizer A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : Dict , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : Dict="<pad>" , snake_case__ : List[str]="</s>" , snake_case__ : str="<unk>" , snake_case__ : Union[str, Any]="<mask_2>" , snake_case__ : int="<mask_1>" , snake_case__ : Dict=None , snake_case__ : List[Any]=1_03 , **snake_case__ : Any , ) -> Any: '''simple docstring''' snake_case : Any = offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( f"""additional_special_tokens should be of type {type(snake_case__ )}, but is""" f""" {type(snake_case__ )}""" ) snake_case : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) snake_case : Union[str, Any] = additional_special_tokens_extended else: snake_case : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( snake_case__ , tokenizer_file=snake_case__ , pad_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) snake_case : Union[str, Any] = vocab_file snake_case : Optional[int] = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List , snake_case__ : Optional[List] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" snake_case : Optional[int] = [] snake_case : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case : int = result + left + right return input_list def UpperCamelCase ( __lowerCamelCase : list ): """simple docstring""" if len(__lowerCamelCase ) <= 1: return input_list snake_case : Optional[int] = list(__lowerCamelCase ) # iteration for two-way merging snake_case : Optional[Any] = 2 while p <= len(__lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): snake_case : int = i snake_case : Optional[Any] = i + p - 1 snake_case : Any = (low + high + 1) // 2 snake_case : List[str] = merge(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # final merge of last two parts if p * 2 >= len(__lowerCamelCase ): snake_case : List[str] = i snake_case : Optional[Any] = merge(__lowerCamelCase , 0 , __lowerCamelCase , len(__lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": __lowerCamelCase = [] else: __lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase ( A_ ): A__ : str = "new-model" if is_tf_available(): class UpperCAmelCase ( A_ ): A__ : int = NewModelConfig @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = "bert-base-cased" snake_case : Any = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Optional[int] = TFAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = "bert-base-cased" snake_case : Tuple = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(snake_case__ ) snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Any: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(snake_case__ ) snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Dict = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case__ ) snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Dict = TFAutoModelForSequenceClassification.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' for model_name in ["bert-base-uncased"]: snake_case : Optional[int] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow @require_tensorflow_probability def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: snake_case : List[Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case__ ) snake_case : Any = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' snake_case : List[Any] = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 1_44_10 ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) , 1_44_10 ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case : int = copy.deepcopy(model.config ) snake_case : Tuple = ["FunnelBaseModel"] snake_case : int = TFAutoModel.from_config(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ ) snake_case : Tuple = TFAutoModel.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' try: AutoConfig.register("new-model" , snake_case__ ) snake_case : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case__ ): auto_class.register(snake_case__ , snake_case__ ) auto_class.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): auto_class.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case : List[Any] = BertModelTester(self ).get_config() snake_case : Dict = NewModelConfig(**tiny_config.to_dict() ) snake_case : Optional[Any] = auto_class.from_config(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ ) snake_case : Optional[int] = auto_class.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): snake_case : Optional[Any] = TFAutoModel.from_pretrained("bert-base" ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case : Optional[int] = TFAutoModel.from_pretrained(snake_case__ , revision="aaaaaa" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> str: '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): snake_case : Optional[Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' with self.assertRaisesRegex(snake_case__ , "Use `from_pt=True` to load this model" ): snake_case : Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: snake_case : Dict = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint snake_case : Optional[int] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: snake_case : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
import re def UpperCamelCase ( __lowerCamelCase : str ): if len(re.findall("[ATCG]" , __lowerCamelCase ) ) != len(__lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) snake_case : Any = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case : int = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim snake_case : int = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case : Dict = model(snake_case__ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) snake_case : Union[str, Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case : Tuple = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim snake_case : Tuple = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case : int = model(snake_case__ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) )
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """Hello, World!""" __lowerCamelCase = """en_XX""" def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : bool ): snake_case : str = Path("data_bin" ) snake_case : str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowerCamelCase ).parent ) , checkpoint_file=Path(__lowerCamelCase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__lowerCamelCase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__lowerCamelCase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__lowerCamelCase ) snake_case : Tuple = xmod.model.encoder.sentence_encoder snake_case : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: snake_case : Dict = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __lowerCamelCase ) snake_case : Optional[Any] = XmodForSequenceClassification(__lowerCamelCase ) if classification_head else XmodForMaskedLM(__lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings snake_case : List[str] = xmod_sent_encoder.embed_tokens.weight snake_case : int = xmod_sent_encoder.embed_positions.weight snake_case : Tuple = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. snake_case : int = xmod_sent_encoder.layernorm_embedding.weight snake_case : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case : Union[str, Any] = model.roberta.encoder.layer[i] snake_case : Optional[int] = xmod_sent_encoder.layers[i] # self attention snake_case : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) snake_case : Any = xmod_layer.self_attn.q_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.q_proj.bias snake_case : int = xmod_layer.self_attn.k_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.k_proj.bias snake_case : Optional[int] = xmod_layer.self_attn.v_proj.weight snake_case : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output snake_case : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) snake_case : Tuple = xmod_layer.self_attn.out_proj.weight snake_case : Dict = xmod_layer.self_attn.out_proj.bias snake_case : Any = xmod_layer.self_attn_layer_norm.weight snake_case : str = xmod_layer.self_attn_layer_norm.bias # intermediate snake_case : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) snake_case : List[Any] = xmod_layer.fca.weight snake_case : List[str] = xmod_layer.fca.bias # output snake_case : str = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) snake_case : Dict = xmod_layer.fca.weight snake_case : List[Any] = xmod_layer.fca.bias snake_case : Optional[int] = xmod_layer.final_layer_norm.weight snake_case : Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: snake_case : int = xmod_layer.adapter_layer_norm.weight snake_case : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): snake_case : str = bert_output.adapter_modules[lang_code] snake_case : Union[str, Any] = xmod_layer.adapter_modules[lang_code] snake_case : str = from_adapter.fca.weight snake_case : Optional[Any] = from_adapter.fca.bias snake_case : Optional[int] = from_adapter.fca.weight snake_case : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: snake_case : int = xmod_sent_encoder.layer_norm.weight snake_case : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: snake_case : Any = xmod.model.classification_heads["mnli"].dense.weight snake_case : Optional[Any] = xmod.model.classification_heads["mnli"].dense.bias snake_case : Optional[Any] = xmod.model.classification_heads["mnli"].out_proj.weight snake_case : Dict = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case : str = xmod.model.encoder.lm_head.dense.weight snake_case : Any = xmod.model.encoder.lm_head.dense.bias snake_case : Tuple = xmod.model.encoder.lm_head.layer_norm.weight snake_case : str = xmod.model.encoder.lm_head.layer_norm.bias snake_case : List[str] = xmod.model.encoder.lm_head.weight snake_case : Optional[int] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case : Tuple = xmod.encode(__lowerCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowerCamelCase ) snake_case : Optional[int] = model(__lowerCamelCase )[0] if classification_head: snake_case : Tuple = xmod.model.classification_heads["mnli"](xmod.extract_features(__lowerCamelCase ) ) else: snake_case : Optional[Any] = xmod.model(__lowerCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) snake_case : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 snake_case : int = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__lowerCamelCase ).mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __lowerCamelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
import os def UpperCamelCase ( __lowerCamelCase : int ): snake_case : List[str] = len(grid[0] ) snake_case : List[str] = len(__lowerCamelCase ) snake_case : Dict = 0 snake_case : Any = 0 snake_case : Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): snake_case : Any = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case : Any = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case : str = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case : Dict = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: snake_case : Optional[Any] = max_product return largest def UpperCamelCase ( ): snake_case : Any = [] with open(os.path.dirname(__lowerCamelCase ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) snake_case : List[Any] = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : str = "data2vec-vision" def __init__(self : Optional[Any] , snake_case__ : Optional[int]=7_68 , snake_case__ : str=12 , snake_case__ : Union[str, Any]=12 , snake_case__ : Tuple=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : str=0.02 , snake_case__ : str=1e-12 , snake_case__ : List[str]=2_24 , snake_case__ : Dict=16 , snake_case__ : Union[str, Any]=3 , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=False , snake_case__ : str=False , snake_case__ : Any=False , snake_case__ : List[str]=0.1 , snake_case__ : Any=0.1 , snake_case__ : str=True , snake_case__ : Union[str, Any]=[3, 5, 7, 11] , snake_case__ : Tuple=[1, 2, 3, 6] , snake_case__ : Optional[int]=True , snake_case__ : List[str]=0.4 , snake_case__ : Any=2_56 , snake_case__ : Optional[int]=1 , snake_case__ : Dict=False , snake_case__ : List[Any]=2_55 , **snake_case__ : str , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : str = hidden_size snake_case : int = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : str = layer_norm_eps snake_case : int = image_size snake_case : Optional[int] = patch_size snake_case : Any = num_channels snake_case : List[str] = use_mask_token snake_case : int = use_absolute_position_embeddings snake_case : Any = use_relative_position_bias snake_case : Union[str, Any] = use_shared_relative_position_bias snake_case : Optional[int] = layer_scale_init_value snake_case : List[str] = drop_path_rate snake_case : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case : Any = out_indices snake_case : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case : int = use_auxiliary_head snake_case : str = auxiliary_loss_weight snake_case : List[Any] = auxiliary_channels snake_case : Union[str, Any] = auxiliary_num_convs snake_case : Union[str, Any] = auxiliary_concat_input snake_case : Optional[int] = semantic_loss_ignore_index class UpperCAmelCase ( A_ ): A__ : List[str] = version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> float: '''simple docstring''' return 1e-4
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase ( A_ ): A__ : str = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"image": Image()} ) A__ : ClassVar[Features] = Features({"labels": ClassLabel} ) A__ : str = "image" A__ : str = "labels" def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) snake_case : List[str] = copy.deepcopy(self ) snake_case : Optional[Any] = self.label_schema.copy() snake_case : Any = features[self.label_column] snake_case : List[str] = label_schema return task_template @property def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCamelCase = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class UpperCAmelCase : def __init__(self : int , snake_case__ : int = 14 ) -> None: '''simple docstring''' if group not in primes: raise ValueError("Unsupported Group" ) snake_case : Dict = primes[group]["prime"] snake_case : Any = primes[group]["generator"] snake_case : Any = int(hexlify(urandom(32 ) ) , base=16 ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' return hex(self.__private_key )[2:] def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Union[str, Any] = pow(self.generator , self.__private_key , self.prime ) return hex(snake_case__ )[2:] def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : int ) -> bool: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(snake_case__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> str: '''simple docstring''' snake_case : Dict = int(snake_case__ , base=16 ) if not self.is_valid_public_key(snake_case__ ): raise ValueError("Invalid public key" ) snake_case : List[str] = pow(snake_case__ , self.__private_key , self.prime ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : int , snake_case__ : int ) -> bool: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(snake_case__ , (prime - 1) // 2 , snake_case__ ) == 1 ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : str , snake_case__ : str , snake_case__ : int = 14 ) -> str: '''simple docstring''' snake_case : Dict = int(snake_case__ , base=16 ) snake_case : str = int(snake_case__ , base=16 ) snake_case : Union[str, Any] = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(snake_case__ , snake_case__ ): raise ValueError("Invalid public key" ) snake_case : Dict = pow(snake_case__ , snake_case__ , snake_case__ ) return shaaaa(str(snake_case__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
def UpperCamelCase ( __lowerCamelCase : float ): return 10 - x * x def UpperCamelCase ( __lowerCamelCase : float , __lowerCamelCase : float ): # Bolzano theory in order to find if there is a root between a and b if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) snake_case : str = a while (b - a) >= 0.01: # Find middle point snake_case : List[str] = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: snake_case : str = c else: snake_case : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
def UpperCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : list[int] ): # Check if the input is valid if not len(__lowerCamelCase ) == len(__lowerCamelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients snake_case : str = equationa snake_case : List[Any] = equationa # Calculate the determinants of the matrices snake_case : Dict = aa * ba - aa * ba snake_case : Optional[int] = ca * ba - ca * ba snake_case : Any = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case : Tuple = determinant_x / determinant snake_case : Optional[int] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCamelCase ( ): snake_case : Optional[int] = 9 snake_case : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case : List[str] = kruskal(__lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): def update_area_of_max_square(__lowerCamelCase : int , __lowerCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case : List[Any] = update_area_of_max_square(__lowerCamelCase , col + 1 ) snake_case : int = update_area_of_max_square(row + 1 , col + 1 ) snake_case : Union[str, Any] = update_area_of_max_square(row + 1 , __lowerCamelCase ) if mat[row][col]: snake_case : Optional[Any] = 1 + min([right, diagonal, down] ) snake_case : List[Any] = max(largest_square_area[0] , __lowerCamelCase ) return sub_problem_sol else: return 0 snake_case : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): def update_area_of_max_square_using_dp_array( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case : Optional[Any] = update_area_of_max_square_using_dp_array(__lowerCamelCase , col + 1 , __lowerCamelCase ) snake_case : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowerCamelCase ) snake_case : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , __lowerCamelCase , __lowerCamelCase ) if mat[row][col]: snake_case : Union[str, Any] = 1 + min([right, diagonal, down] ) snake_case : Dict = max(largest_square_area[0] , __lowerCamelCase ) snake_case : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 snake_case : Any = [0] snake_case : Optional[Any] = [[-1] * cols for _ in range(__lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowerCamelCase ) return largest_square_area[0] def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): snake_case : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Optional[int] = dp_array[row][col + 1] snake_case : Any = dp_array[row + 1][col + 1] snake_case : Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case : Tuple = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : Tuple = max(dp_array[row][col] , __lowerCamelCase ) else: snake_case : int = 0 return largest_square_area def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): snake_case : Optional[Any] = [0] * (cols + 1) snake_case : Any = [0] * (cols + 1) snake_case : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Dict = current_row[col + 1] snake_case : List[str] = next_row[col + 1] snake_case : Optional[int] = next_row[col] if mat[row][col] == 1: snake_case : Optional[Any] = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = max(current_row[col] , __lowerCamelCase ) else: snake_case : str = 0 snake_case : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( A_ ): A__ : List[str] = ["image_processor"] A__ : Union[str, Any] = "SamImageProcessor" def __init__(self : Optional[int] , snake_case__ : Dict ) -> Optional[int]: '''simple docstring''' super().__init__(snake_case__ ) snake_case : Tuple = self.image_processor snake_case : Optional[int] = -10 snake_case : Any = self.image_processor.size["longest_edge"] def __call__(self : int , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : int , ) -> BatchEncoding: '''simple docstring''' snake_case : str = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # pop arguments that are not used in the foward but used nevertheless snake_case : List[str] = encoding_image_processor["original_sizes"] if hasattr(snake_case__ , "numpy" ): # Checks if Torch or TF tensor snake_case : Dict = original_sizes.numpy() snake_case : List[str] = self._check_and_preprocess_points( input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , ) snake_case : Tuple = self._normalize_and_convert( snake_case__ , snake_case__ , input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , return_tensors=snake_case__ , ) return encoding_image_processor def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : List[Any]="pt" , ) -> Any: '''simple docstring''' if input_points is not None: if len(snake_case__ ) != len(snake_case__ ): snake_case : Dict = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] ) for point in input_points ] else: snake_case : Union[str, Any] = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ ) for point, original_size in zip(snake_case__ , snake_case__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: snake_case : str = self._pad_points_and_labels(snake_case__ , snake_case__ ) snake_case : Union[str, Any] = np.array(snake_case__ ) if input_labels is not None: snake_case : Tuple = np.array(snake_case__ ) if input_boxes is not None: if len(snake_case__ ) != len(snake_case__ ): snake_case : Optional[int] = [ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] , is_bounding_box=snake_case__ ) for box in input_boxes ] else: snake_case : Union[str, Any] = [ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ , is_bounding_box=snake_case__ ) for box, original_size in zip(snake_case__ , snake_case__ ) ] snake_case : Tuple = np.array(snake_case__ ) if input_boxes is not None: if return_tensors == "pt": snake_case : Any = torch.from_numpy(snake_case__ ) # boxes batch size of 1 by default snake_case : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": snake_case : List[Any] = tf.convert_to_tensor(snake_case__ ) # boxes batch size of 1 by default snake_case : List[str] = tf.expand_dims(snake_case__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": snake_case : List[Any] = torch.from_numpy(snake_case__ ) # point batch size of 1 by default snake_case : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": snake_case : Tuple = tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default snake_case : List[Any] = tf.expand_dims(snake_case__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": snake_case : Optional[int] = torch.from_numpy(snake_case__ ) # point batch size of 1 by default snake_case : Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": snake_case : int = tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default snake_case : int = tf.expand_dims(snake_case__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = max([point.shape[0] for point in input_points] ) snake_case : Optional[int] = [] for i, point in enumerate(snake_case__ ): if point.shape[0] != expected_nb_points: snake_case : List[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) snake_case : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case__ ) snake_case : Any = processed_input_points return input_points, input_labels def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int , snake_case__ : np.ndarray , snake_case__ : Dict , snake_case__ : List[str]=False ) -> np.ndarray: '''simple docstring''' snake_case : Optional[int] = original_size snake_case : Any = self.image_processor._get_preprocess_shape(snake_case__ , longest_edge=snake_case__ ) snake_case : Tuple = deepcopy(snake_case__ ).astype(snake_case__ ) if is_bounding_box: snake_case : Any = coords.reshape(-1 , 2 , 2 ) snake_case : List[Any] = coords[..., 0] * (new_w / old_w) snake_case : Tuple = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case : Tuple = coords.reshape(-1 , 4 ) return coords def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str]=None , snake_case__ : List[Any]=None , snake_case__ : Any=None , ) -> Any: '''simple docstring''' if input_points is not None: if hasattr(snake_case__ , "numpy" ): # Checks for TF or Torch tensor snake_case : List[str] = input_points.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_points[0] , snake_case__ ): raise ValueError("Input points must be a list of list of floating points." ) snake_case : Dict = [np.array(snake_case__ ) for input_point in input_points] else: snake_case : Union[str, Any] = None if input_labels is not None: if hasattr(snake_case__ , "numpy" ): snake_case : Dict = input_labels.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_labels[0] , snake_case__ ): raise ValueError("Input labels must be a list of list integers." ) snake_case : Optional[Any] = [np.array(snake_case__ ) for label in input_labels] else: snake_case : Optional[int] = None if input_boxes is not None: if hasattr(snake_case__ , "numpy" ): snake_case : Optional[Any] = input_boxes.numpy().tolist() if ( not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_boxes[0] , snake_case__ ) or not isinstance(input_boxes[0][0] , snake_case__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) snake_case : Any = [np.array(snake_case__ ).astype(np.floataa ) for box in input_boxes] else: snake_case : Tuple = None return input_points, input_labels, input_boxes @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] , *snake_case__ : str , **snake_case__ : str ) -> int: '''simple docstring''' return self.image_processor.post_process_masks(*snake_case__ , **snake_case__ )
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
from __future__ import annotations __lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] , ): snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid snake_case : Union[str, Any] = 1 snake_case : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid snake_case : Union[str, Any] = init[0] snake_case : Dict = init[1] snake_case : Optional[int] = 0 snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell snake_case : Union[str, Any] = [[f, g, x, y]] snake_case : Dict = False # flag that is set when search is complete snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case : List[str] = cell.pop() snake_case : Union[str, Any] = next_cell[2] snake_case : int = next_cell[3] snake_case : Union[str, Any] = next_cell[1] if x == goal[0] and y == goal[1]: snake_case : List[Any] = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions snake_case : int = x + DIRECTIONS[i][0] snake_case : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case : str = g + cost snake_case : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case : Union[str, Any] = 1 snake_case : str = i snake_case : Dict = [] snake_case : Optional[Any] = goal[0] snake_case : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case : List[Any] = x - DIRECTIONS[action[x][y]][0] snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] snake_case : Optional[int] = xa snake_case : List[Any] = ya invpath.append([x, y] ) snake_case : int = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] __lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] __lowerCamelCase = 1 # the cost map which pushes the path closer to the goal __lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCamelCase = 99 __lowerCamelCase, __lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Any = ShapEImgaImgPipeline A__ : List[str] = ["image"] A__ : str = ["image"] A__ : Any = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] A__ : Tuple = False @property def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' return 8 @property def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) snake_case : Optional[int] = CLIPVisionModel(snake_case__ ) return model @property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = CLIPImageProcessor( crop_size=2_24 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } snake_case : Tuple = PriorTransformer(**snake_case__ ) return model @property def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case : Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } snake_case : Optional[int] = ShapERenderer(**snake_case__ ) return model def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : int = self.dummy_prior snake_case : str = self.dummy_image_encoder snake_case : str = self.dummy_image_processor snake_case : Tuple = self.dummy_renderer snake_case : Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) snake_case : Dict = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] , snake_case__ : Any=0 ) -> List[Any]: '''simple docstring''' snake_case : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): snake_case : List[Any] = torch.manual_seed(snake_case__ ) else: snake_case : List[str] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) snake_case : List[str] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Any = "cpu" snake_case : Optional[int] = self.get_dummy_components() snake_case : Dict = self.pipeline_class(**snake_case__ ) snake_case : Any = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : Any = pipe(**self.get_dummy_inputs(snake_case__ ) ) snake_case : Optional[int] = output.images[0] snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) snake_case : int = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = torch_device == "cpu" snake_case : List[str] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : Any = self.get_dummy_components() snake_case : Union[str, Any] = self.pipeline_class(**snake_case__ ) snake_case : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : int = 1 snake_case : Dict = 2 snake_case : Union[str, Any] = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: snake_case : str = batch_size * [inputs[key]] snake_case : Optional[int] = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) snake_case : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) snake_case : List[Any] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) snake_case : Dict = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) snake_case : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(0 ) snake_case : int = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } __lowerCamelCase = { """gpt-neox-20b""": 20_48, } class UpperCAmelCase ( A_ ): A__ : int = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : str=None , snake_case__ : Any="<|endoftext|>" , snake_case__ : Dict="<|endoftext|>" , snake_case__ : Optional[Any]="<|endoftext|>" , snake_case__ : Any=False , **snake_case__ : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) snake_case : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: snake_case : List[str] = getattr(snake_case__ , pre_tok_state.pop("type" ) ) snake_case : int = add_prefix_space snake_case : int = pre_tok_class(**snake_case__ ) snake_case : Dict = add_prefix_space def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : Tuple = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : "Conversation" ) -> List[int]: '''simple docstring''' snake_case : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: snake_case : List[str] = input_ids[-self.model_max_length :] return input_ids
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "https://www.worldometers.info/coronavirus" ): snake_case : Dict = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Union[str, Any] = soup.findAll("h1" ) snake_case : int = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCamelCase , __lowerCamelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase ( A_ ): def __init__(self : Tuple , snake_case__ : Any , snake_case__ : str=None , snake_case__ : Tuple=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Optional[int] = parent snake_case : Union[str, Any] = config_class snake_case : Dict = has_text_modality snake_case : int = kwargs snake_case : Any = common_properties def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : str = self.config_class(**self.inputs_dict ) snake_case : int = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case__ , snake_case__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case__ ): try: setattr(snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case__ ): try: snake_case : Dict = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[int]: '''simple docstring''' snake_case : int = self.config_class(**self.inputs_dict ) snake_case : Optional[Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' snake_case : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : str = os.path.join(snake_case__ , "config.json" ) config_first.to_json_file(snake_case__ ) snake_case : Any = self.config_class.from_json_file(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case__ ) snake_case : Tuple = self.config_class.from_pretrained(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = self.config_class(**self.inputs_dict ) snake_case : List[str] = "test" with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Tuple = os.path.join(snake_case__ , snake_case__ ) config_first.save_pretrained(snake_case__ ) snake_case : Any = self.config_class.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : int = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_class.is_composition: return snake_case : Dict = self.config_class() self.parent.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = copy.deepcopy(snake_case__ ) snake_case : List[str] = self.config_class(**snake_case__ ) snake_case : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(snake_case__ , snake_case__ ) != value: wrong_values.append((key, getattr(snake_case__ , snake_case__ ), value) ) if len(snake_case__ ) > 0: snake_case : Tuple = "\n".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase ( A_ ): def __init__(self : int , **snake_case__ : Optional[Any] ) -> List[Any]: '''simple docstring''' super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(snake_case__ ) def __call__(self : str , snake_case__ : Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case__ : Union[str, List[str]] = None , **snake_case__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' if "text_queries" in kwargs: snake_case : Tuple = kwargs.pop("text_queries" ) if isinstance(snake_case__ , (str, Image.Image) ): snake_case : Dict = {"image": image, "candidate_labels": candidate_labels} else: snake_case : Tuple = image snake_case : Dict = super().__call__(snake_case__ , **snake_case__ ) return results def _SCREAMING_SNAKE_CASE (self : Dict , **snake_case__ : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = {} if "threshold" in kwargs: snake_case : Optional[Any] = kwargs["threshold"] if "top_k" in kwargs: snake_case : int = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : int = load_image(inputs["image"] ) snake_case : int = inputs["candidate_labels"] if isinstance(snake_case__ , snake_case__ ): snake_case : int = candidate_labels.split("," ) snake_case : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): snake_case : Any = self.tokenizer(snake_case__ , return_tensors=self.framework ) snake_case : str = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Any ) -> int: '''simple docstring''' snake_case : Any = model_inputs.pop("target_size" ) snake_case : str = model_inputs.pop("candidate_label" ) snake_case : Dict = model_inputs.pop("is_last" ) snake_case : Optional[Any] = self.model(**snake_case__ ) snake_case : Tuple = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : List[str]=0.1 , snake_case__ : Any=None ) -> str: '''simple docstring''' snake_case : Dict = [] for model_output in model_outputs: snake_case : List[str] = model_output["candidate_label"] snake_case : Union[str, Any] = BaseModelOutput(snake_case__ ) snake_case : str = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): snake_case : str = outputs["scores"][index].item() snake_case : Optional[int] = self._get_bounding_box(outputs["boxes"][index][0] ) snake_case : Tuple = {"score": score, "label": label, "box": box} results.append(snake_case__ ) snake_case : int = sorted(snake_case__ , key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k: snake_case : Optional[Any] = results[:top_k] return results def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) snake_case : int = box.int().tolist() snake_case : Dict = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """spiece.model"""} __lowerCamelCase = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } __lowerCamelCase = { """AI-Sweden/gpt-sw3-126m""": 20_48, """AI-Sweden/gpt-sw3-350m""": 20_48, """AI-Sweden/gpt-sw3-1.6b""": 20_48, """AI-Sweden/gpt-sw3-6.7b""": 20_48, """AI-Sweden/gpt-sw3-20b""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : Optional[int] , snake_case__ : Dict , snake_case__ : int=False , snake_case__ : Union[str, Any]=False , snake_case__ : List[Any]=False , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Union[str, Any] , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case : Optional[Any] = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) snake_case : List[Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case : str = "<|endoftext|>" if eos_token is None else eos_token snake_case : List[Any] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case : List[Any] = unk_token if pad_token is None else pad_token snake_case : Optional[Any] = eos_token if bos_token is None else bos_token else: snake_case : List[Any] = "<pad>" if pad_token is None else pad_token snake_case : Dict = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : int = do_lower_case snake_case : Dict = remove_space snake_case : Optional[Any] = keep_accents snake_case : Optional[Any] = vocab_file snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # Used for whitespace normalization in input texts # fmt : off snake_case : Tuple = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case : List[Any] = re.compile( f"""[{''.join(map(snake_case__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__(self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : int = self.__dict__.copy() snake_case : Union[str, Any] = None return state def __setstate__(self : Dict , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Union[str, Any] = {} snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> str: '''simple docstring''' snake_case : Optional[int] = self.non_printing_characters_re.sub("" , snake_case__ ) # Normalize whitespaces snake_case : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization snake_case : Optional[Any] = unicodedata.normalize("NFC" , snake_case__ ) return text def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = self.preprocess_text(snake_case__ ) return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str ) -> int: '''simple docstring''' return self.sp_model.PieceToId(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : str ) -> str: '''simple docstring''' return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[str] ) -> str: '''simple docstring''' snake_case : Optional[int] = [] snake_case : Optional[Any] = "" snake_case : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token snake_case : Optional[Any] = True snake_case : int = [] else: current_sub_tokens.append(snake_case__ ) snake_case : List[Any] = False out_string += self.sp_model.decode(snake_case__ ) return out_string def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict[str, int]: '''simple docstring''' snake_case : Any = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Dict = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, List[str]] , snake_case__ : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): snake_case : Dict = self.preprocess_text(snake_case__ ) snake_case : Optional[Any] = self.sp_model.encode(snake_case__ ) else: snake_case : Optional[int] = [self.preprocess_text(snake_case__ ) for t in text] snake_case : List[str] = self.sp_model.encode(snake_case__ ) if return_tensors is True or return_tensors == "pt": snake_case : Dict = torch.tensor(snake_case__ ) return token_ids def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[int, List[int]] ) -> str: '''simple docstring''' return self.sp_model.decode(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : "Conversation" ) -> List[int]: '''simple docstring''' snake_case : Union[str, Any] = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] snake_case : List[Any] = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(snake_case__ ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=snake_case__ )
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = "ZinengTang/tvlt-base" snake_case : str = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE (self : str , **snake_case__ : Union[str, Any] ) -> List[str]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : Tuple ) -> Dict: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' snake_case : Any = self.get_image_processor() snake_case : Optional[int] = self.get_feature_extractor() snake_case : Optional[Any] = TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) snake_case : Any = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = self.get_image_processor() snake_case : Optional[Any] = self.get_feature_extractor() snake_case : int = TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) snake_case : Tuple = np.ones([1_20_00] ) snake_case : Tuple = feature_extractor(snake_case__ , return_tensors="np" ) snake_case : Union[str, Any] = processor(audio=snake_case__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.get_image_processor() snake_case : Tuple = self.get_feature_extractor() snake_case : int = TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) snake_case : Tuple = np.ones([3, 2_24, 2_24] ) snake_case : Union[str, Any] = image_processor(snake_case__ , return_tensors="np" ) snake_case : Dict = processor(images=snake_case__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.get_image_processor() snake_case : Any = self.get_feature_extractor() snake_case : Optional[Any] = TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) snake_case : Dict = np.ones([1_20_00] ) snake_case : str = np.ones([3, 2_24, 2_24] ) snake_case : Optional[Any] = processor(audio=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = self.get_image_processor() snake_case : int = self.get_feature_extractor() snake_case : Tuple = TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
def UpperCamelCase ( __lowerCamelCase : List[str] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection snake_case : Union[str, Any] = len(__lowerCamelCase ) snake_case : Tuple = max(__lowerCamelCase ) snake_case : Optional[Any] = min(__lowerCamelCase ) # create the counting array snake_case : Union[str, Any] = coll_max + 1 - coll_min snake_case : Optional[int] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __lowerCamelCase ): snake_case : Optional[Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case : Any = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __lowerCamelCase ) ): snake_case : Union[str, Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): return "".join([chr(__lowerCamelCase ) for i in counting_sort([ord(__lowerCamelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class UpperCAmelCase ( A_ ): A__ : Union[str, Any] = "blip_2_vision_model" def __init__(self : Any , snake_case__ : Optional[Any]=14_08 , snake_case__ : Optional[Any]=61_44 , snake_case__ : Any=39 , snake_case__ : str=16 , snake_case__ : Optional[Any]=2_24 , snake_case__ : str=14 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.00001 , snake_case__ : Optional[Any]=0.0 , snake_case__ : Union[str, Any]=1e-10 , snake_case__ : Dict=True , **snake_case__ : Optional[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = hidden_size snake_case : Optional[Any] = intermediate_size snake_case : List[Any] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Union[str, Any] = patch_size snake_case : Dict = image_size snake_case : Tuple = initializer_range snake_case : List[str] = attention_dropout snake_case : str = layer_norm_eps snake_case : Union[str, Any] = hidden_act snake_case : Union[str, Any] = qkv_bias @classmethod def _SCREAMING_SNAKE_CASE (cls : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case__ ) snake_case : Optional[int] = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": snake_case : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCAmelCase ( A_ ): A__ : Optional[int] = "blip_2_qformer" def __init__(self : Tuple , snake_case__ : List[Any]=3_05_22 , snake_case__ : Any=7_68 , snake_case__ : Any=12 , snake_case__ : List[str]=12 , snake_case__ : List[Any]=30_72 , snake_case__ : List[Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[int]=5_12 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : Optional[int]=1e-12 , snake_case__ : List[str]=0 , snake_case__ : Tuple="absolute" , snake_case__ : Dict=2 , snake_case__ : Optional[Any]=14_08 , **snake_case__ : List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : Union[str, Any] = vocab_size snake_case : Any = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = hidden_act snake_case : Optional[int] = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : List[str] = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : Union[str, Any] = position_embedding_type snake_case : Union[str, Any] = cross_attention_frequency snake_case : str = encoder_hidden_size @classmethod def _SCREAMING_SNAKE_CASE (cls : List[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Any ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case__ ) snake_case : List[str] = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": snake_case : str = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class UpperCAmelCase ( A_ ): A__ : int = "blip-2" A__ : Optional[int] = True def __init__(self : Dict , snake_case__ : str=None , snake_case__ : Union[str, Any]=None , snake_case__ : Any=None , snake_case__ : Any=32 , **snake_case__ : Dict ) -> Dict: '''simple docstring''' super().__init__(**snake_case__ ) if vision_config is None: snake_case : Any = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: snake_case : Any = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: snake_case : Tuple = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case : int = BlipaVisionConfig(**snake_case__ ) snake_case : Dict = BlipaQFormerConfig(**snake_case__ ) snake_case : Any = text_config["model_type"] if "model_type" in text_config else "opt" snake_case : int = CONFIG_MAPPING[text_model_type](**snake_case__ ) snake_case : Optional[Any] = self.text_config.tie_word_embeddings snake_case : str = self.text_config.is_encoder_decoder snake_case : List[Any] = num_query_tokens snake_case : str = self.vision_config.hidden_size snake_case : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case : Optional[Any] = 1.0 snake_case : Optional[int] = 0.02 @classmethod def _SCREAMING_SNAKE_CASE (cls : Union[str, Any] , snake_case__ : BlipaVisionConfig , snake_case__ : BlipaQFormerConfig , snake_case__ : PretrainedConfig , **snake_case__ : List[Any] , ) -> Dict: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : str = copy.deepcopy(self.__dict__ ) snake_case : List[str] = self.vision_config.to_dict() snake_case : int = self.qformer_config.to_dict() snake_case : Any = self.text_config.to_dict() snake_case : str = self.__class__.model_type return output
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
def UpperCamelCase ( __lowerCamelCase : int = 10**9 ): snake_case : str = 1 snake_case : Union[str, Any] = 2 snake_case : Dict = 0 snake_case : Union[str, Any] = 0 snake_case : int = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value snake_case : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
class UpperCAmelCase : def __init__(self : int , snake_case__ : int ) -> str: '''simple docstring''' snake_case : Union[str, Any] = n snake_case : Any = [None] * self.n snake_case : List[Any] = 0 # index of the first element snake_case : Tuple = 0 snake_case : Dict = 0 def __len__(self : Dict ) -> int: '''simple docstring''' return self.size def _SCREAMING_SNAKE_CASE (self : List[str] ) -> bool: '''simple docstring''' return self.size == 0 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case : Union[str, Any] = data snake_case : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) snake_case : int = self.array[self.front] snake_case : Optional[Any] = None snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : Optional[int] = CLIPTokenizer A__ : List[Any] = CLIPTokenizerFast A__ : Any = True A__ : str = {} A__ : List[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' super().setUp() # fmt: off snake_case : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on snake_case : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) snake_case : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] snake_case : Optional[Any] = {"unk_token": "<unk>"} snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] , **snake_case__ : List[str] ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict , **snake_case__ : int ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] ) -> str: '''simple docstring''' snake_case : str = "lower newer" snake_case : Any = "lower newer" return input_text, output_text def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : str = "lower newer" snake_case : Optional[Any] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] snake_case : Optional[Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) snake_case : List[str] = tokens + [tokenizer.unk_token] snake_case : List[str] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @require_ftfy def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Dict = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) snake_case : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) snake_case : str = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." snake_case : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) snake_case : Any = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case : Tuple = "xa\u0303y" + " " + "x\xe3y" snake_case : Optional[int] = tokenizer_s.tokenize(snake_case__ ) snake_case : Optional[int] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of space type snake_case : Union[str, Any] = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) snake_case : List[str] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of line break type snake_case : Optional[Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case : Any = tokenizer_s.tokenize(snake_case__ ) snake_case : Optional[int] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Optional[int] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` snake_case : int = f"""{text_of_1_token} {text_of_1_token}""" snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) snake_case : str = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , ) snake_case : Optional[Any] = f""" {text}""" snake_case : Any = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) snake_case : Any = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[str]: '''simple docstring''' super().test_tokenization_python_rust_equals() def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' pass
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
def UpperCamelCase ( __lowerCamelCase : list[list] ): snake_case : Dict = current_set.copy() for row_index, row in enumerate(__lowerCamelCase ): snake_case : int = row[0] for column_index, column in enumerate(__lowerCamelCase ): if magnitude == 0: snake_case : List[str] = column continue snake_case : Any = column / magnitude # Subtract to cancel term snake_case : str = current_set[0] snake_case : str = [first_row] snake_case : int = current_set[1::] for row in current_set: snake_case : List[str] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__lowerCamelCase ) continue for column_index in range(len(__lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case : Tuple = final_set[0] snake_case : Tuple = [] snake_case : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case : Optional[int] = simplify(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __lowerCamelCase ) snake_case : List[str] = resultant return final_set def UpperCamelCase ( __lowerCamelCase : list[list] ): if len(__lowerCamelCase ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) snake_case : Dict = len(__lowerCamelCase ) + 1 if any(len(__lowerCamelCase ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(__lowerCamelCase , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(__lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] snake_case : List[Any] = equations.copy() if any(0 in row for row in data_set ): snake_case : List[Any] = data_set.copy() snake_case : int = [] for row_index, row in enumerate(__lowerCamelCase ): if 0 not in row: snake_case : List[Any] = data_set.pop(__lowerCamelCase ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , __lowerCamelCase ) snake_case : str = data_set.copy() snake_case : int = simplify(__lowerCamelCase ) snake_case : List[Any] = simplified[::-1] snake_case : list = [] for row in simplified: snake_case : Optional[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case : Union[str, Any] = row.copy()[: len(__lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__lowerCamelCase ) == 0: solutions.append(0 ) continue snake_case : List[str] = temp_row[1::] snake_case : Union[str, Any] = temp_row[::-1] for column_index, column in enumerate(__lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(__lowerCamelCase ) snake_case : Union[str, Any] = [] for item in solutions: final.append(float(round(__lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
class UpperCAmelCase : def __init__(self : List[Any] , snake_case__ : str = "" , snake_case__ : bool = False ) -> None: '''simple docstring''' snake_case : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word snake_case : Optional[int] = is_leaf snake_case : str = prefix def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : str ) -> tuple[str, str, str]: '''simple docstring''' snake_case : Optional[int] = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str ) -> None: '''simple docstring''' if self.prefix == word: snake_case : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: snake_case : Tuple = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: snake_case : str = self.nodes[word[0]] snake_case : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: snake_case : Optional[Any] = remaining_prefix snake_case : Optional[Any] = self.nodes[matching_string[0]] snake_case : str = RadixNode(snake_case__ , snake_case__ ) snake_case : List[str] = aux_node if remaining_word == "": snake_case : int = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> bool: '''simple docstring''' snake_case : Optional[int] = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: snake_case : Dict = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> bool: '''simple docstring''' snake_case : Tuple = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: snake_case : str = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: snake_case : List[str] = list(self.nodes.values() )[0] snake_case : int = merging_node.is_leaf self.prefix += merging_node.prefix snake_case : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: snake_case : Tuple = False # If there is 1 edge, we merge it with its child else: snake_case : List[str] = list(incoming_node.nodes.values() )[0] snake_case : Any = merging_node.is_leaf incoming_node.prefix += merging_node.prefix snake_case : Any = merging_node.nodes return True def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): snake_case : Tuple = "banana bananas bandana band apple all beast".split() snake_case : Union[str, Any] = RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): snake_case : List[str] = RadixNode() snake_case : List[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__lowerCamelCase ) print("Words:" , __lowerCamelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : def __init__(self : List[str] , snake_case__ : Any , snake_case__ : str=2 , snake_case__ : Tuple=3 , snake_case__ : int=4 , snake_case__ : int=2 , snake_case__ : Tuple=7 , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=True , snake_case__ : Optional[int]=99 , snake_case__ : List[str]=36 , snake_case__ : Dict=3 , snake_case__ : Optional[Any]=4 , snake_case__ : Union[str, Any]=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=5_12 , snake_case__ : Any=16 , snake_case__ : str=2 , snake_case__ : str=0.02 , snake_case__ : List[Any]=6 , snake_case__ : str=6 , snake_case__ : Optional[int]=3 , snake_case__ : List[Any]=4 , snake_case__ : Optional[int]=None , snake_case__ : List[str]=10_00 , ) -> Dict: '''simple docstring''' snake_case : Tuple = parent snake_case : List[Any] = batch_size snake_case : Optional[int] = num_channels snake_case : List[Any] = image_size snake_case : str = patch_size snake_case : List[Any] = text_seq_length snake_case : Optional[Any] = is_training snake_case : List[str] = use_input_mask snake_case : Optional[int] = use_token_type_ids snake_case : List[str] = use_labels snake_case : List[Any] = vocab_size snake_case : Dict = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Dict = intermediate_size snake_case : str = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : Dict = initializer_range snake_case : Any = coordinate_size snake_case : Union[str, Any] = shape_size snake_case : Optional[int] = num_labels snake_case : Union[str, Any] = num_choices snake_case : Tuple = scope snake_case : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case : str = text_seq_length snake_case : Dict = (image_size // patch_size) ** 2 + 1 snake_case : str = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case : str = bbox[i, j, 3] snake_case : Tuple = bbox[i, j, 1] snake_case : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case : Tuple = bbox[i, j, 2] snake_case : Tuple = bbox[i, j, 0] snake_case : Tuple = t snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Any = None if self.use_input_mask: snake_case : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case : Any = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case : Tuple = None snake_case : Optional[Any] = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image snake_case : Optional[int] = model(snake_case__ , pixel_values=snake_case__ ) snake_case : str = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) snake_case : Optional[Any] = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) snake_case : str = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case : Tuple = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case : Optional[int] = model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Any , snake_case__ : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.num_labels snake_case : List[str] = LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : str = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : Dict = self.num_labels snake_case : Union[str, Any] = LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[str] ) -> Any: '''simple docstring''' snake_case : Dict = LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Optional[int] = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : List[str] = self.prepare_config_and_inputs() ( snake_case ) : Any = config_and_inputs snake_case : Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : str = False A__ : Any = False A__ : List[Any] = False A__ : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A__ : Dict = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict ) -> Any: '''simple docstring''' return True def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = LayoutLMvaModelTester(self ) snake_case : List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int=False ) -> Any: '''simple docstring''' snake_case : Dict = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): snake_case : int = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): snake_case : List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: snake_case : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[Any] = LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : str = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(snake_case__ ) snake_case : List[str] = self.default_image_processor snake_case : Tuple = prepare_img() snake_case : List[Any] = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) snake_case : List[Any] = torch.tensor([[1, 2]] ) snake_case : List[str] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case : Union[str, Any] = model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits snake_case : Dict = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) snake_case : str = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0
def UpperCamelCase ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return [tuple(__lowerCamelCase )] snake_case : str = [] def generate(__lowerCamelCase : int , __lowerCamelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case : Any = arr[k - 1], arr[i] else: # k is odd snake_case : Dict = arr[k - 1], arr[0] generate(k - 1 , __lowerCamelCase ) generate(len(__lowerCamelCase ) , __lowerCamelCase ) return res if __name__ == "__main__": __lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
354
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase = ["""text""", """image""", """audio"""] def UpperCamelCase ( __lowerCamelCase : List[str] ): snake_case : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def UpperCamelCase ( __lowerCamelCase : List ): snake_case : List[str] = [] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class UpperCAmelCase : def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = create_inputs(self.tool.inputs ) snake_case : Dict = self.tool(*snake_case__ ) # There is a single output if len(self.tool.outputs ) == 1: snake_case : List[Any] = [outputs] self.assertListEqual(output_types(snake_case__ ) , self.tool.outputs ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' snake_case : str = create_inputs(self.tool.inputs ) snake_case : int = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case__ , self.tool.outputs ): snake_case : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = create_inputs(self.tool.inputs ) snake_case : str = [] for _input, input_type in zip(snake_case__ , self.tool.inputs ): if isinstance(snake_case__ , snake_case__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case : Optional[int] = self.tool(*snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): snake_case : List[str] = [outputs] self.assertEqual(len(snake_case__ ) , len(self.tool.outputs ) )
10
0
import datasets __lowerCamelCase = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __lowerCamelCase = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __lowerCamelCase = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : str ) -> List[Any]: '''simple docstring''' return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )}
355
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("String lengths must match!" ) snake_case : Optional[Any] = 0 for chara, chara in zip(__lowerCamelCase , __lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
10
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
def UpperCamelCase ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: snake_case : Dict = str(abs(__lowerCamelCase ) ) snake_case : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
10
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : Dict = "deberta-v2" def __init__(self : Dict , snake_case__ : List[str]=12_81_00 , snake_case__ : Optional[int]=15_36 , snake_case__ : Union[str, Any]=24 , snake_case__ : Union[str, Any]=24 , snake_case__ : str=61_44 , snake_case__ : Optional[Any]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Dict=5_12 , snake_case__ : Dict=0 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[int]=1e-7 , snake_case__ : Tuple=False , snake_case__ : List[str]=-1 , snake_case__ : Dict=0 , snake_case__ : int=True , snake_case__ : Optional[int]=None , snake_case__ : Optional[Any]=0 , snake_case__ : int="gelu" , **snake_case__ : Optional[int] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Optional[Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Any = hidden_act snake_case : int = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : List[str] = initializer_range snake_case : List[str] = relative_attention snake_case : str = max_relative_positions snake_case : Union[str, Any] = pad_token_id snake_case : int = position_biased_input # Backwards compatibility if type(snake_case__ ) == str: snake_case : str = [x.strip() for x in pos_att_type.lower().split("|" )] snake_case : int = pos_att_type snake_case : Tuple = vocab_size snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = kwargs.get("pooler_hidden_size" , snake_case__ ) snake_case : Optional[Any] = pooler_dropout snake_case : Optional[Any] = pooler_hidden_act class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : int = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' return 12 def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 40 , snake_case__ : int = 40 , snake_case__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Any = super().generate_dummy_inputs(preprocessor=snake_case__ , framework=snake_case__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
357
import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "AAPL" ): snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Tuple = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
10
0
import logging from transformers.configuration_utils import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) class UpperCAmelCase ( A_ ): A__ : int = "masked_bert" def __init__(self : str , snake_case__ : int=3_05_22 , snake_case__ : Any=7_68 , snake_case__ : str=12 , snake_case__ : str=12 , snake_case__ : Any=30_72 , snake_case__ : Optional[int]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=5_12 , snake_case__ : Tuple=2 , snake_case__ : Dict=0.02 , snake_case__ : str=1e-12 , snake_case__ : Tuple=0 , snake_case__ : Optional[Any]="topK" , snake_case__ : Optional[Any]="constant" , snake_case__ : str=0.0 , **snake_case__ : Tuple , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : Union[str, Any] = vocab_size snake_case : Optional[int] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : str = num_attention_heads snake_case : List[str] = hidden_act snake_case : Any = intermediate_size snake_case : Tuple = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : Tuple = type_vocab_size snake_case : int = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : Dict = pruning_method snake_case : List[str] = mask_init snake_case : Union[str, Any] = mask_scale
358
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : List[Any] = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' snake_case : Optional[int] = f"""facebook/wmt19-{pair}""" snake_case : Optional[Any] = self.get_tokenizer(snake_case__ ) snake_case : Dict = self.get_model(snake_case__ ) snake_case : List[Any] = bleu_data[pair]["src"] snake_case : int = bleu_data[pair]["tgt"] snake_case : Union[str, Any] = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) snake_case : str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case : Optional[int] = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) snake_case : Optional[int] = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
10
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' snake_case : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) snake_case : Tuple = AutoTokenizer.from_pretrained("google/mt5-small" ) snake_case : Optional[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids snake_case : Any = tokenizer("Hi I am" , return_tensors="np" ).input_ids snake_case : Union[str, Any] = shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case : str = model(snake_case__ , decoder_input_ids=snake_case__ ).logits snake_case : Optional[int] = optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() snake_case : Tuple = -(labels.shape[-1] * loss.item()) snake_case : Tuple = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
from math import ceil, sqrt def UpperCamelCase ( __lowerCamelCase : int = 1000000 ): snake_case : Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
360
import os import string import sys __lowerCamelCase = 1 << 8 __lowerCamelCase = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __lowerCamelCase = KEYMAP["""up"""] __lowerCamelCase = KEYMAP["""left"""] if sys.platform == "win32": __lowerCamelCase = [] __lowerCamelCase = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __lowerCamelCase = ord(str(i)) def UpperCamelCase ( ): if os.name == "nt": import msvcrt snake_case : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke snake_case : Optional[int] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case : List[str] = chr(KEYMAP["esc"] ) except KeyError: snake_case : Optional[Any] = cha[1] else: snake_case : Any = ch.decode(__lowerCamelCase ) else: snake_case : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case : Union[str, Any] = sys.stdin.fileno() snake_case : Optional[Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) snake_case : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase ( ): snake_case : int = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: snake_case : Dict = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: snake_case : Any = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
0
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def UpperCamelCase ( __lowerCamelCase : Dict ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case : Optional[int] = k.replace(__lowerCamelCase , __lowerCamelCase ) if k.startswith("encoder" ): snake_case : Optional[int] = k.replace(".attn" , ".self_attn" ) snake_case : List[str] = k.replace("norm1" , "self_attn_layer_norm" ) snake_case : Optional[Any] = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): snake_case : str = k.replace("norm1" , "self_attn_layer_norm" ) snake_case : Union[str, Any] = k.replace("norm2" , "encoder_attn_layer_norm" ) snake_case : Any = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( __lowerCamelCase : Any ): snake_case : Tuple = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: snake_case : int = sd.pop(__lowerCamelCase ) snake_case : str = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd snake_case : Union[str, Any] = v __lowerCamelCase = ["""START"""] @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) snake_case : Optional[Any] = model["model"] snake_case : Optional[Any] = BlenderbotConfig.from_json_file(__lowerCamelCase ) snake_case : Optional[Any] = BlenderbotForConditionalGeneration(__lowerCamelCase ) snake_case : List[Any] = m.model.state_dict().keys() snake_case : str = [] snake_case : str = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case : Optional[Any] = rename_state_dict_key(__lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case : Union[str, Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCamelCase ) m.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) m.half() m.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) __lowerCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
361
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __lowerCamelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""DPTFeatureExtractor"""] __lowerCamelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
362
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> None: '''simple docstring''' warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
10
0
from PIL import Image def UpperCamelCase ( __lowerCamelCase : Image ): snake_case : Optional[Any] = image.size snake_case : Dict = 0 snake_case : List[Any] = image.load() for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): snake_case : Any = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase ): for i in range(__lowerCamelCase ): snake_case : Optional[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCamelCase = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
10
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__(self : Any , snake_case__ : Dict , snake_case__ : Any=13 , snake_case__ : Optional[Any]=7 , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , snake_case__ : Any=True , snake_case__ : Dict=True , snake_case__ : Union[str, Any]=99 , snake_case__ : Union[str, Any]=24 , snake_case__ : Any=2 , snake_case__ : List[str]=6 , snake_case__ : Any=37 , snake_case__ : Any="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=5_12 , snake_case__ : str=16 , snake_case__ : List[str]=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : str=3 , snake_case__ : Tuple=None , snake_case__ : Optional[int]=10_00 , ) -> Any: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : int = batch_size snake_case : Optional[int] = seq_length snake_case : int = is_training snake_case : Dict = use_input_mask snake_case : Union[str, Any] = use_token_type_ids snake_case : List[str] = use_labels snake_case : Optional[Any] = vocab_size snake_case : str = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : Dict = intermediate_size snake_case : Any = hidden_act snake_case : str = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : Any = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : str = num_labels snake_case : int = scope snake_case : Any = range_bbox def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case : List[str] = bbox[i, j, 3] snake_case : List[str] = bbox[i, j, 1] snake_case : str = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case : str = bbox[i, j, 2] snake_case : Union[str, Any] = bbox[i, j, 0] snake_case : Dict = t snake_case : Any = None if self.use_input_mask: snake_case : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case : Optional[Any] = None if self.use_token_type_ids: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Any = None snake_case : Any = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Tuple , ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = LiltModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Tuple = model(snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) snake_case : Union[str, Any] = model(snake_case__ , bbox=snake_case__ , token_type_ids=snake_case__ ) snake_case : Union[str, Any] = model(snake_case__ , bbox=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple , ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = self.num_labels snake_case : List[str] = LiltForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Union[str, Any] = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Dict , ) -> int: '''simple docstring''' snake_case : Optional[Any] = LiltForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.prepare_config_and_inputs() ( snake_case ) : Optional[int] = config_and_inputs snake_case : int = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A__ : List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) A__ : Tuple = False A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : int ) -> List[Any]: '''simple docstring''' return True def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' snake_case : Tuple = LiltModelTester(self ) snake_case : Dict = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> int: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Optional[Any] = type self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = LiltModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case__ ) snake_case : str = torch.tensor([[1, 2]] , device=snake_case__ ) snake_case : Any = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case__ ) # forward pass with torch.no_grad(): snake_case : Dict = model(input_ids=snake_case__ , bbox=snake_case__ ) snake_case : List[str] = torch.Size([1, 2, 7_68] ) snake_case : Optional[int] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case__ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case__ , atol=1e-3 ) )
364
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase = { """yjernite/retribert-base-uncased""": 5_12, } __lowerCamelCase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase ( A_ ): A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = RetriBertTokenizer A__ : Tuple = ["input_ids", "attention_mask"] def __init__(self : List[Any] , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None , snake_case__ : str=True , snake_case__ : Dict="[UNK]" , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : str=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Optional[int] , ) -> List[Any]: '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) snake_case : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(snake_case__ , normalizer_state.pop("type" ) ) snake_case : str = do_lower_case snake_case : Union[str, Any] = strip_accents snake_case : Union[str, Any] = tokenize_chinese_chars snake_case : Dict = normalizer_class(**snake_case__ ) snake_case : Any = do_lower_case def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] , snake_case__ : List[Any]=None ) -> List[str]: '''simple docstring''' snake_case : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Union[str, Any] = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : Optional[Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(snake_case__ ): snake_case : Tuple = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' with self.assertRaises(snake_case__ ): snake_case : Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case : Tuple = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case : Dict = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' import PIL.Image snake_case : List[str] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=snake_case__ ) as mock_cast_to_python_objects: snake_case : str = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) snake_case : Optional[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , snake_case__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): snake_case : Union[str, Any] = pa.BufferReader(__lowerCamelCase ) if isinstance(__lowerCamelCase , pa.Buffer ) else pa.memory_map(__lowerCamelCase ) snake_case : str = pa.ipc.open_stream(__lowerCamelCase ) snake_case : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): snake_case : Union[str, Any] = pa.BufferOutputStream() snake_case : List[Any] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Any = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase ( ): snake_case : str = pa.BufferOutputStream() snake_case : List[Any] = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__lowerCamelCase , features=__lowerCamelCase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case : List[Any] = pa.BufferReader(output.getvalue() ) snake_case : Optional[int] = pa.ipc.open_stream(__lowerCamelCase ) snake_case : pa.Table = f.read_all() snake_case : Union[str, Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCamelCase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def UpperCamelCase ( __lowerCamelCase : Tuple ): snake_case : str = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case : Optional[int] = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Optional[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: with pytest.raises(__lowerCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) snake_case : Dict = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Dict = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCamelCase , writer_batch_size=__lowerCamelCase , hash_salt="split_name" , check_duplicates=__lowerCamelCase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): snake_case : int = pa.BufferOutputStream() snake_case : List[Any] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): snake_case : Dict = pa.BufferOutputStream() snake_case : List[str] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): snake_case : Optional[int] = pa.BufferOutputStream() snake_case : List[str] = pa.schema(__lowerCamelCase ) if fields else None with ArrowWriter(stream=__lowerCamelCase , schema=__lowerCamelCase , writer_batch_size=__lowerCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case : List[Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase ( ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Union[str, Any] = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test.arrow" ) with ArrowWriter(path=__lowerCamelCase , schema=pa.schema(__lowerCamelCase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCamelCase , metadata=writer._schema.metadata ) _check_output(__lowerCamelCase , 1 ) def UpperCamelCase ( __lowerCamelCase : int ): if pa.types.is_list(__lowerCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): if isinstance(lst[0] , __lowerCamelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCamelCase ) else: snake_case : List[str] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): snake_case : Any = pa.array(TypedSequence(__lowerCamelCase , optimized_int_type=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): # in range snake_case : Tuple = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case : Union[str, Any] = copy.deepcopy(__lowerCamelCase ) snake_case : Union[str, Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCamelCase , __lowerCamelCase ) snake_case : Any = pa.array(OptimizedTypedSequence(__lowerCamelCase , col=__lowerCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): snake_case : List[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__lowerCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): snake_case : int = "mock://dataset-train.arrow" with ArrowWriter(path=__lowerCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCamelCase ) def UpperCamelCase ( ): snake_case : Optional[int] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case : Optional[Any] = pa.BufferReader(output.getvalue() ) snake_case : pa.Table = pq.read_table(__lowerCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): import PIL.Image snake_case : Dict = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCamelCase , format="png" ) snake_case : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCamelCase , features=Features({"image": Image()} ) , embed_local_files=__lowerCamelCase ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case : str = pa.BufferReader(output.getvalue() ) snake_case : pa.Table = pq.read_table(__lowerCamelCase ) snake_case : Tuple = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase ( ): snake_case : List[Any] = pa.schema([pa.field("col_1" , pa.string() , nullable=__lowerCamelCase )] ) snake_case : List[str] = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCamelCase ) as writer: writer._build_writer(inferred_schema=__lowerCamelCase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
366
from __future__ import annotations __lowerCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : dict[str, list[str]] , snake_case__ : str ) -> None: '''simple docstring''' snake_case : str = graph # mapping node to its parent in resulting breadth first tree snake_case : dict[str, str | None] = {} snake_case : Union[str, Any] = source_vertex def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> None: '''simple docstring''' snake_case : Any = {self.source_vertex} snake_case : str = None snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) snake_case : Any = vertex queue.append(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case : str = self.parent.get(snake_case__ ) if target_vertex_parent is None: snake_case : Optional[Any] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + f"""->{target_vertex}""" if __name__ == "__main__": __lowerCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
10
0
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case : Any = str(bin(__lowerCamelCase ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case : Any = str(bin(__lowerCamelCase ) )[2:] if shift_amount >= len(__lowerCamelCase ): return "0b0" snake_case : Tuple = binary_number[: len(__lowerCamelCase ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): if number >= 0: # Get binary representation of positive number snake_case : List[str] = "0" + str(bin(__lowerCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : Optional[Any] = len(bin(__lowerCamelCase )[3:] ) # Find 2's complement of number snake_case : Dict = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] snake_case : Optional[int] = ( "1" + "0" * (binary_number_length - len(__lowerCamelCase )) + binary_number ) if shift_amount >= len(__lowerCamelCase ): return "0b" + binary_number[0] * len(__lowerCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
367
from __future__ import annotations def UpperCamelCase ( __lowerCamelCase : list[int] ): snake_case : Optional[int] = len(__lowerCamelCase ) // 2 # choose the middle 3 elements snake_case : str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Tuple = torch.exp(__lowerCamelCase ) snake_case : Union[str, Any] = torch.sum(__lowerCamelCase , dim=1 ) # sum of exp(x_i) snake_case : Tuple = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__lowerCamelCase ) - B / A class UpperCAmelCase ( nn.Module ): def __init__(self : Union[str, Any] , snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case : Tuple = config.output_attentions snake_case : Tuple = config.output_hidden_states snake_case : Optional[int] = nn.ModuleList([BertLayer(snake_case__ ) for _ in range(config.num_hidden_layers )] ) snake_case : Any = nn.ModuleList([BertHighway(snake_case__ ) for _ in range(config.num_hidden_layers )] ) snake_case : Tuple = [-1 for _ in range(config.num_hidden_layers )] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' if (type(snake_case__ ) is float) or (type(snake_case__ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case : List[str] = x else: snake_case : Any = x def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : Any = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Tuple=None , snake_case__ : List[str]=None , ) -> int: '''simple docstring''' snake_case : Optional[Any] = () snake_case : List[str] = () snake_case : Union[str, Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case : Union[str, Any] = all_hidden_states + (hidden_states,) snake_case : Union[str, Any] = layer_module( snake_case__ , snake_case__ , head_mask[i] , snake_case__ , snake_case__ ) snake_case : Optional[Any] = layer_outputs[0] if self.output_attentions: snake_case : Union[str, Any] = all_attentions + (layer_outputs[1],) snake_case : str = (hidden_states,) if self.output_hidden_states: snake_case : Optional[int] = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case : Optional[Any] = current_outputs + (all_attentions,) snake_case : Any = self.highway[i](snake_case__ ) # logits, pooled_output if not self.training: snake_case : int = highway_exit[0] snake_case : List[str] = entropy(snake_case__ ) snake_case : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case : List[str] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case : Optional[int] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(snake_case__ , i + 1 ) else: snake_case : List[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case : List[str] = all_hidden_states + (hidden_states,) snake_case : Any = (hidden_states,) if self.output_hidden_states: snake_case : Any = outputs + (all_hidden_states,) if self.output_attentions: snake_case : List[str] = outputs + (all_attentions,) snake_case : List[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " ,A_ ,) class UpperCAmelCase ( A_ ): def __init__(self : Any , snake_case__ : Any ) -> List[str]: '''simple docstring''' super().__init__(snake_case__ ) snake_case : List[Any] = config snake_case : Optional[int] = BertEmbeddings(snake_case__ ) snake_case : Tuple = DeeBertEncoder(snake_case__ ) snake_case : Any = BertPooler(snake_case__ ) self.init_weights() def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> int: '''simple docstring''' return self.embeddings.word_embeddings def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : str ) -> Tuple: '''simple docstring''' snake_case : Tuple = value def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] ) -> Dict: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(snake_case__ ) @add_start_docstrings_to_model_forward(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict=None , snake_case__ : Tuple=None , snake_case__ : str=None , snake_case__ : Any=None , snake_case__ : Any=None , snake_case__ : List[str]=None , snake_case__ : int=None , snake_case__ : Dict=None , ) -> Any: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: snake_case : Optional[Any] = input_ids.size() elif inputs_embeds is not None: snake_case : List[Any] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) snake_case : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case : Optional[int] = torch.ones(snake_case__ , device=snake_case__ ) if encoder_attention_mask is None: snake_case : Union[str, Any] = torch.ones(snake_case__ , device=snake_case__ ) if token_type_ids is None: snake_case : int = torch.zeros(snake_case__ , dtype=torch.long , device=snake_case__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case : torch.Tensor = self.get_extended_attention_mask(snake_case__ , snake_case__ , snake_case__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case : Union[str, Any] = encoder_attention_mask[:, None, None, :] snake_case : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case : Dict = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case : Any = self.get_head_mask(snake_case__ , self.config.num_hidden_layers ) snake_case : int = self.embeddings( input_ids=snake_case__ , position_ids=snake_case__ , token_type_ids=snake_case__ , inputs_embeds=snake_case__ ) snake_case : int = self.encoder( snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) snake_case : List[Any] = encoder_outputs[0] snake_case : List[Any] = self.pooler(snake_case__ ) snake_case : int = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCAmelCase ( A_ ): def __init__(self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : Any = message snake_case : Any = exit_layer # start from 1! class UpperCAmelCase ( nn.Module ): def __init__(self : Dict , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' super().__init__() snake_case : Dict = BertPooler(snake_case__ ) snake_case : Tuple = nn.Dropout(config.hidden_dropout_prob ) snake_case : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict ) -> int: '''simple docstring''' snake_case : str = encoder_outputs[0] snake_case : Union[str, Any] = self.pooler(snake_case__ ) # "return" pooler_output # BertModel snake_case : int = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case : Union[str, Any] = bmodel_output[1] snake_case : Optional[int] = self.dropout(snake_case__ ) snake_case : str = self.classifier(snake_case__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " ,A_ ,) class UpperCAmelCase ( A_ ): def __init__(self : List[Any] , snake_case__ : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__(snake_case__ ) snake_case : Any = config.num_labels snake_case : int = config.num_hidden_layers snake_case : Dict = DeeBertModel(snake_case__ ) snake_case : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) snake_case : int = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : Dict=None , snake_case__ : List[Any]=None , snake_case__ : List[Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[Any]=-1 , snake_case__ : Optional[int]=False , ) -> List[str]: '''simple docstring''' snake_case : List[str] = self.num_layers try: snake_case : Optional[Any] = self.bert( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , position_ids=snake_case__ , head_mask=snake_case__ , inputs_embeds=snake_case__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case : List[str] = outputs[1] snake_case : List[str] = self.dropout(snake_case__ ) snake_case : Tuple = self.classifier(snake_case__ ) snake_case : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case : Tuple = e.message snake_case : Optional[int] = e.exit_layer snake_case : Tuple = outputs[0] if not self.training: snake_case : Optional[int] = entropy(snake_case__ ) snake_case : str = [] snake_case : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case : Dict = MSELoss() snake_case : List[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case : Union[str, Any] = CrossEntropyLoss() snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case : str = [] for highway_exit in outputs[-1]: snake_case : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(snake_case__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case : List[str] = MSELoss() snake_case : List[Any] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case : str = CrossEntropyLoss() snake_case : int = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case__ ) if train_highway: snake_case : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case : str = (loss,) + outputs if not self.training: snake_case : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
368
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = """.""" if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
10
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCamelCase = random.Random() def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None ): if rng is None: snake_case : Optional[Any] = global_rng snake_case : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__(self : Dict , snake_case__ : List[str] , snake_case__ : List[str]=7 , snake_case__ : Optional[int]=4_00 , snake_case__ : Optional[int]=20_00 , snake_case__ : Dict=1 , snake_case__ : Dict=0.0 , snake_case__ : Union[str, Any]=1_60_00 , snake_case__ : str=True , snake_case__ : Optional[Any]=True , ) -> Dict: '''simple docstring''' snake_case : str = parent snake_case : List[Any] = batch_size snake_case : int = min_seq_length snake_case : Dict = max_seq_length snake_case : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : str = feature_size snake_case : List[Any] = padding_value snake_case : Union[str, Any] = sampling_rate snake_case : List[str] = return_attention_mask snake_case : int = do_normalize def _SCREAMING_SNAKE_CASE (self : Any ) -> str: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str=False , snake_case__ : Optional[int]=False ) -> Dict: '''simple docstring''' def _flatten(snake_case__ : List[str] ): return list(itertools.chain(*snake_case__ ) ) if equal_length: snake_case : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : List[Any] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : int = WavaVecaFeatureExtractor def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' snake_case : Any = WavaVecaFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.assertTrue(np.all(np.mean(snake_case__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case__ , axis=0 ) - 1 ) < 1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> int: '''simple docstring''' snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : List[str] = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input snake_case : Dict = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case : Any = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test batched snake_case : Union[str, Any] = feat_extract(snake_case__ , return_tensors="np" ).input_values snake_case : Any = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case : Union[str, Any] = np.asarray(snake_case__ ) snake_case : Any = feat_extract(snake_case__ , return_tensors="np" ).input_values snake_case : List[str] = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : int = ["longest", "max_length", "do_not_pad"] snake_case : List[str] = [None, 16_00, None] for max_length, padding in zip(snake_case__ , snake_case__ ): snake_case : Optional[Any] = feat_extract(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors="np" ) snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = range(8_00 , 14_00 , 2_00 ) snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] snake_case : Tuple = ["longest", "max_length", "do_not_pad"] snake_case : Optional[Any] = [None, 16_00, None] for max_length, padding in zip(snake_case__ , snake_case__ ): snake_case : Any = feat_extract(snake_case__ , max_length=snake_case__ , padding=snake_case__ ) snake_case : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Tuple = feat_extract( snake_case__ , truncation=snake_case__ , max_length=10_00 , padding="max_length" , return_tensors="np" ) snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Optional[Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=10_00 , padding="longest" , return_tensors="np" ) snake_case : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case : Optional[Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=20_00 , padding="longest" , return_tensors="np" ) snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' import torch snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Any = np.random.rand(1_00 ).astype(np.floataa ) snake_case : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case : Any = WavaVecaConfig.from_pretrained(snake_case__ ) snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
369
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
0
from functools import lru_cache @lru_cache def UpperCamelCase ( __lowerCamelCase : int ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
370
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for attribute in key.split("." ): snake_case : Tuple = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: snake_case : int = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Dict = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : Tuple = value else: snake_case : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ): snake_case : int = [] snake_case : List[Any] = fairseq_model.state_dict() snake_case : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case : str = True else: for key, mapped_key in MAPPING.items(): snake_case : Tuple = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case : Tuple = True if "*" in mapped_key: snake_case : Union[str, Any] = name.split(__lowerCamelCase )[0].split("." )[-2] snake_case : Any = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: snake_case : Optional[int] = "weight_g" elif "weight_v" in name: snake_case : Tuple = "weight_v" elif "bias" in name: snake_case : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case : str = "weight" else: snake_case : str = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any ): snake_case : str = full_name.split("conv_layers." )[-1] snake_case : int = name.split("." ) snake_case : Optional[int] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=True ): if config_path is not None: snake_case : str = UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: snake_case : str = UniSpeechSatConfig() snake_case : Tuple = "" if is_finetuned: snake_case : Tuple = UniSpeechSatForCTC(__lowerCamelCase ) else: snake_case : List[Any] = UniSpeechSatForPreTraining(__lowerCamelCase ) snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case : Dict = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
import numpy as np def UpperCamelCase ( __lowerCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( __lowerCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : int ): snake_case : List[str] = nn.functional.normalize(__lowerCamelCase ) snake_case : Dict = nn.functional.normalize(__lowerCamelCase ) return torch.mm(__lowerCamelCase , normalized_text_embeds.t() ) class UpperCAmelCase ( A_ ): A__ : int = CLIPConfig A__ : List[Any] = ["CLIPEncoderLayer"] def __init__(self : List[str] , snake_case__ : CLIPConfig ) -> Optional[Any]: '''simple docstring''' super().__init__(snake_case__ ) snake_case : Any = CLIPVisionModel(config.vision_config ) snake_case : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) snake_case : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) snake_case : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) snake_case : Optional[Any] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) snake_case : str = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> str: '''simple docstring''' snake_case : str = self.vision_model(snake_case__ )[1] # pooled_output snake_case : List[str] = self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case : Union[str, Any] = cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() snake_case : List[Any] = cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() snake_case : int = [] snake_case : Optional[int] = image_embeds.shape[0] for i in range(snake_case__ ): snake_case : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case : Union[str, Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case : List[str] = special_cos_dist[i][concept_idx] snake_case : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case : List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) snake_case : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case : Optional[Any] = cos_dist[i][concept_idx] snake_case : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() snake_case : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) snake_case : Union[str, Any] = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.vision_model(snake_case__ )[1] # pooled_output snake_case : Optional[Any] = self.visual_projection(snake_case__ ) snake_case : Any = cosine_distance(snake_case__ , self.special_care_embeds ) snake_case : Any = cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case : int = 0.0 snake_case : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case : Union[str, Any] = torch.any(special_scores > 0 , dim=1 ) snake_case : Tuple = special_care * 0.01 snake_case : Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case : Tuple = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : str = "audio-spectrogram-transformer" def __init__(self : List[str] , snake_case__ : int=7_68 , snake_case__ : Optional[Any]=12 , snake_case__ : int=12 , snake_case__ : List[str]=30_72 , snake_case__ : str="gelu" , snake_case__ : List[str]=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Optional[int]=16 , snake_case__ : int=True , snake_case__ : Dict=10 , snake_case__ : List[Any]=10 , snake_case__ : Dict=10_24 , snake_case__ : Tuple=1_28 , **snake_case__ : List[Any] , ) -> Any: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Optional[int] = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Tuple = hidden_act snake_case : str = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[Any] = qkv_bias snake_case : int = frequency_stride snake_case : str = time_stride snake_case : Optional[int] = max_length snake_case : Optional[int] = num_mel_bins
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase : def __init__(self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str]=13 , snake_case__ : Optional[int]=7 , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=99 , snake_case__ : Dict=32 , snake_case__ : List[str]=2 , snake_case__ : List[str]=4 , snake_case__ : Tuple=37 , snake_case__ : List[str]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=5_12 , snake_case__ : Optional[Any]=16 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : str=4 , snake_case__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' snake_case : Any = parent snake_case : str = 13 snake_case : str = 7 snake_case : Optional[Any] = True snake_case : Tuple = True snake_case : Optional[Any] = True snake_case : Optional[Any] = True snake_case : List[Any] = 99 snake_case : Any = 32 snake_case : int = 2 snake_case : Optional[int] = 4 snake_case : str = 37 snake_case : Tuple = "gelu" snake_case : Optional[int] = 0.1 snake_case : Tuple = 0.1 snake_case : Union[str, Any] = 5_12 snake_case : Optional[Any] = 16 snake_case : Optional[Any] = 2 snake_case : Optional[Any] = 0.02 snake_case : Any = 3 snake_case : Optional[Any] = 4 snake_case : Union[str, Any] = None def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Dict = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Any = None if self.use_token_type_ids: snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : List[str] = None snake_case : int = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Dict = TFRoFormerModel(config=snake_case__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case : List[str] = [input_ids, input_mask] snake_case : Optional[int] = model(snake_case__ ) snake_case : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = True snake_case : Tuple = TFRoFormerForCausalLM(config=snake_case__ ) snake_case : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[str] = model(snake_case__ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = TFRoFormerForMaskedLM(config=snake_case__ ) snake_case : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' snake_case : str = self.num_labels snake_case : Dict = TFRoFormerForSequenceClassification(config=snake_case__ ) snake_case : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : str = self.num_choices snake_case : List[Any] = TFRoFormerForMultipleChoice(config=snake_case__ ) snake_case : Tuple = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[Any] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : int = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case : List[str] = self.num_labels snake_case : str = TFRoFormerForTokenClassification(config=snake_case__ ) snake_case : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Any , snake_case__ : int , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' snake_case : Any = TFRoFormerForQuestionAnswering(config=snake_case__ ) snake_case : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case : int = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.prepare_config_and_inputs() ( snake_case ) : int = config_and_inputs snake_case : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A__ : List[Any] = False A__ : Tuple = False def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Dict = TFRoFormerModelTester(self ) snake_case : int = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(snake_case__ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : Tuple = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case : Optional[int] = model(snake_case__ )[0] # TODO Replace vocab size snake_case : Optional[Any] = 5_00_00 snake_case : Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , snake_case__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. snake_case : Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 ) @require_tf class UpperCAmelCase ( unittest.TestCase ): A__ : Dict = 1e-4 def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : List[Any] = tf.constant([[4, 10]] ) snake_case : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) snake_case : List[str] = emba(input_ids.shape ) snake_case : Optional[int] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) snake_case : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) snake_case : int = emba.weight[:3, :5] tf.debugging.assert_near(snake_case__ , snake_case__ , atol=self.tolerance ) @require_tf class UpperCAmelCase ( unittest.TestCase ): A__ : str = 1e-4 def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple: '''simple docstring''' snake_case : Tuple = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 snake_case : Union[str, Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 snake_case : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) snake_case : Optional[Any] = embed_positions([2, 16, 7_68] )[None, None, :, :] snake_case : Tuple = TFRoFormerSelfAttention.apply_rotary_position_embeddings( snake_case__ , snake_case__ , snake_case__ ) snake_case : List[str] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) snake_case : Optional[Any] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , snake_case__ , atol=self.tolerance )
353
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
0